首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ovarian cancer is the deadliest gynecological malignancy. It is typically diagnosed at advanced stages of the disease, with metastatic sites disseminated widely within the abdominal cavity. Ovarian cancer treatment is challenging due to high disease recurrence and further complicated pursuant to acquired chemoresistance. Cancer stem cell(CSC) theory proposes that both tumor development and progression are driven by undifferentiated stem cells capable of self-renewal and tumor-initiation. The most recent evidence revealed that CSCs in terms of ovarian cancer are not only responsible for primary tumor growth, metastasis and relapse of disease, but also for the development of chemoresistance. As the elimination of this cell population is critical for increasing treatment success, a deeper understanding of ovarian CSCs pathobiology, including epithelial-mesenchymal transition, signaling pathways and tumor microenvironment, is needed. Finally, before introducing new therapeutic agents for ovarian cancer, targeting CSCs, accurate identification of different ovarian stem cell subpopulations, including the very small embryoniclike stem cells suggested as progenitors, is necessary. To these ends, reliable markers of ovarian CSCs should be identified. In this review, we present the current knowledge and a critical discussion concerning ovarian CSCs and their clinical role.  相似文献   

2.
Primary malignant tumors of the spine are relatively rare, less than 5% of all spinal column tumors. However, these lesions are often among the most difficult to treat and encompass challenging pathologies such as chordoma and a variety of invasive sarcomas. The mechanisms of tumor recurrence after surgical intervention, as well as resistance to radiation and chemotherapy, remain a pervasive and costly problem. Recent evidence has emerged supporting the hypothesis that solid tumors contain a sub-population of cancer cells that possess characteristics normally associated with stem cells. Particularly, the potential for long-term proliferation appears to be restricted to subpopulations of cancer stem cells (CSCs) functionally defined by their capacity to self-renew and give rise to differentiated cells that phenotypically recapitulate the original tumor, thereby causing relapse and patient death. These cancer stem cells present a unique opportunity to better understand the biology of solid tumors in general, as well as targets for future therapeutics. The general objective of the current study is to discuss the fundamental concepts for understanding the role of CSCs with respect to chemoresistance, radioresistance, special cell surface markers, cancer recurrence and metastasis in tumors of the osseous spine. This discussion is followed by a specific review of what is known about the role of CSCs in chordoma, the most common primary malignant osseous tumor of the spine.  相似文献   

3.
Primary malignant tumors of the spine are relatively rare, less than 5% of all spinal column tumors. However, these lesions are often among the most difficult to treat and encompass challenging pathologies such as chordoma and a variety of invasive sarcomas. The mechanisms of tumor recurrence after surgical intervention, as well as resistance to radiation and chemotherapy, remain a pervasive and costly problem. Recent evidence has emerged supporting the hypothesis that solid tumors contain a sub-population of cancer cells that possess characteristics normally associated with stem cells. Particularly, the potential for long-term proliferation appears to be restricted to subpopulations of cancer stem cells(CSCs) functionally defined by their capacity to self-renew and give rise to differentiated cells that phenotypically recapitulate the original tumor, thereby causing relapse and patient death. These cancer stem cells present a unique opportunity to better understand the biology of solid tumors in general, as well as targets for future therapeutics. The general objective of the current study is to discuss the fundamental concepts for understanding the role of CSCs with respect to chemoresistance, radioresistance, special cell surface markers, cancer recurrence and metastasis intumors of the osseous spine. This discussion is followed by a specific review of what is known about the role of CSCs in chordoma, the most common primary malignant osseous tumor of the spine.  相似文献   

4.
Cancer stem cells (CSCs) or tumor-initiating cells are thought to play critical roles in tumorigenesis, metastasis, drug resistance, and tumor recurrence. For the diagnosis and targeted therapy of CSCs, the molecular identity of biomarkers or therapeutic targets for CSCs needs to be clarified. In this study, we identified CD166 as a novel marker expressed in the sphere-forming CSC population of A2780 epithelial ovarian cancer cells and primary ovarian cancer cells. The CD166+ cells isolated from A2780 cells and primary ovarian cancer cells highly expressed CSC markers, including ALDH1a1, OCT4, and SOX2, and ABC transporters, which are implicated in the drug resistance of CSCs. The CD166+ cells exhibited enhanced CSC-like properties, such as increased sphere-forming ability, cell migration and adhesion abilities, resistance to conventional anti-cancer drugs, and high tumorigenic potential in a xenograft mouse model. Knockdown of CD166 expression in the sphere-forming ovarian CSCs abrogated their CSC-like properties. Moreover, silencing of CD166 expression in the sphere-forming CSCs suppressed the phosphorylation of focal adhesion kinase, paxillin, and SRC. These results suggest that CD166 plays a key role in the regulation of CSC-like properties and focal adhesion kinase signaling in ovarian cancer.  相似文献   

5.
Chemotherapy with platinum and taxanes is the first line of treatment for all epithelial ovarian cancer (EOC) patients after debulking surgery. Even though the treatment is initially effective in 80% of patients, recurrent cancer is inevitable in the vast majority of cases. Emerging evidence suggests that some tumor cells can survive chemotherapy by activating the self‐renewal pathways resulting in tumor progression and clinical recurrence. These defined population of cells commonly termed as “cancer stem cells” (CSC) may generate the bulk of the tumor by using differentiating pathways. These cells have been shown to be resistant to chemotherapy and, to have enhanced tumor initiating abilities, suggesting CSCs as potential targets for treatment. Recent studies have introduced a new paradigm in ovarian carcinogenesis which proposes in situ carcinoma at the fimbrial end of the fallopian tube to generate high‐grade serous ovarian carcinomas, in contrast to ovarian cortical inclusion cysts (CIC) which produce borderline and low grade serous, mucinous, endometrioid, and clear cell carcinomas. This review summarizes recent advances in our understanding of the cellular origin of EOC and the molecular mechanisms defining the basis of CSC in EOC progression and chemoresistance. Using a model ovarian cancer cell line, we highlight the role of CSC in response to chemotherapy, and relate how CSCs may impact on chemoresistance and ultimately recurrence. We also propose the molecular targeting of CSCs and suggest ways that may improve the efficacy of current chemotherapeutic regimens needed for the management of this disease. J. Cell. Biochem. 114: 21–34, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Since the discovery of specific populations of cells with stem-like characteristics in human leukemias, phenotypically and/or functionally similar tumor-promoting cells have been identified in a variety of human cancers. By dint of the similarities to normal human stem cells in terms of self-renewal, differentiation, long life span, and proliferative capacity, these defined populations of cells within the bulk tumor are referred to as “cancer stem cells (CSCs)”. The presence of CSCs has challenged the age-old dogma of carcinogenesis, which posits that all cells within a tissue retain the capacity to generate tumors. With respect to the frequency of CSCs, there is still a lack of consensus as in some recent models the notion that these cells constitute a very small proportion within the tumor has been challenged. Another issue that remains unresolved is the existence of a “global” marker, although reference has been made to the CD133+, CD34+CD38?, and CD44+CD24? populations as the functional stem-like cells in different cancers. Nevertheless, the identification of this sub-set within the bulk tumor and its contribution to chemotherapy resistance suggest that the CSCs could be the Achilles heel in terms of chemosensitization. Therefore, a paradigm is emerging that an effective therapeutic approach against cancers is to target this critical pool of cells that have the capacity to self-renew and proliferate as well as evade death signals. Here we provide a brief review of the literature vis a vis the various mechanisms of defective apoptotic signaling in CSCs with potential for therapeutic intervention.  相似文献   

7.
Cancer stem cells (CSCs) are defined as a subset of slow cycling and undifferentiated cells that divide asymmetrically to generate highly proliferative, invasive, and chemoresistant tumor cells. Therefore, CSCs are an attractive population of cells to target therapeutically. CSCs are predicted to contribute to a number of types of malignancies including those in the blood, brain, lung, gastrointestinal tract, prostate, and ovary. Isolating and enriching a tumor cell population for CSCs will enable researchers to study the properties, genetics, and therapeutic response of CSCs. We generated a protocol that reproducibly enriches for ovarian cancer CSCs from ovarian cancer cell lines (SKOV3 and OVCA429). Cell lines are treated with 20 µM cisplatin for 3 days. Surviving cells are isolated and cultured in a serum-free stem cell media containing cytokines and growth factors. We demonstrate an enrichment of these purified CSCs by analyzing the isolated cells for known stem cell markers Oct4, Nanog, and Prom1 (CD133) and cell surface expression of CD177 and CD133. The CSCs exhibit increased chemoresistance. This method for isolation of CSCs is a useful tool for studying the role of CSCs in chemoresistance and tumor relapse.  相似文献   

8.
9.
Ovarian cancer (OC) is the one of the most common cancer in women globally. However, it still represents the most dangerous gynecologic malignancy even with the advances in detection and therapeutics. Thus, there is an urgent need in finding more effective therapeutic options for OC patients including cancer stem cells (CSC). MicroRNAs (miRNAs) are small, endogenous, and non-coding RNAs that play critical roles in the progression of various types of tumor. Our aim of this study was to find the regulatory function of microRNA-26 (miRNA- 26b) on the cell proliferation and apoptosis of ovarian CSCs. Our studies show that miR-26b is under-regulated in human CD117+CD44+ ovarian CSCs. The miR-26b overexpression inhibits the cell proliferation and promotes cell apoptosis. Moreover, phosphatase and tensin homolog (PTEN) is found to be a functional target of miR-26b. Moreover, PTEN overexpression reversed the effects of miR-26b on cell proliferation and apoptosis. PTEN overexpression remarkably accelerated cell proliferation, and inhibited cell apoptosis. These results indicate that MiR-26b regulates cell proliferation and apoptosis of CD117+CD44+ ovarian CSCs by targeting PTEN.Key words: miR-26b, PTEN, ovarian cancer stem cells (CSCs), cell proliferation, apoptosis  相似文献   

10.
Despite significant effort and research funds, epithelial ovarian cancer remains a very deadly disease. There are no effective screening methods that discover early stage disease; the majority of patients are diagnosed with advanced disease. Treatment modalities consist primarily of radical debulking surgery followed by taxane and platinum-based chemotherapy. Newer therapies including limited targeted agents and intraperitoneal delivery of chemotherapeutic drugs have improved disease-free intervals, but failed to yield longlasting cures in most patients. Chemotherapeutic resistance, particularly in the recurrent setting, plagues the disease. Targeting the pathways and mechanisms behind the development of chemoresistance in ovarian cancer could lead to significant improvement in patient outcomes. In many malignancies, including blood and other solid tumors, there is a subgroup of tumor cells, separate from the bulk population, called cancer stem cells(CSCs). These CSCs are thought to be the cause of metastasis, recurrence and resistance. However, todate, ovarian CSCs have been difficult to identify, isolate, and target. It is felt by many investigators that finding a putative ovarian CSC and a chemotherapeutic agent to target it could be the key to a cure for this deadly disease. This review will focus on recent advances in this arena and discuss some of the controversies surrounding the concept.  相似文献   

11.
Cancer stem cells (CSCs) have been identified in a growing number of malignancies and are functionally defined by their ability to undergo self-renewal and produce differentiated progeny1. These properties allow CSCs to recapitulate the original tumor when injected into immunocompromised mice. CSCs within an epithelial malignancy were first described in breast cancer and found to display specific cell surface antigen expression (CD44+CD24low/-)2. Since then, CSCs have been identified in an increasing number of other human malignancies using CD44 and CD24 as well as a number of other surface antigens. Physiologic properties, including aldehyde dehydrogenase (ALDH) activity, have also been used to isolate CSCs from malignant tissues3-5.Recently, we and others identified CSCs from pancreatic adenocarcinoma based on ALDH activity and the expression of the cell surface antigens CD44 and CD24, and CD1336-8. These highly tumorigenic populations may or may not be overlapping and display other functions. We found that ALDH+ and CD44+CD24+ pancreatic CSCs are similarly tumorigenic, but ALDH+ cells are relatively more invasive8. In this protocol we describe a method to isolate viable pancreatic CSCs from low-passage human xenografts9. Xenografted tumors are harvested from mice and made into a single-cell suspension. Tissue debris and dead cells are separated from live cells and then stained using antibodies against CD44 and CD24 and using the ALDEFLUOR reagent, a fluorescent substrate of ALDH10. CSCs are then isolated by fluorescence activated cell sorting. Isolated CSCs can then be used for analytical or functional assays requiring viable cells.  相似文献   

12.
Increasing evidence has suggested cancer stem cells (CSCs) are considered to be responsible for cancer formation, recurrence, and metastasis. Recently, many studies have also revealed that microRNAs (miRNAs) strongly implicate in regulating self renewal and tumorigenicity of CSCs in human cancers. However, with respect to colon cancer, the role of miRNAs in stemness maintenance and tumorigenicity of CSCs still remains to be unknown. In the present study, we isolated a population of colon CSCs expressing a CD133 surface phenotype from human HT29 colonic adenocarcinoma cell line by Flow Cytometry Cell Sorting. The CD133+ cells possess a greater tumor sphere-forming efficiency in vitro and higher tumorigenic potential in vivo. Furthermore, the CD133+ cells are endowed with stem/progenitor cells-like property including expression of “stemness” genes involved in Wnt2, BMI1, Oct3/4, Notch1, C-myc and other genes as well as self-renewal and differentiation capacity. Moreover, we investigated the miRNA expression profile of colon CSCs using miRNA array. Consequently, we identified a colon CSCs miRNA signature comprising 11 overexpressed and 8 underexpressed miRNAs, such as miR-429, miR-155, and miR-320d, some of which may be involved in regulation of stem cell differentiation. Our results suggest that miRNAs might play important roles in stemness maintenance of colon CSCs, and analysis of specific miRNA expression signatures may contribute to potential cancer therapy.  相似文献   

13.
Cancer stem cells (CSCs) are defined as a small population of cancer cells with the properties of high self-renewal, differentiation, and tumor-initiating functions. Recent studies have demonstrated that aldehyde dehydrogenase 1 (ALDH1) is a marker for CSCs in adult cancers. Although CSCs have been identified in some different types of pediatric solid tumors, there have been no studies regarding the efficacy of ALDH1 as a marker for CSCs. Therefore, in order to elucidate whether ALDH1 can be used as a marker for CSCs of pediatric sarcoma, we examined the characteristics of a population of cells with a high ALDH1 activity (ALDH1high cells) in rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children. We used the human embryonal RMS (eRMS) cell lines RD and KYM-1, and sorted the cells into two subpopulations of ALDH1high cells and cells with a low ALDH1 activity (ALDH1low cells). Consequently, we found that the ALDH1high cells comprised 3.9% and 8.2% of the total cell population, respectively, and showed a higher capacity for self-renewal and tumor formation than the ALDH1low cells. With regard to chemoresistance, the survival rate of the ALDH1high cells was found to be higher than that of the ALDH1low cells following treatment with chemotherapeutic agents for RMS. Furthermore, the ALDH1high cells exhibited a higher degree of pluripotency and gene expression of Sox2, which is one of the stem cell markers. Taken together, the ALDH1high cells possessed characteristics of CSCs, including colony formation, chemoresistance, differentiation and tumor initiation abilities. These results suggest that ALDH1 is a potentially useful marker of CSCs in eRMS.  相似文献   

14.
Ovarian cancer is the deadliest gynecological malignancy due to its symptomless early stage, metastasis, and high recurrence rate. The tumor microenvironment contributes to the ovarian cancer progression, metastasis, and chemoresistance. Adipose-derived stem cell in the tumor microenvironment of ovarian cancer, as a key player, interacts with ovarian cancer cells to form the cancer-associated fibroblasts and cancer-associated adipocytes, and secretes soluble factors to activate tumor cell signaling, which can promote ovarian cancer metastasis and chemoresistance. We summarize in this review the recent progress in the studies of interactions between adipose-derived stem cell and ovarian cancer, thus, to provide some insight for ovarian cancer therapy through targeting adipose-derived stem cell.  相似文献   

15.
Recent studies have indicated that cancer stem-like cells (CSCs) exhibit a high resistance to current therapeutic strategies, including photodynamic therapy (PDT), leading to the recurrence and progression of colorectal cancer (CRC). In cancer, autophagy acts as both a tumor suppressor and a tumor promoter. However, the role of autophagy in the resistance of CSCs to PDT has not been reported. In this study, CSCs were isolated from colorectal cancer cells using PROM1/CD133 (prominin 1) expression, which is a surface marker commonly found on stem cells of various tissues. We demonstrated that PpIX-mediated PDT induced the formation of autophagosomes in PROM1/CD133+ cells, accompanied by the upregulation of autophagy-related proteins ATG3, ATG5, ATG7, and ATG12. The inhibition of PDT-induced autophagy by pharmacological inhibitors and silencing of the ATG5 gene substantially triggered apoptosis of PROM1/CD133+ cells and decreased the ability of colonosphere formation in vitro and tumorigenicity in vivo. In conclusion, our results revealed a protective role played by autophagy against PDT in CSCs and indicated that targeting autophagy could be used to elevate the PDT sensitivity of CSCs. These findings would aid in the development of novel therapeutic approaches for CSC treatment.  相似文献   

16.
Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are defined as a small population of cancer cells that have high tumorigenicity. Furthermore, CSCs/CICs are resistant to several cancer therapies, and CSCs/CICs are therefore thought to be responsible for cancer recurrence after treatment and distant metastasis. In epithelial ovarian cancer (EOC) cases, disease recurrence after chemotherapy is frequently observed, suggesting ovarian CSCs/CICs are involved. There are four major histological subtypes in EOC, and serous adenocarcinoma and clear cell adenocarcinoma are high-grade malignancies. We therefore analyzed ovarian CSCs/CICs from ovarian carcinoma cell lines (serous adenocarcinoma and clear cell adenocarcinoma) and primary ovarian cancer cells in this study. We isolated ovarian CSCs/CICs as an aldehyde dehydrogenase 1 high (ALDH1high) population from 6 EOC cell lines (3 serous adenocarcinomas and 3 clear cell adenocarcinomas) by the ALDEFLUOR assay. ALDH1high cells showed greater sphere-forming ability, higher tumorigenicity and greater invasive capability, indicating that ovarian CSCs/CICs are enriched in ALDH1high cells. ALDH1high cells could also be isolated from 8 of 11 primary ovarian carcinoma samples. Immunohistochemical staining revealed that higher ALDH1 expression levels in ovary cancer cases are related to poorer prognosis in both serous adenocarcinoma cases and clear cell adenocarcinoma cases. Taken together, the results indicate that ALDH1 is a marker for ovarian CSCs/CICs and that the expression level of ALDH1 might be a novel biomarker for prediction of poor prognosis.  相似文献   

17.
Although relatively good therapeutic results are achieved in non‐advanced cancer, the prognosis of the advanced colon cancer still remains poor, dependent on local or distant recurrence of the disease. One of the factors responsible for recurrence is supposed to be cancer stem cells (CSCs) or tumor‐initiating cells, which are a population of cancer cells with ability to perpetuate themselves through self‐renewal and to generate differentiated cells, thought to be responsible for tumor recurrence. This study globally approach the possible role of tissue‐derived stem cells in the initiation of colon cancer and its metastatic process in the liver. Fresh surgical specimens from colon cancer, non‐tumor tissue and liver metastasis were obtained directly from the operating room, examined, and immediately processed. CSCs were selected under serum‐free conditions and characterized by CD44 and CD133 expression levels. CD133+/CD44+ cell populations were then investigated in paraffin‐embedded tissues and circulating tumor cells isolated from peripheral blood of the same group of colon cancer patients. Our data demonstrate that metastatic properties of cell populations from blood and liver metastasis, differently from primitive tumors, seem to be strictly related to the phenotype CD133 positive and CD44 positive. J. Cell. Physiol. 228: 408–415, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Ovarian cancer stem cells (OCSCs) are highly carcinogenic and have very strong resistance to traditional chemotherapeutic drugs; therefore, they are an important factor in ovarian cancer metastasis and recurrence. It has been reported that dendritic cell (DC)‐cytokine‐induced killer (CIK) cells have significant killing effects on all cancer cells across many systems including the blood, digestive, respiratory, urinary and reproductive systems. However, whether DC‐CIK cells can selectively kill OCSCs is currently unclear. In this study, we collected ovarian cancer patient menstrual blood (OCPMB) samples to acquire mononuclear cells and isolated DC‐CIK cells in vitro. In addition, autologous CD44+/CD133+ OCSCs were isolated and used as target cells. The experimental results showed that when DC‐CIK cells and OCSCs were mixed and cultured in vitro at ratios of 5:1, 10:1 and 50:1, the DC‐CIK cells killed significant amounts of OCSCs, inhibited their invasion in vitro and promoted their apoptosis. The qPCR and Western blot results showed that DC‐CIK cells stimulated high expression levels and phosphorylation of TNFR1, ASK1, AIP1 and JNK in OCSCs through the release of TNF‐α. After the endogenous TNFR1 gene was knocked out in OCSCs using the CRISPR/Cas9 technology, the killing function of DC‐CIK cells on target OCSCs was significantly attenuated. The results of the analyses of clinical samples suggested that the TNFR1 expression level was negatively correlated with ovarian cancer stage and prognosis. Therefore, we innovatively confirmed that DC‐CIK cells derived from OCPMB could secret TNF‐α to activate the expression of the TNFR1‐ASK1‐AIP1‐JNK pathway in OCSCs and kill autologous OCSCs.  相似文献   

19.

Background

Much attention has been recently focused on the role of cancer stem cells (CSCs) in the initiation and progression of solid malignancies. Since CSCs are able to proliferate and self-renew extensively due to their ability to express anti-apoptotic and drug resistant proteins, thus sustaining tumor growth. Therefore, the strategy to eradicate CSCs might have significant clinical implications. The objectives of this study were to examine the molecular mechanisms by which epigallocathechin gallate (EGCG) inhibits stem cell characteristics of prostate CSCs, and synergizes with quercetin, a major polyphenol and flavonoid commonly detected in many fruits and vegetables.

Results

Our data indicate that human prostate cancer cell lines contain a small population of CD44+CD133+ cancer stem cells and their self-renewal capacity is inhibited by EGCG. Furthermore, EGCG inhibits the self-renewal capacity of CD44+α2β1+CD133+ CSCs isolated from human primary prostate tumors, as measured by spheroid formation in suspension. EGCG induces apoptosis by activating capase-3/7 and inhibiting the expression of Bcl-2, survivin and XIAP in CSCs. Furthermore, EGCG inhibits epithelial-mesenchymal transition by inhibiting the expression of vimentin, slug, snail and nuclear β-catenin, and the activity of LEF-1/TCF responsive reporter, and also retards CSC's migration and invasion, suggesting the blockade of signaling involved in early metastasis. Interestingly, quercetin synergizes with EGCG in inhibiting the self-renewal properties of prostate CSCs, inducing apoptosis, and blocking CSC's migration and invasion. These data suggest that EGCG either alone or in combination with quercetin can eliminate cancer stem cell-characteristics.

Conclusion

Since carcinogenesis is a complex process, combination of bioactive dietary agents with complementary activities will be beneficial for prostate cancer prevention and/ortreatment.  相似文献   

20.
Although chemotherapy is used to treat most advanced solid tumors, recurrent disease is still the major cause of cancer-related mortality. Cancer stem cells (CSCs) have been the focus of intense research in recent years because they provide a possible explanation for disease relapse. However, the precise role of CSCs in recurrent disease remains poorly understood and surprisingly little attention has been focused on studying the cells responsible for re-initiating tumor growth within the original host after chemotherapy treatment. We utilized both xenograft and genetically engineered mouse models of non-small cell lung cancer (NSCLC) to characterize the residual tumor cells that survive chemotherapy treatment and go on to cause tumor regrowth, which we refer to as tumor re-initiating cells (TRICs). We set out to determine whether TRICs display characteristics of CSCs, and whether assays used to define CSCs also provide an accurate readout of a cell’s ability to cause tumor recurrence. We did not find consistent enrichment of CSC marker positive cells or enhanced tumor initiating potential in TRICs. However, TRICs from all models do appear to be in EMT, a state that has been linked to chemoresistance in numerous types of cancer. Thus, the standard CSC assays may not accurately reflect a cell’s ability to drive disease recurrence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号