首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
2.
Protein phosphatase 2A (PP2A) bearing the B’γ (= B’α/B56γ1/PR61γ) subunit is recruited to dephosphorylation targets by cyclin G. We demonstrate here that cyclin G-associated kinase (GAK), a component of the GAK/B’γ/cyclin G complex, directly phosphorylates the B’γ-Thr104 residue and regulates PP2A activity. Indeed, an anti-B’γ-pT104 antibody detected immunofluorescence signals at the chromosome and centrosome during mitosis; these signals were reduced by siRNA-mediated GAK knockdown. After DNA damage by γ-irradiation, the chromosome signals formed foci that colocalized with a DNA double-strand break (DSB) marker H2AX-pS139 (γH2AX) and CHK2-pT68. Moreover, B’γ-pT104 enhanced PP2A holoenzyme assembly and PP2A activity, as shown by the results of an in vitro phosphatase assay. These results suggest a novel role for GAK as a regulator of dephosphorylation events under the control of the PP2A B’γ subunit.  相似文献   

3.
A pool of protein phosphatase 1 (PP1) accumulates within nucleoli and accounts for a large fraction of the serine/threonine protein phosphatase activity in this subnuclear structure. Using a combination of fluorescence imaging with quantitative proteomics, we mapped the subnuclear localization of the three mammalian PP1 isoforms stably expressed as GFP-fusions in live cells and identified RRP1B as a novel nucleolar targeting subunit that shows a specificity for PP1β and PP1γ. RRP1B, one of two mammalian orthologues of the yeast Rrp1p protein, shows an RNAse-dependent localization to the granular component of the nucleolus and distributes in a similar manner throughout the cell cycle to proteins involved in later steps of rRNA processing. Quantitative proteomic analysis of complexes containing both RRP1B and PP1γ revealed enrichment of an overlapping subset of large (60S) ribosomal subunit proteins and pre-60S nonribosomal proteins involved in mid-late processing. Targeting of PP1 to this complex by RRP1B in mammalian cells is likely to contribute to modulation of ribosome biogenesis by mechanisms involving reversible phosphorylation events, thus playing a role in the rapid transduction of cellular signals that call for regulation of ribosome production in response to cellular stress and/or changes in growth conditions.  相似文献   

4.
5.
The Spindle Assembly Checkpoint (SAC) is part of a complex feedback system designed to ensure that cells do not proceed through mitosis unless all chromosomal kinetochores have attached to spindle microtubules. The formation of the kinetochore complex and the implementation of the SAC are regulated by multiple kinases and phosphatases. BubR1 is a phosphoprotein that is part of the Cdc20 containing mitotic checkpoint complex that inhibits the APC/C so that Cyclin B1 and Securin are not degraded, thus preventing cells going into anaphase. In this study, we found that PP2A in association with its B56γ regulatory subunit, are needed for the stability of BubR1 during nocodazole induced cell cycle arrest. In primary cells that lack B56γ, BubR1 is prematurely degraded and the cells proceed through mitosis. The reduced SAC efficiency results in cells with abnormal chromosomal segregation, a hallmark of transformed cells. Previous studies on PP2A's role in the SAC and kinetochore formation were done using siRNAs to all 5 of the B56 family members. In our study we show that inactivation of only the PP2A-B56γ subunit can affect the efficiency of the SAC. We also provide data that show the intracellular locations of the B56 subunits varies between family members, which is consistent with the hypothesis that they are not completely functionally redundant.  相似文献   

6.
Protein phosphatase 2A (PP2A) is a critical human tumor suppressor. Cancerous inhibitor of PP2A (CIP2A) supports the activity of several critical cancer drivers (Akt, MYC, E2F1) and promotes malignancy in most cancer types via PP2A inhibition. However, the 3D structure of CIP2A has not been solved, and it remains enigmatic how it interacts with PP2A. Here, we show by yeast two‐hybrid assays, and subsequent validation experiments, that CIP2A forms homodimers. The homodimerization of CIP2A is confirmed by solving the crystal structure of an N‐terminal CIP2A fragment (amino acids 1–560) at 3.0 Å resolution, and by subsequent structure‐based mutational analyses of the dimerization interface. We further describe that the CIP2A dimer interacts with the PP2A subunits B56α and B56γ. CIP2A binds to the B56 proteins via a conserved N‐terminal region, and dimerization promotes B56 binding. Intriguingly, inhibition of either CIP2A dimerization or B56α/γ expression destabilizes CIP2A, indicating opportunities for controlled degradation. These results provide the first structure–function analysis of the interaction of CIP2A with PP2A/B56 and have direct implications for its targeting in cancer therapy.  相似文献   

7.
Jeon KI  Jono H  Miller CL  Cai Y  Lim S  Liu X  Gao P  Abe J  Li JD  Yan C 《The FEBS journal》2010,277(24):5026-5039
The phenotypic change of vascular smooth muscle cells (VSMCs), from a 'contractile' phenotype to a 'synthetic' phenotype, is crucial for pathogenic vascular remodeling in vascular diseases such as atherosclerosis and restenosis. Ca(2+)/calmodulin-stimulated phosphodiesterase 1 (PDE1) isozymes, including PDE1A and PDE1C, play integral roles in regulating the proliferation of synthetic VSMCs. However, the underlying molecular mechanism(s) remain unknown. In this study, we explore the role and mechanism of PDE1 isoforms in regulating β-catenin/T-cell factor (TCF) signaling in VSMCs, a pathway important for vascular remodeling through promoting VSMC growth and survival. We found that inhibition of PDE1 activity markedly attenuated β-catenin/TCF signaling by downregulating β-catenin protein. The effect of PDE1 inhibition on β-catenin protein reduction is exerted via promoting glycogen synthase kinase 3 (GSK3)β activation, β-catenin phosphorylation and subsequent β-catenin protein degradation. Moreover, PDE1 inhibition specifically upregulated phosphatase protein phosphatase 2A (PP2A) B56γ subunit gene expression, which is responsible for the effects of PDE1 inhibition on GSK3β and β-catenin/TCF signaling. Furthermore, the effect of PDE1 inhibition on β-catenin was specifically mediated by PDE1A but not PDE1C isozyme. Interestingly, in synthetic VSMCs, PP2A B56γ, phospho-GSK3β and phospho-β-catenin were all found in the nucleus, suggesting that PDE1A regulates nuclear β-catenin protein stability through the nuclear PP2A-GSK3β-β-catenin signaling axis. Taken together, these findings provide direct evidence for the first time that PP2A B56γ is a critical mediator for PDE1A in the regulation of β-catenin signaling in proliferating VSMCs.  相似文献   

8.
Insulin/IGF-1 signaling plays a pivotal role in the regulation of cellular homeostasis through its control of glucose metabolism as well as due to its effects on cell proliferation. Aberrant regulation of insulin signaling has been repeatedly implicated in uncontrolled cell growth and malignant transformations. TBC1D3 is a hominoid specific gene previously identified as an oncogene in breast and prostate cancers. Our efforts to identify the molecular mechanisms of TBC1D3-induced oncogenesis revealed the role of TBC1D3 in insulin/IGF-1 signaling pathway. We document here that TBC1D3 intensifies insulin/IGF-1-induced signal transduction through intricate, yet elegant fine-tuning of signaling mechanisms. We show that TBC1D3 expression substantially delayed ubiquitination and degradation of insulin receptor substrate-1 (IRS-1). This effect is achieved through suppression of serine phosphorylation at S636/639, S307 and S312 of IRS-1, which are key phosphorylation sites required for IRS-1 degradation. Furthermore, we report that the effect of TBC1D3 on IRS-1:S636/639 phosphorylation is mediated through TBC1D3-induced activation of protein phosphatase 2A (PP2A), followed by suppression of T389 phosphorylation on p70 S6 kinase (S6K). TBC1D3 specifically interacts with PP2A regulatory subunit B56γ, indicating that TBC1D3 and PP2A B56γ operate jointly to promote S6K:T389 dephosphorylation. These findings suggest that TBC1D3 plays an unanticipated and potentially unique role in the fine-tuning of insulin/IGF-1 signaling, while providing novel insights into the regulation of tumorigenesis by a hominoid-specific protein.  相似文献   

9.
PP2Cγ is a splicing factor that dephosphorylates specific substrates required for the formation of the spliceosome. In a previous study, we reported that the degradation of p21Cip1/WAF1was affected by PP2Cγ, causing an accumulation of cells in S phase. Here, we demonstrate that the PP2Cγ-induced degradation of p21Cip1/WAF1 is mediated by Akt signaling. In cells expressing PP2Cγ, Akt1 protein was phosphorylated. When PP2Cγ expression was knocked down, the phosphorylation of Akt1 was reduced and the level of p21Cip1/WAF1 protein was increased. Interestingly, the stability of p21Cip1/WAF1 was highly maintained in Akt1-depleted cells despite the ectopic expression of PP2Cγ. Taken together, these results suggest that PP2Cγ is a novel regulator of p21Cip1/WAF1 protein stability via the Akt signaling pathway.  相似文献   

10.
Li HH  Cai X  Shouse GP  Piluso LG  Liu X 《The EMBO journal》2007,26(2):402-411
Protein phosphatase 2A (PP2A) has been implicated to exert its tumor suppressive function via a small subset of regulatory subunits. In this study, we reported that the specific B regulatory subunits of PP2A B56gamma1 and B56gamma3 mediate dephosphorylation of p53 at Thr55. Ablation of the B56gamma protein by RNAi, which abolishes the Thr55 dephosphorylation in response to DNA damage, reduces p53 stabilization, Bax expression and cell apoptosis. To investigate the molecular mechanisms, we have shown that the endogenous B56gamma protein level and association with p53 increase after DNA damage. Finally, we demonstrate that Thr55 dephosphorylation is required for B56gamma3-mediated inhibition of cell proliferation and cell transformation. These results suggest a molecular mechanism for B56gamma-mediated tumor suppression and provide a potential route for regulation of B56gamma-specific PP2A complex function.  相似文献   

11.
This report documents the characterization of a novel mouse oocyte protein which was originally identified by microsequence analysis of a 67.8 kDa protein spot (pI 5.7) on a Coomassie-stained two-dimensional (2D) gel of murine egg proteins. Tandem mass spectroscopic analysis of the peptides obtained from the cored protein yielded sequences that appeared to match only ovary, egg, and preimplantation embryo cDNAs. We then cloned the novel gene by RACE-PCR, and analysis of the deduced cDNA sequence found that this maternal product was ∼56% identical to human cytosolic phospholipase A2γ (cPLA2γ). Based on this sequence homology, we named the molecule mouse cytosolic phospholipase A2γ (cPLA2γ). As with human cPLA2γ, mouse cPLA2γ contains a lipase consensus sequence and lacks the calcium binding domain that is found in other PLA2 proteins. However, mouse cPLA2γ is different from human cPLA2γ in that mouse cPLA2γ expression is restricted to the ovary and that the protein does not contain the myristoylation and prenylation lipid-anchoring motifs that are present in human cPLA2γ. Within oocytes, mouse cPLA2γ localizes mainly to the oocyte cortex and to the nucleoplasm. Interestingly, during germinal vesicle breakdown, mouse cPLA2γ aggregates dynamically relocate from the oocyte cortex to the nuclear envelope, suggesting a possible role for this putative egg-restricted phospholipase A2γ in membrane remodeling. Furthermore, mouse cPLA2γ protein continues to be expressed in the embryo until the 4-8-cell stage of development, suggesting that mouse cPLA2γ may function as a previously uncharacterized maternal effect gene.  相似文献   

12.
In human cells, separation of the centrosomes and formation of a bipolar spindle are essential for correct chromosome segregation [1]. During interphase, centrosomes are joined together by the linker proteins C-Nap1 and rootletin [2-4]. At the onset of mitosis, these linker proteins are phosphorylated and displaced from centrosomes by the Nek2A kinase, which is regulated by two Hippo pathway components, Mst2 kinase and the scaffold protein hSav1. The kinesin-5 motor protein Eg5 promotes centrosome separation in a parallel pathway to Nek2A [5]. Here, we report that Polo-like kinase 1 (Plk1) functions upstream of the Mst2-Nek2A kinase module in centrosome disjunction as well as being important for Eg5 localization at centrosomes. Plk1 regulates Mst2-Nek2A-induced centrosome disjunction by phosphorylating Mst2. The absence of Plk1 phosphorylation of Mst2 promotes assembly of Nek2A-PP1γ-Mst2 complexes, in which PP1γ counteracts Nek2A kinase activity. In contrast, Plk1 phosphorylation of Mst2 prevents PP1γ binding to Mst2-Nek2A, allowing Nek2A activity to promote centrosome disjunction. We propose that centrosome disjunction is regulated by Plk1, providing a well-balanced control between the counteracting Nek2A and PP1γ activities on the centrosome linker.  相似文献   

13.
The transient mitotic histone H3 phosphorylation by various protein kinases regulates chromosome condensation and segregation, but the counteracting phosphatases have been poorly characterized [1-8]. We show here that PP1γ is the major histone H3 phosphatase acting on the mitotically phosphorylated (ph) residues H3T3ph, H3S10ph, H3T11ph, and H3S28ph. In addition, we identify Repo-Man, a chromosome-bound interactor of PP1γ [9], as a selective regulator of H3T3ph and H3T11ph dephosphorylation. Repo-Man promotes H3T11ph dephosphorylation by an indirect mechanism but directly and specifically targets H3T3ph for dephosphorylation by associated PP1γ. The PP1γ/Repo-Man complex opposes the protein kinase Haspin-mediated spreading of H3T3ph to the chromosome arms until metaphase and catalyzes the net dephosphorylation of H3T3ph at the end of mitosis. Consistent with these findings, Repo-Man modulates in a PP1-dependent manner the H3T3ph-regulated chromosomal targeting of Aurora kinase B and its substrate MCAK. Our study defines a novel mechanism by which PP1 counteracts Aurora B.  相似文献   

14.
15.
Acute renal failure can occur after an ischemic injury and results in significant mortality. The stress-signaling pathways that are activated during renal ischemia are unknown. PP2A has emerged as an important regulator of cell death. To study the role of PP2A in ischemia-induced cell death, we used an in vitro model of simulated ischemia. In the present study, simulated ischemia in rat renal tubule epithelial NRK-52E cells (a) results in cell death that involves both necrosis and apoptosis, (b) activates PP2A, and (c) up-regulates the PP2A B56 α regulatory subunit. Previous data have shown that PKC α negatively regulates B56 α protein expression. Consistent with this finding, simulated ischemia suppressed PKC α and up-regulated B56 α. Treatment of NRK-52E cells with ceramide suppressed PKC α and activated PP2A in a manner that mimicked simulated ischemia. A role for PP2A in simulated ischemia-induced cell death is likely since inhibition of PP2A protected NRK-52E cells. In addition, overexpression of exogenous B56 α but not B55 in NRK-52E cells enhanced simulated ischemia-induced cell death. These findings suggest that activation of a PP2A isoform that contains the B56 α regulatory subunit is required for ischemia-induced cell death in kidney epithelial proximal tubule cells.  相似文献   

16.
In this work, evidence for a critical role of Trichomonas vaginalis protein phosphatase 1 gamma (TvPP1γ) in proliferation and attachment of the parasite to the mammalian cell is provided. Firstly, proliferation and attachment of T. vaginalis parasites to HeLa cells was blocked by calyculin A (CA), a potent PP1 inhibitor. Secondly, it was demonstrated that the enzyme activity of native and recombinant TvPP1γ proteins was inhibited by CA. Thirdly, reverse genetic studies confirmed that antisense oligonucleotides targeted to PP1γ but not PP1α or β inhibited proliferation and attachment of trichomonads CA-treated parasites underwent cytoskeletal modifications, including a lack of axostyle typical labelling, suggesting that cytoskeletal phosphorylation could be regulated by a CA-sensitive phosphatase where the role of PP1γ could not be ruled out. Analysis of subcellular distribution of TvPP1γ by cell fractionation and electron microscopy demonstrated the association between TvPP1γ and the cytoskeleton. The expression of adhesins, AP120 and AP65, at the cell surface was also inhibited by CA. The concomitant inhibition of expression of adhesins and changes in the cytoskeleton in CA-treated parasites suggest a specific role for PP1γ -dependent dephosphorylation in the early stages of the host-parasite interaction. Molecular modelling of TvPP1γ showed the conservation of residues critical for maintaining proper folding into the gross structure common to PP1 proteins. Taken together, these results suggest that TvPP1γ could be considered a potential novel drug target for treatment of trichomoniasis.  相似文献   

17.
The bHLH factors HAND1 and HAND2 are required for heart, vascular, neuronal, limb, and extraembryonic development. Unlike most bHLH proteins, HAND factors exhibit promiscuous dimerization properties. We report that phosphorylation/dephosphorylation via PKA, PKC, and a specific heterotrimeric protein phosphatase 2A (PP2A) modulates HAND function. The PP2A targeting-subunit B56delta specifically interacts with HAND1 and -2, but not other bHLH proteins. PKA and PKC phosphorylate HAND proteins in vivo, and only B56delta-containing PP2A complexes reduce levels of HAND1 phosphorylation. During RCHOI trophoblast stem cell differentiation, B56delta expression is downregulated and HAND1 phosphorylation increases. Mutations in phosphorylated residues result in altered HAND1 dimerization and biological function. Taken together, these results suggest that site-specific phosphorylation regulates HAND factor functional specificity.  相似文献   

18.
Affinity isolation of protein serine/threonine phosphatases on the immobilized phosphatase inhibitor microcystin-LR identified histone deacetylase 1(HDAC1), HDAC6, and HDAC10 as novel components of cellular phosphatase complexes. Other HDACs, specifically HDAC2, -3, -4, and -5, were excluded from such complexes. In vitro biochemical studies showed that recombinant HDAC6, but not HDAC4, bound directly to the protein phosphatase (PP)1 catalytic subunit. No association was observed between HDAC6 and PP2A, another major protein phosphatase. PP1 binding was mapped to the second catalytic domain and adjacent C-terminal sequences in HDAC6, and treatment of cells with trichostatin A (TSA) disrupted endogenous HDAC6.PP1 complexes. Consistent with the inhibition of tubulin deactylase activity of HDAC6, TSA enhanced cellular tubulin acetylation, and acetylated tubulin was present in the PP1 complexes from TSA-treated cells. Trapoxin B, a weak HDAC6 inhibitor, and calyculin A, a cell-permeable phosphatase inhibitor, had no effect on the stability of the HDAC6.PP1 complexes or on tubulin acetylation. Mutations that inactivated HDAC6 prevented its incorporation into cellular PP1 complexes and suggested that when bound together both enzymes were active. Interestingly, TSA disrupted all the cellular HDAC.phosphatase complexes analyzed. This study provided new insight into the mechanism by which HDAC inhibitors elicited coordinate changes in cellular protein phosphorylation and acetylation and suggested that changes in these protein modifications at multiple subcellular sites may contribute to the known ability of HDAC inhibitors to suppress cell growth and transformation.  相似文献   

19.
20.
Benzodiazepines are commonly used as sedatives, sleeping aids, and anti‐anxiety drugs. However, chronic treatment with benzodiazepines is known to induce dependence, which is considered related to neuroplastic changes in the mesolimbic system. This study investigated the involvement of K+‐Cl? co‐transporter 2 (KCC2) in the sensitization to morphine‐induced hyperlocomotion after chronic treatment with zolpidem [a selective agonist of γ‐aminobutyric acid A‐type receptor (GABAAR) α1 subunit]. In this study, chronic treatment with zolpidem enhanced morphine‐induced hyperlocomotion, which is accompanied by the up‐regulation of KCC2 in the limbic forebrain. We also found that chronic treatment with zolpidem induced the down‐regulation of protein phosphatase‐1 (PP‐1) as well as the up‐regulation of phosphorylated protein kinase C γ (pPKCγ). Furthermore, PP‐1 directly associated with KCC2 and pPKCγ, whereas pPKCγ did not associate with KCC2. On the other hand, pre‐treatment with furosemide (a KCC2 inhibitor) suppressed the enhancing effects of zolpidem on morphine‐induced hyperlocomotion. These results suggest that the mesolimbic dopaminergic system could be amenable to neuroplastic change through a pPKCγ‐PP‐1‐KCC2 pathway by chronic treatment with zolpidem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号