首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Epigenetics》2013,8(3):214-221
Parent-of-origin specific expression of imprinted genes relies on the differential DNA methylation of specific genomic regions. Differentially methylated regions (DMRs) acquire DNA methylation either during gametogenesis (primary DMR) or after fertilisation when allele-specific expression is established (secondary DMR). Little is known about the function of these secondary DMRs. We investigated the DMR spanning Cdkn1c in mouse embryonic stem cells, androgenetic stem cells and embryonic germ stem cells. In all cases, expression of Cdkn1c was appropriately repressed in in vitro differentiated cells. However, stem cells failed to de novo methylate the silenced gene even after sustained differentiation. In the absence of maintained DNA methylation (Dnmt1-/-), Cdkn1c escapes silencing demonstrating the requirement for DNA methylation in long term silencing in vivo. We propose that postfertilisation differential methylation reflects the importance of retaining single gene dosage of a subset of imprinted loci in the adult.  相似文献   

2.
DNA methylation at cytosine-phosphate-guanine (CpG) dinucleotides changes as a function of age in humans and animal models, a process that may contribute to chronic disease development. Recent studies have investigated the role of an oxidized form of DNA methylation – 5-hydroxymethylcytosine (5hmC) – in the epigenome, but its contribution to age-related DNA methylation remains unclear. We tested the hypothesis that 5hmC changes with age, but in a direction opposite to 5-methylcytosine (5mC), potentially playing a distinct role in aging. To characterize epigenetic aging, genome-wide 5mC and 5hmC were measured in longitudinal blood samples (2, 4, and 10 months of age) from isogenic mice using two sequencing methods – enhanced reduced representation bisulfite sequencing and hydroxymethylated DNA immunoprecipitation sequencing. Examining the epigenome by age, we identified 28,196 unique differentially methylated CpGs (DMCs) and 8,613 differentially hydroxymethylated regions (DHMRs). Mouse blood showed a general pattern of epigenome-wide hypermethylation and hypo-hydroxymethylation with age. Comparing age-related DMCs and DHMRs, 1,854 annotated genes showed both differential 5mC and 5hmC, including one gene – Nfic – at five CpGs in the same 250 bp chromosomal region. At this region, 5mC and 5hmC levels both decreased with age. Reflecting these age-related epigenetic changes, Nfic RNA expression in blood decreased with age, suggesting that age-related regulation of this gene may be driven by 5hmC, not canonical DNA methylation. Combined, our genome-wide results show age-related differential 5mC and 5hmC, as well as some evidence that changes in 5hmC may drive age-related DNA methylation and gene expression.  相似文献   

3.
4.

Background

Age-related physiological, biochemical and functional changes in mammalian skeletal muscle have been shown to begin at the mid-point of the lifespan. However, the underlying changes in DNA methylation that occur during this turning point of the muscle aging process have not been clarified. To explore age-related genomic methylation changes in skeletal muscle, we employed young (0.5 years old) and middle-aged (7 years old) pigs as models to survey genome-wide DNA methylation in the longissimus dorsi muscle using a methylated DNA immunoprecipitation sequencing approach.

Results

We observed a tendency toward a global loss of DNA methylation in the gene-body region of the skeletal muscle of the middle-aged pigs compared with the young group. We determined the genome-wide gene expression pattern in the longissimus dorsi muscle using microarray analysis and performed a correlation analysis using DMR (differentially methylated region)-mRNA pairs, and we found a significant negative correlation between the changes in methylation levels within gene bodies and gene expression. Furthermore, we identified numerous genes that show age-related methylation changes that are potentially involved in the aging process. The methylation status of these genes was confirmed using bisulfite sequencing PCR. The genes that exhibited a hypomethylated gene body in middle-aged pigs were over-represented in various proteolysis and protein catabolic processes, suggesting an important role for these genes in age-related muscle atrophy. In addition, genes associated with tumorigenesis exhibited aged-related differences in methylation and expression levels, suggesting an increased risk of disease associated with increased age.

Conclusions

This study provides a comprehensive analysis of genome-wide DNA methylation patterns in aging pig skeletal muscle. Our findings will serve as a valuable resource in aging studies, promoting the pig as a model organism for human aging research and accelerating the development of comparative animal models in aging research.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-653) contains supplementary material, which is available to authorized users.  相似文献   

5.
6.
Epigenetic alterations during cellular differentiation are a key molecular mechanism which both instructs and reinforces the process of lineage commitment. Within the haematopoietic system, progressive changes in the DNA methylome of haematopoietic stem cells (HSCs) are essential for the effective production of mature blood cells. Inhibition or loss of function of the cellular DNA methylation machinery has been shown to lead to a severe perturbation in blood production and is also an important driver of malignant transformation. HSCs constitute a very rare cell population in the bone marrow, capable of life-long self-renewal and multi-lineage differentiation. The low abundance of HSCs has been a major technological barrier to the global analysis of the CpG methylation status within both HSCs and their immediate progeny, the multipotent progenitors (MPPs). Within this Extra View article, we review the current understanding of how the DNA methylome regulates normal and malignant hematopoiesis. We also discuss the current methodologies that are available for interrogating the DNA methylation status of HSCs and MPPs and describe a new data set that was generated using tagmentation-based whole genome bisulfite sequencing (TWGBS) in order to comprehensively map methylated cytosines using the limited amount of genomic DNA that can be harvested from rare cell populations. Extended analysis of this data set clearly demonstrates the added value of genome-wide sequencing of methylated cytosines and identifies novel important cis-acting regulatory regions that are dynamically remodeled during the first steps of haematopoietic differentiation.  相似文献   

7.
The age‐dependent decline in the self‐renewal capacity of stem cells plays a critical role in aging, but the precise mechanisms underlying this decline are not well understood. By limiting proliferative capacity, senescence is thought to play an important role in age‐dependent decline of stem cell self‐renewal, although direct evidence supporting this hypothesis is largely lacking. We have previously identified the E3 ubiquitin ligase Smurf2 as a critical regulator of senescence. In this study, we found that mice deficient in Smurf2 had an expanded hematopoietic stem cell (HSC) compartment in bone marrow under normal homeostatic conditions, and this expansion was associated with enhanced proliferation and reduced quiescence of HSCs. Surprisingly, increased cycling and reduced quiescence of HSCs in Smurf2‐deficient mice did not lead to premature exhaustion of stem cells. Instead, HSCs in aged Smurf2‐deficient mice had a significantly better repopulating capacity than aged wild‐type HSCs, suggesting that decline in HSC function with age is Smurf2 dependent. Furthermore, Smurf2‐deficient HSCs exhibited elevated long‐term self‐renewal capacity and diminished exhaustion in serial transplantation. As we found that the expression of Smurf2 was increased with age and in response to regenerative stress during serial transplantation, our findings suggest that Smurf2 plays an important role in regulating HSC self‐renewal and aging.  相似文献   

8.
9.
10.
11.
12.
13.
Aberrant DNA methylation patterns have been reported in inflamed tissues and may play a role in disease. We studied DNA methylation and gene expression profiles of purified intestinal epithelial cells from ulcerative colitis patients, comparing inflamed and non-inflamed areas of the colon. We identified 577 differentially methylated sites (false discovery rate <0.2) mapping to 210 genes. From gene expression data from the same epithelial cells, we identified 62 differentially expressed genes with increased expression in the presence of inflammation at prostate cancer susceptibility genes PRAC1 and PRAC2. Four genes showed inverse correlation between methylation and gene expression; ROR1, GXYLT2, FOXA2, and, notably, RARB, a gene previously identified as a tumor suppressor in colorectal adenocarcinoma as well as breast, lung and prostate cancer. We highlight targeted and specific patterns of DNA methylation and gene expression in epithelial cells from inflamed colon, while challenging the importance of epithelial cells in the pathogenesis of chronic inflammation.  相似文献   

14.
15.
16.
DNA methylation is generally known to inactivate gene expression. The DNA methyltransferases (DNMTs), DNMT3A and DNMT3B, catalyze somatic cell lineage‐specific DNA methylation, while DNMT3A and DNMT3L catalyze germ cell lineage‐specific DNA methylation. How such lineage‐ and gene‐specific DNA methylation patterns are created remains to be elucidated. To better understand the regulatory mechanisms underlying DNA methylation, we generated transgenic mice that constitutively expressed DNMT3A and DNMT3L, and analyzed DNA methylation, gene expression, and their subsequent impact on ontogeny. All transgenic mice were born normally but died within 20 weeks accompanied with cardiac hypertrophy. Several genes were repressed in the hearts of transgenic mice compared with those in wild‐type mice. CpG islands of these downregulated genes were highly methylated in the transgenic mice. This abnormal methylation occurred in the perinatal stage. Conversely, monoallelic DNA methylation at imprinted loci was faithfully maintained in all transgenic mice, except H19. Thus, the loci preferred by DNMT3A and DNMT3L differ between somatic and germ cell lineages.  相似文献   

17.
18.
Removal of the somatic DNA methylation pattern from donor cells and remodeling of embryonic status have been suggested as integral processes for successful nuclear transfer (NT) reprogramming. This study has investigated the effects of 5-azacytidine (5-azaC), a DNA methylation inhibitor, on global methylation changes in porcine fetal fibroblasts (PFF); this may improve NT attributable to the potential reprogramming of the methyl groups. PFF in 5th passage cultures were treated with 0, 0.5, 1.0, 2.0, and 3.0 μM 5-azaC for 96 h; 5-azaC inhibited the growth at all tested concentrations. At the higher concentrations of 5-azaC used, cells appeared to exhibit morphological changes and to become apoptotic as observed by TUNEL assay. Thus, cells were negatively affected by 5-azaC. Differences in cellular ploidy were also observed at higher concentrations. Analysis showed no considerable changes in the proportion of cells at the G1-phase of the cell cycle with 5-azaC concentrations. The fractional part of the methylated DNA of these cells was significantly reduced by 5-azaC treatment. Confocal microscopy confirmed the inhibition of methylation levels in PFF with increased concentrations of 5-azaC. Exposure to 5-azaC altered the expression of genes involved in imprinting (IGF2) or pro-apoptosis (BAX), whereas there was a reduction in the expression of the main enzyme responsible for replicating the DNA methylation pattern (DNMT1) and anti-apoptosis (BCL2L1). Therefore, 5-azaC induces a relative reduction in methylation in PFF, and cells treated with 0.5 μM 5-azaC may have enhanced potential for porcine NT.The financial support of BioGreen 21 (grant no. 100052004002000) and KOSEF (grant no. R05-2004-000-10702-0) in Korea is gratefully acknowledged.  相似文献   

19.
Ras-association domain family of genes consist of 10 members (RASSF1-RASSF10), all containing a Ras-association (RA) domain in either the C- or the N-terminus. Several members of this gene family are frequently methylated in common sporadic cancers; however, the role of the RASSF gene family in rare types of cancers, such as bone cancer, has remained largely uninvestigated. In this report, we investigated the methylation status of RASSF1A and RASSF2 in Ewing sarcoma (ES). Quantitative real-time methylation analysis (MethyLight) demonstrated that both genes were frequently methylated in Ewing sarcoma tumors (52.5% and 42.5%, respectively) as well as in ES cell lines and gene expression was upregulated in methylated cell lines after treatment with 5-aza-2′-deoxcytidine. Overexpression of either RASSF1A or RASSF2 reduced colony formation ability of ES cells. RASSF2 methylation correlated with poor overall survival (p = 0.028) and this association was more pronounced in patients under the age of 18 y (p = 0.002). These results suggest that both RASSF1A and RASSF2 are novel epigenetically inactivated tumor suppressor genes in Ewing sarcoma and RASSF2 methylation may have prognostic implications for ES patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号