共查询到20条相似文献,搜索用时 15 毫秒
1.
Characteristics of gamma-H2AX foci at DNA double-strand breaks sites. 总被引:15,自引:0,他引:15
Duane R Pilch Olga A Sedelnikova Christophe Redon Arkady Celeste Andre Nussenzweig William M Bonner 《Biochimie et biologie cellulaire》2003,81(3):123-129
Phosphorylated H2AX (gamma-H2AX) is essential to the efficient recognition and (or) repair of DNA double strand breaks (DSBs), and many molecules, often thousands, of H2AX become rapidly phosphorylated at the site of each nascent DSB. An antibody to gamma-H2AX reveals that this highly amplified process generates nuclear foci. The phosphorylation site is a serine four residues from the C-terminus which has been evolutionarily conserved in organisms from giardia intestinalis to humans. Mice and yeast lacking the conserved serine residue demonstrate a variety of defects in DNA DSB processing. H2AX Delta/Delta mice are smaller, sensitive to ionizing radiation, defective in class switch recombination and spermatogenesis while cells from the mice demonstrate substantially increased numbers of genomic defects. gamma-H2AX foci formation is a sensitive biological dosimeter and presents new and exciting opportunities to understand important biological processes, human diseases, and individual variations in radiation sensitivity. These potentialities demonstrate the importance of understanding the parameters and functions of gamma-H2AX formation. 相似文献
2.
Human replication protein A (RPA p34), a crucial component of diverse DNA excision repair pathways, is implicated in DNA double-strand break (DSB) repair. To evaluate its role in DSB repair, the intranuclear dynamics of RPA was investigated after DNA damage and replication blockage in human cells. Using two different agents [ionizing radiation (IR) and hydroxyurea (HU)] to generate DSBs, we found that RPA relocated into distinct nuclear foci and colocalized with a well-known DSB binding factor, gamma-H2AX, at the sites of DNA damage in a time-dependent manner. Colocalization of RPA and gamma-H2AX foci peaked at 2 h after IR treatment and subsequently declined with increasing postrecovery times. The time course of RPA and gamma-H2AX foci association correlated well with the DSB repair activity detected by a neutral comet assay. A phosphatidylinositol-3 (PI-3) kinase inhibitor, wortmannin, completely abolished both RPA and gamma-H2AX foci formation triggered by IR. Additionally, radiosensitive ataxia telangiectasia (AT) cells harboring mutations in ATM gene product were found to be deficient in RPA and gamma-H2AX colocalization after IR. Transfection of AT cells with ATM cDNA fully restored the association of RPA foci with gamma-H2AX illustrating the requirement of ATM gene product for this process. The exact coincidence of RPA and gamma-H2AX in response to HU specifically in S-phase cells supports their role in DNA replication checkpoint control. Depletion of RPA by small interfering RNA (SiRNA) substantially elevated the frequencies of IR-induced micronuclei (MN) and apoptosis in human cells suggestive of a role for RPA in DSB repair. We propose that RPA in association with gamma-H2AX contributes to both DNA damage checkpoint control and repair in response to strand breaks and stalled replication forks in human cells. 相似文献
3.
MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks 总被引:1,自引:0,他引:1
Histone variant H2AX phosphorylation in response to DNA damage is the major signal for recruitment of DNA-damage-response proteins to regions of damaged chromatin. Loss of H2AX causes radiosensitivity, genome instability, and DNA double-strand-break repair defects, yet the mechanisms underlying these phenotypes remain obscure. Here, we demonstrate that mammalian MDC1/NFBD1 directly binds to phospho-H2AX (gammaH2AX) by specifically interacting with the phosphoepitope at the gammaH2AX carboxyl terminus. Moreover, through a combination of biochemical, cell-biological, and X-ray crystallographic approaches, we reveal the molecular details of the MDC1/NFBD1-gammaH2AX complex. These data provide compelling evidence that the MDC1/NFBD1 BRCT repeat domain is the major mediator of gammaH2AX recognition following DNA damage. We further show that MDC1/NFBD1-gammaH2AX complex formation regulates H2AX phosphorylation and is required for normal radioresistance and efficient accumulation of DNA-damage-response proteins on damaged chromatin. Thus, binding of MDC1/NFBD1 to gammaH2AX plays a central role in the mammalian response to DNA damage. 相似文献
4.
Endogenous expression of phosphorylated histone H2AX in tumors in relation to DNA double-strand breaks and genomic instability 总被引:1,自引:0,他引:1
Microscopically visible gammaH2AX foci signify the presence of DNA double-strand breaks (dsbs) in irradiated cells. However, large foci are also observed in untreated tumour cells, and high numbers reduce the sensitivity for detecting drug or radiation-induced DNA breaks. SW756 cervical carcinoma cells that express about 50 gammaH2AX foci per cell (i.e., equivalent to the number of breaks produced by about 2Gy) showed similar numbers of dsbs as C33A cells that exhibit fewer than three foci per cell. The possibility that differences in numbers of these endogenous foci could be explained by genomic instability perhaps related to misrepair was examined. For 17cell lines selected from the panel of NCI-60 tumor cells previously characterized for karyotypic complexity [A.V. Roschke, G. Tonon, K.S. Gehlhaus, N. McTyre, K.J. Bussey, S. Lababidi, D.A. Scudiero, J.N. Weinstein, I.R. Kirsch, Karyotypic complexity of the NCI-60 drug-screening panel, Cancer Res. 63 (2003) 8634-8647], there was a significant trend (r=0.6) for cell lines with greater numbers of structural or numerical chromosomal rearrangements to show a higher background expression of gammaH2AX. Moreover, cells from this panel with wild-type p53 showed a significantly lower background level of gammaH2AX than cells with mutant p53. To confirm the importance of p53 expression, endogenous and radiation-induced gammaH2AX expression were analyzed using four isogenic SKOV3 cell lines varying in p53 function. Again, higher gammaH2AX expression was found in SKOV3 cell lines expressing mutant p53 compared to wild-type p53. HFL-1 primary lung fibroblasts showed a progressive increase in gammaH2AX as they moved towards senescence, confirming the importance of telomere instability in the development of at least some gammaH2AX foci. Therefore, the explanation for high endogenous levels of gammaH2AX in some tumor cells appears to be multifactorial and may be best described as a consequence of chromatin instability. 相似文献
5.
ATM phosphorylates histone H2AX in response to DNA double-strand breaks 总被引:38,自引:0,他引:38
Burma S Chen BP Murphy M Kurimasa A Chen DJ 《The Journal of biological chemistry》2001,276(45):42462-42467
A very early step in the response of mammalian cells to DNA double-strand breaks is the phosphorylation of histone H2AX at serine 139 at the sites of DNA damage. Although the phosphatidylinositol 3-kinases, DNA-PK (DNA-dependent protein kinase), ATM (ataxia telangiectasia mutated), and ATR (ATM and Rad3-related), have all been implicated in H2AX phosphorylation, the specific kinase involved has not yet been identified. To definitively identify the specific kinase(s) that phosphorylates H2AX in vivo, we have utilized DNA-PKcs-/- and Atm-/- cell lines and mouse embryonic fibroblasts. We find that H2AX phosphorylation and nuclear focus formation are normal in DNA-PKcs-/- cells and severely compromised in Atm-/- cells. We also find that ATM can phosphorylate H2AX in vitro and that ectopic expression of ATM in Atm-/- fibroblasts restores H2AX phosphorylation in vivo. The minimal H2AX phosphorylation in Atm-/- fibroblasts can be abolished by low concentrations of wortmannin suggesting that DNA-PK, rather than ATR, is responsible for low levels of H2AX phosphorylation in the absence of ATM. Our results clearly establish ATM as the major kinase involved in the phosphorylation of H2AX and suggest that ATM is one of the earliest kinases to be activated in the cellular response to double-strand breaks. 相似文献
6.
Zlobinskaya O Dollinger G Michalski D Hable V Greubel C Du G Multhoff G Röper B Molls M Schmid TE 《Radiation and environmental biophysics》2012,51(1):23-32
In particle tumor therapy including beam scanning at accelerators, the dose per voxel is delivered within about 100 ms. In
contrast, the new technology of laser plasma acceleration will produce ultimately shorter particle packages that deliver the
dose within a nanosecond. Here, possible differences for relative biological effectiveness in creating DNA double-strand breaks
in pulsed or continuous irradiation mode are studied. HeLa cells were irradiated with 1 or 5 Gy of 20-MeV protons at the Munich
tandem accelerator, either at continuous mode (100 ms), or applying a single pulse of 1-ns duration. Cells were fixed 1 h
after 1-Gy irradiation and 24 h after 5-Gy irradiation, respectively. A dose–effect curve based on five doses of X-rays was
taken as reference. The total number of phosphorylated histone H2AX (gamma-H2AX) foci per cell was determined using a custom-made
software macro for gamma-H2AX foci counting. For 1 h after 1-Gy 20-MeV proton exposures, values for the relative biological
effectiveness (RBE) of 0.97 ± 0.19 for pulsed and 1.13 ± 0.21 for continuous irradiations were obtained in the first experiment
1.13 ± 0.09 and 1.16 ± 0.09 in the second experiment. After 5 Gy and 24 h, RBE values of 0.99 ± 0.29 and 0.91 ± 0.23 were
calculated, respectively. Based on the gamma-H2AX foci numbers obtained, no significant differences in RBE between pulsed
and continuous proton irradiation in HeLa cells were detected. These results are well in line with our data on micronucleus
induction in HeLa cells. 相似文献
7.
A sequence variant of histone H2A called H2AX is one of the key components of chromatin involved in DNA damage response induced by different genotoxic stresses. Phosphorylated H2AX (γH2AX) is rapidly concentrated in chromatin domains around DNA double-strand breaks (DSBs) after the action of ionizing radiation or chemical agents and at stalled replication forks during replication stress. γH2AX foci could be easily detected in cell nuclei using immunofluorescence microscopy that allows to use γH2AX as a quantitative marker of DSBs in various applications. H2AX is phosphorylated in situ by ATM, ATR, and DNA-PK kinases that have distinct roles in different pathways of DSB repair. The γH2AX serves as a docking site for the accumulation of DNA repair proteins, and after rejoining of DSBs, it is released from chromatin. The molecular mechanism of γH2AX dephosphorylation is not clear. It is complicated and requires the activity of different proteins including phosphatases and chromatin-remodeling complexes. In this review, we summarize recently published data concerning the mechanisms and kinetics of γH2AX loss in normal cells and tissues as well as in those deficient in ATM, DNA-PK, and DSB repair proteins activity. The results of the latest scientific research of the low-dose irradiation phenomenon are presented including the bystander effect and the adaptive response estimated by γH2AX detection in cells and tissues. 相似文献
8.
RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins 总被引:27,自引:0,他引:27
Accumulation of repair proteins on damaged chromosomes is required to restore genomic integrity. However, the mechanisms of protein retention at the most destructive chromosomal lesions, the DNA double-strand breaks (DSBs), are poorly understood. We show that RNF8, a RING-finger ubiquitin ligase, rapidly assembles at DSBs via interaction of its FHA domain with the phosphorylated adaptor protein MDC1. This is accompanied by an increase in DSB-associated ubiquitylations and followed by accumulation of 53BP1 and BRCA1 repair proteins. Knockdown of RNF8 or disruption of its FHA or RING domains impaired DSB-associated ubiquitylation and inhibited retention of 53BP1 and BRCA1 at the DSB sites. In addition, we show that RNF8 can ubiquitylate histone H2A and H2AX, and that its depletion sensitizes cells to ionizing radiation. These data suggest that MDC1-mediated and RNF8-executed histone ubiquitylation protects genome integrity by licensing the DSB-flanking chromatin to concentrate repair factors near the DNA lesions. 相似文献
9.
DNA double-strand breaks and gamma-H2AX signaling in the testis 总被引:6,自引:0,他引:6
Hamer G Roepers-Gajadien HL van Duyn-Goedhart A Gademan IS Kal HB van Buul PP de Rooij DG 《Biology of reproduction》2003,68(2):628-634
Within minutes of the induction of DNA double-strand breaks in somatic cells, histone H2AX becomes phosphorylated at serine 139 and forms gamma-H2AX foci at the sites of damage. These foci then play a role in recruiting DNA repair and damage-response factors and changing chromatin structure to accurately repair the damaged DNA. These gamma-H2AX foci appear in response to irradiation and genotoxic stress and during V(D)J recombination and meiotic recombination. Independent of irradiation, gamma-H2AX occurs in all intermediate and B spermatogonia and in preleptotene to zygotene spermatocytes. Type A spermatogonia and round spermatids do not exhibit gamma-H2AX foci but show homogeneous nuclear gamma-H2AX staining, whereas in pachytene spermatocytes gamma-H2AX is only present in the sex vesicle. In response to ionizing radiation, gamma-H2AX foci are generated in spermatogonia, spermatocytes, and round spermatids. In irradiated spermatogonia, gamma-H2AX interacts with p53, which induces spermatogonial apoptosis. These events are independent of the DNA-dependent protein kinase (DNA-PK). Irradiation-independent nuclear gamma-H2AX staining in leptotene spermatocytes demonstrates a function for gamma-H2AX during meiosis. gamma-H2AX staining in intermediate and B spermatogonia, preleptotene spermatocytes, and sex vesicles and round spermatids, however, indicates that the function of H2AX phosphorylation during spermatogenesis is not restricted to the formation of gamma-H2AX foci at DNA double-strand breaks. 相似文献
10.
Jakob B Splinter J Conrad S Voss KO Zink D Durante M Löbrich M Taucher-Scholz G 《Nucleic acids research》2011,39(15):6489-6499
DNA double-strand breaks (DSBs) can induce chromosomal aberrations and carcinogenesis and their correct repair is crucial for genetic stability. The cellular response to DSBs depends on damage signaling including the phosphorylation of the histone H2AX (γH2AX). However, a lack of γH2AX formation in heterochromatin (HC) is generally observed after DNA damage induction. Here, we examine γH2AX and repair protein foci along linear ion tracks traversing heterochromatic regions in human or murine cells and find the DSBs and damage signal streaks bending around highly compacted DNA. Given the linear particle path, such bending indicates a relocation of damage from the initial induction site to the periphery of HC. Real-time imaging of the repair protein GFP-XRCC1 confirms fast recruitment to heterochromatic lesions inside murine chromocenters. Using single-ion microirradiation to induce localized DSBs directly within chromocenters, we demonstrate that H2AX is early phosphorylated within HC, but the damage site is subsequently expelled from the center to the periphery of chromocenters within ~ 20 min. While this process can occur in the absence of ATM kinase, the repair of DSBs bordering HC requires the protein. Finally, we describe a local decondensation of HC at the sites of ion hits, potentially allowing for DSB movement via physical forces. 相似文献
11.
53BP1 participates in the cellular response to DNA damage. Like many proteins involved in the DNA damage response, 53BP1 becomes hyperphosphorylated after radiation and colocalizes with phosphorylated H2AX in megabase regions surrounding the sites of DNA strand breaks. However, it is not yet clear whether the phosphorylation status of 53BP1 determines its localization or vice versa. In this study we mapped a region upstream of the 53BP1 C terminus that is required and sufficient for the recruitment of 53BP1 to these DNA break areas. In vitro assays revealed that this region binds to phosphorylated but not unphosphorylated H2AX. Moreover, using H2AX-deficient cells reconstituted with wild-type or a phosphorylation-deficient mutant of H2AX, we have shown that phosphorylation of H2AX at serine 140 is critical for efficient 53BP1 foci formation, implying that a direct interaction between 53BP1 and phosphorylated H2AX is required for the accumulation of 53BP1 at DNA break sites. On the other hand, radiation-induced phosphorylation of the 53BP1 N terminus by the ATM (ataxia-telangiectasia mutated) kinase is not essential for 53BP1 foci formation and takes place independently of 53BP1 redistribution. Thus, these two damage-induced events, hyperphosphorylation and relocalization of 53BP1, occur independently in the cell. 相似文献
12.
《DNA Repair》2015
DNA double-strand breaks (DSBs) are among the most deleterious DNA lesions, which if unrepaired or repaired incorrectly can cause cell death or genome instability that may lead to cancer. To counteract these adverse consequences, eukaryotes have evolved a highly orchestrated mechanism to repair DSBs, namely DNA-damage-response (DDR). DDR, as defined specifically in relation to DSBs, consists of multi-layered regulatory modes including DNA damage sensors, transducers and effectors, through which DSBs are sensed and then repaired via DNAprotein interactions. Unexpectedly, recent studies have revealed a direct role of RNA in the repair of DSBs, including DSB-induced small RNA (diRNA)-directed and RNA-templated DNA repair. Here, we summarize the recent discoveries of RNA-mediated regulation of DSB repair and discuss the potential impact of these novel RNA components of the DSB repair pathway on genomic stability and plasticity. 相似文献
13.
《Reproductive biology》2022,22(1):100603
DNA double-strand break (DSB) repair is crucial to maintain genomic stability for sufficient ovarian reserve. It remains unknown the changes of DSBs formation and DNA repair in germ cells during ovarian reserve formation in FVB/N mice. We demonstrated germ cell numbers increased significantly (all P < 0.05) from E11.5 to E13.5 and decreased significantly (all P> 0.05) until P2. OCT4 and SOX2 analyses indicated pluripotency peaks at E13.5 then decreases significantly (all P 0.05) until P2. γH2AX analyses revealed DSB formation significantly (P < 0.05) increased from E13.5 until P2. RAD51 and DMC1 data revealed homologous recombination (HR) pathway repair of DSBs is persistent active during meiosis (E13.5- P2) (all P> 0.05). 53BP1 and KU70 data indicate the non-homologous end-joining pathway (NHEJ) remains active during meiosis. 53BP1 expression was highest at E13.5 (P < 0.05). KU70 expression was higher in germ cells from E15.5 to P2 (all < P 0.05). PH3 and KI67 analyses revealed germ cell proliferation was not significantly different (all P> 0.05) from E13.5 to P2. Caspase-3 and TUNEL analyses showed germ cells apoptosis was not significantly different (all P > 0.05) from E13.5 to P2. In conclusion, we found both germ cell number and pluripotency peak at E13.5 and decline during meiosis. We demonstrated HR and NHEJ continually repair DSBs during meiosis. RAD51 and DMC1 are continuously expressed during meiosis. 53BP1 is mainly expressed at E13.5. KU70 continually functions from E15.5 to P2. Proliferating and apoptotic cells were rarely detected during meiosis. Results provide a basis for further study of how DSBs and DNA repair affect germ cell development. 相似文献
14.
Histone H2AX is phosphorylated at sites of retroviral DNA integration but is dispensable for postintegration repair 总被引:7,自引:0,他引:7
Daniel R Ramcharan J Rogakou E Taganov KD Greger JG Bonner W Nussenzweig A Katz RA Skalka AM 《The Journal of biological chemistry》2004,279(44):45810-45814
The histone variant H2AX is rapidly phosphorylated (denoted gammaH2AX) in large chromatin domains (foci) flanking double strand DNA (dsDNA) breaks that are produced by ionizing radiation or genotoxic agents and during V(D)J recombination. H2AX-deficient cells and mice demonstrate increased sensitivity to dsDNA break damage, indicating an active role for gammaH2AX in DNA repair; however, gammaH2AX formation is not required for V(D)J recombination. The latter finding has suggested a greater dependence on gammaH2AX for anchoring free broken ends versus ends that are held together during programmed breakage-joining reactions. Retroviral DNA integration produces a unique intermediate in which a dsDNA break in host DNA is held together by the intervening viral DNA, and such a reaction provides a useful model to distinguish gammaH2AX functions. We found that integration promotes transient formation of gammaH2AX at retroviral integration sites as detected by both immunocytological and chromatin immunoprecipitation methods. These results provide the first direct evidence for the association of newly integrated viral DNA with a protein species that is an established marker for the onset of a DNA damage response. We also show that H2AX is not required for repair of the retroviral integration intermediate as determined by stable transduction. These observations provide independent support for an anchoring model for the function of gammaH2AX in chromatin repair. 相似文献
15.
Franco S Gostissa M Zha S Lombard DB Murphy MM Zarrin AA Yan C Tepsuporn S Morales JC Adams MM Lou Z Bassing CH Manis JP Chen J Carpenter PB Alt FW 《Molecular cell》2006,21(2):201-214
Histone H2AX promotes DNA double-strand break (DSB) repair and immunoglobulin heavy chain (IgH) class switch recombination (CSR) in B-lymphocytes. CSR requires activation-induced cytidine deaminase (AID) and involves joining of DSB intermediates by end joining. We find that AID-dependent IgH locus chromosome breaks occur at high frequency in primary H2AX-deficient B cells activated for CSR and that a substantial proportion of these breaks participate in chromosomal translocations. Moreover, activated B cells deficient for ATM, 53BP1, or MDC1, which interact with H2AX during the DSB response, show similarly increased IgH locus breaks and translocations. Thus, our findings implicate a general role for these factors in promoting end joining and thereby preventing DSBs from progressing into chromosomal breaks and translocations. As cellular p53 status does not markedly influence the frequency of such events, our results also have implications for how p53 and the DSB response machinery cooperate to suppress generation of lymphomas with oncogenic translocations. 相似文献
16.
Eukaryotic cells have developed conserved mechanisms to efficiently sense and repair DNA damage that results from constant chromosomal lesions. DNA repair has to proceed in the context of chromatin, and both histone-modifiers and ATP-dependent chromatin remodelers have been implicated in this process. Here, we review the current understanding and new hypotheses on how different chromatin-modifying activities function in DNA repair in yeast and metazoan cells. 相似文献
17.
The intimate relationship between DNA double-strand break (DSB) repair and cancer susceptibility has sparked profound interest in how transactions on DNA and chromatin surrounding DNA damage influence genome integrity. Recent evidence implicates a substantial commitment of the cellular DNA damage response machinery to the synthesis, recognition, and hydrolysis of ubiquitin chains at DNA damage sites. In this review, we propose that, in order to accommodate parallel processes involved in DSB repair and checkpoint signaling, DSB-associated ubiquitin structures must be nonuniform, using different linkages for distinct functional outputs. We highlight recent advances in the study of nondegradative ubiquitin signaling at DSBs, and discuss how recognition of different ubiquitin structures may influence DNA damage responses. 相似文献
18.
DNA双链断裂修复与重症联合免疫缺陷 总被引:1,自引:0,他引:1
DNA双链断裂(double-strand breaks, DSBs)是细胞DNA损伤的主要类型,它的修复通过同源重组(HR)和非同源末端连接(NHEJ)两种机制实现.NHEJ是人和哺乳动物细胞DSBs修复的重要通路,主要由DNA依赖性蛋白激酶(DNA-PK)、X射线修复交叉互补蛋白4(XRCC4)、DNA连接酶Ⅳ、Artemis、XLF/Cernunnos和其它DNA损伤修复辅助因子组成.本文重点介绍了NHEJ机制主要成分的特性及其功能,以及这些组分的基因发生突变或缺失所引起的DSBs修复缺陷与辐射敏感性重症联合免疫缺陷(radiosensitive severe combined immunodeficiencies, RS-SCIDs). 相似文献
19.
Jeffrey Fillingham Michael-Christopher Keogh Nevan J Krogan 《Biochimie et biologie cellulaire》2006,84(4):568-577
One of the earliest responses to a DNA double-strand break (DSB) is the carboxy-terminal phosphorylation of budding yeast H2A (metazoan histone H2AX) to create gammaH2A (or gammaH2AX). This chromatin modification stretches more than tens of kilobases around the DSB and has been proposed to play numerous roles in break recognition and repair, although it may not be the primary signal for many of these events. Studies suggest that gammaH2A(X) has 2 more direct roles: (i) to recruit cohesin around the DSB, and (ii) to maintain a checkpoint arrest. Recent work has identified other factors, including chromatin remodelers and protein phosphatases, which target gammaH2A(X) and regulate DSB repair/recovery. 相似文献
20.
Maria Pia Longhese Diego Bonetti Ilaria Guerini Nicola Manfrini Michela Clerici 《DNA Repair》2009,8(9):1127-1138
DNA double-strand breaks (DSBs) are highly hazardous for genome integrity, but meiotic cells deliberately introduce them into their genome in order to initiate homologous recombination, which ensures proper homologous chromosome segregation. To minimize the risk of deleterious effects, meiotic DSB formation, processing and repair are tightly regulated in order to occur only at the right time and place. Furthermore, a highly conserved signal-transduction pathway, called meiotic recombination checkpoint, coordinates DSB repair with meiotic progression and promotes meiotic recombination. 相似文献