共查询到20条相似文献,搜索用时 0 毫秒
1.
Willecke F Zeschky K Ortiz Rodriguez A Colberg C Auwärter V Kneisel S Hutter M Lozhkin A Hoppe N Wolf D von zur Mühlen C Moser M Hilgendorf I Bode C Zirlik A 《PloS one》2011,6(4):e19405
Background
Strong evidence supports a protective role of the cannabinoid receptor 2 (CB2) in inflammation and atherosclerosis. However, direct proof of its involvement in lesion formation is lacking. Therefore, the present study aimed to characterize the role of the CB2 receptor in Murine atherogenesis.Methods and Findings
Low density lipoprotein receptor-deficient (LDLR−/−) mice subjected to intraperitoneal injections of the selective CB2 receptor agonist JWH-133 or vehicle three times per week consumed high cholesterol diet (HCD) for 16 weeks. Surprisingly, intimal lesion size did not differ between both groups in sections of the aortic roots and arches, suggesting that CB2 activation does not modulate atherogenesis in vivo. Plaque content of lipids, macrophages, smooth muscle cells, T cells, and collagen were also similar between both groups. Moreover, CB2−/−/LDLR−/− mice developed lesions of similar size containing more macrophages and lipids but similar amounts of smooth muscle cells and collagen fibers compared with CB2+/+/LDLR−/− controls. While JWH-133 treatment reduced intraperitoneal macrophage accumulation in thioglycollate-illicited peritonitis, neither genetic deficiency nor pharmacologic activation of the CB2 receptor altered inflammatory cytokine expression in vivo or inflammatory cell adhesion in the flow chamber in vitro.Conclusion
Our study demonstrates that both activation and deletion of the CB2 receptor do not relevantly modulate atherogenesis in mice. Our data do not challenge the multiple reports involving CB2 in other inflammatory processes. However, in the context of atherosclerosis, CB2 does not appear to be a suitable therapeutic target for reduction of the atherosclerotic plaque. 相似文献2.
Ismael Galve-Roperh Valerio Chiurchiù Javier Díaz-Alonso Monica Bari Manuel Guzmán Mauro Maccarrone 《Progress in lipid research》2013,52(4):633-650
Cannabinoids, the active components of cannabis (Cannabis sativa) extracts, have attracted the attention of human civilizations for centuries, much earlier than the discovery and characterization of their substrate of action, the endocannabinoid system (ECS). The latter is an ensemble of endogenous lipids, their receptors [in particular type-1 (CB1) and type-2 (CB2) cannabinoid receptors] and metabolic enzymes. Cannabinoid signaling regulates cell proliferation, differentiation and survival, with different outcomes depending on the molecular targets and cellular context involved. Cannabinoid receptors are expressed and functional from the very early developmental stages, when they regulate embryonic and trophoblast stem cell survival and differentiation, and thus may affect the formation of manifold adult specialized tissues derived from the three different germ layers (ectoderm, mesoderm and endoderm). In the ectoderm-derived nervous system, both CB1 and CB2 receptors are present in neural progenitor/stem cells and control their self-renewal, proliferation and differentiation. CB1 and CB2 show opposite patterns of expression, the former increasing and the latter decreasing along neuronal differentiation. Recently, endocannabinoid (eCB) signaling has also been shown to regulate proliferation and differentiation of mesoderm-derived hematopoietic and mesenchymal stem cells, with a key role in determining the formation of several cell types in peripheral tissues, including blood cells, adipocytes, osteoblasts/osteoclasts and epithelial cells. Here, we will review these new findings, which unveil the involvement of eCB signaling in the regulation of progenitor/stem cell fate in the nervous system and in the periphery. The developmental regulation of cannabinoid receptor expression and cellular/subcellular localization, together with their role in progenitor/stem cell biology, may have important implications in human health and disease. 相似文献
3.
4.
5.
Cannabinoid signalling 总被引:3,自引:0,他引:3
After their discovery, the two known cannabinoid receptors, CB(1) and CB(2), have been the focus of research into the cellular signalling mechanisms of cannabinoids. The initial assessment, mainly derived from expression studies, was that cannabinoids, via G(i/o) proteins, negatively modulate cyclic AMP levels, and activate inward rectifying K(+) channels. Recent findings have complicated this assessment on different levels: (1) cannabinoids include a wide range of compounds with varying profiles of affinity and efficacy at the known CB receptors, and these profiles do not necessarily match their biological activity; (2) CB receptors appear to be intrinsically active and possibly coupled to more than one type of G protein; (3) CB receptor signalling mechanisms are diverse and dependent on the system studied; (4) cannabinoids have other targets than CB receptors. The aim of this mini review is to discuss the current literature regarding CB receptor signalling pathways. These include regulation of adenylyl cyclase, MAP kinase, intracellular Ca(2+), and ion channels. In addition, actions of cannabinoids that are not mediated by CB(1) or CB(2) receptors are discussed. 相似文献
6.
7.
In vitro cannabinoid pharmacology has evolved over time from simple receptor binding to include [35S]GTPγ, β-arrestin, and cAMP assays. Each assay has benefits and drawbacks; however, no single functional system has been used for high-throughput evaluation of compounds from binding to pharmacological functionality and antagonist assessment in a well-characterized human cell line. In this study, we evaluated and validated one system—ACTOne human embryonic kidney cells transfected with a cyclic nucleotide gated channel and cannabinoid receptor 1 (CB1)—and compared human CB1 affinity, functional, and antagonistic effects on cAMP with previously published results. The study was conducted on a diverse group of CB1 ligands, including endocannabinoids and related compounds, 2-AG, AEA, MAEA, and ACEA, the phytocannabinoid Δ9 THC, and synthetic cannabinoids CP 55,940, WIN 55,212-2, SR 141716A, CP 945,598, and WIN 55,212-3. Our results were compared with literature values where human CB1 was used for affinity determination and cAMP was used as a functional readout. Here we report the first detailed evaluation of the ACTOne assay for the pharmacological evaluation of CB1 ligands. The results from the study reveal some interesting deviations from previously reported functional activities of the aforementioned ligands. 相似文献
8.
McPartland JM Agraval J Gleeson D Heasman K Glass M 《Journal of evolutionary biology》2006,19(2):366-373
Two cannabinoid receptors, CB1 and CB2, are expressed in mammals, birds, reptiles, and fish. The presence of cannabinoid receptors in invertebrates has been controversial, due to conflicting evidence. We conducted a systematic review of the literature, using expanded search parameters. Evidence presented in the literature varied in validity, ranging from crude in vivo behavioural assays to robust in silico ortholog discovery. No research existed for several clades of invertebrates; we therefore tested for cannabinoid receptors in seven representative species, using tritiated ligand binding assays with [3H]CP55,940 displaced by the CB1-selective antagonist SR141716A. Specific binding of [3H]CP55,940 was found in neural membranes of Ciona intestinalis (Deuterstoma, a positive control), Lumbricusterrestris (Lophotrochozoa), and three ecdysozoans: Peripatoides novae-zealandiae (Onychophora), Jasus edwardi (Crustacea) and Panagrellus redivivus (Nematoda); the potency of displacement by SR141716A was comparable to measurements on rat cerebellum. No specific binding was observed in Actinothoe albocincta (Cnidaria) or Tethya aurantium (Porifera). The phylogenetic distribution of cannabinoid receptors may address taxonomic questions; previous studies suggested that the loss of CB1 was a synapomorphy shared by ecdysozoans. Our discovery of cannabinoid receptors in some nematodes, onychophorans, and crustaceans does not contradict the Ecdysozoa hypothesis, but gives it no support. We hypothesize that cannabinoid receptors evolved in the last common ancestor of bilaterians, with secondary loss occurring in insects and other clades. Conflicting data regarding Cnidarians precludes hypotheses regarding the last common ancestor of eumetazoans. No cannabinoid receptors are expressed in sponges, which probably diverged before the origin of the eumetazoan ancestor. 相似文献
9.
10.
Calcium signaling system in plants 总被引:4,自引:0,他引:4
S. S. Medvedev 《Russian Journal of Plant Physiology》2005,52(2):249-270
11.
《The Journal of nutritional biochemistry》2014,25(8):815-823
Cyclooxygenase (COX) possesses substrate affinity for the endocannabinoids (EC) anandamide (AEA) and 2-arachidonylglycerol (2-AG). We hypothesized that selective antagonism/activation of the cannabinoid receptors will increase COX activity and the availability of EC as substrates will lead to higher COX activity. Since the relationship between EC signaling of the endocannabinoid system (ECS) and the COX pathway in muscle has not been investigated, we examined agonist, antagonists and polyunsaturated fatty acid effects on ECS genes in myoblasts. At 50% confluency, C2C12 myoblasts were pretreated with 5 μM of the cannabinoid receptor (CB)2 inverse agonist AM630 for 2 h and one with both AM630 and 1 μM of the CB1 antagonist NESS0327. Cell cultures pretreated with AM630 were then administered with 25 μM of either arachidonic acid (20:4n6), eicosapentaenoate (EPA) (20:5n3), docosahexaenoate (DHA) (22:6n3), AEA or bovine serum albumin (vehicle control) for 24 h. Quantitative polymerase chain reaction analyses were performed looking at ECS and prostaglandin genes. Total COX activity and COX-1 protein were greater in the AM630+AEA-treated cells compared to all other cell cultures. The mRNA for the AEA synthesis enzyme N-acyl phosphatidylethanolamine phospholipase D and the 2-AG synthesis enzymes diacylglycerol lipase (DAGL)α and DAGLβ were higher in AM630+EPA-treated cells compared to the other groups. The mRNA levels of CB1 and CB2 were both highest in the AM630+EPA group. The mRNA for interleukin-6 and tumor necrosis factor-α was higher with AEA but lower with DHA and docosahexaenoyl ethanolamide (DHEA), supporting previous findings that the EC AEA supports activation of the COX system. These findings suggest that COX activity and protein levels are influenced by the ECS, specifically by the ligand AEA for CB1 and by inverse agonism of CB2. 相似文献
12.
Mackie K 《Life sciences》2005,77(14):1667-1673
CB1 cannabinoid receptors mediate the psychoactive effects of Delta(9)THC and actions of the endogenous cannabinoids [Howlett, A.C., Barth, F., Bonner, T.I., Cabral, G., Casellas, P., Devane, W.A., Felder, C.C., Herkenham, M., Mackie, K., Martin, B.R., Mechoulam, R., Pertwee, R.G., 2002. International Union of Pharmacology: XXVII. Classification of cannabinoid receptors. Pharmacological Reviews 54 (2) 161-202.]. CB1 receptors belong to the G protein-coupled receptor (GPCR) superfamily. In recent years, it has become apparent that many GPCRs exist as multimers--either of like or unlike receptors [Kroeger, K.M., Pfleger, K.D., Eidne, K.A., 2003. G-protein coupled receptor oligomerization in neuroendocrine pathways. Frontiers of Neuroendocrinology 24 (4) 254-278; Milligan, G., 2004. G protein-coupled receptor dimerization: function and ligand pharmacology. Molecular Pharmacology 66 (1) 1-7.]. Importantly, GPCR multimerization plays a key role in enriching the signaling repertoire of these receptors. In this review, the evidence for CB1 multimerization will be presented, the implications for cannabinoid signaling discussed, and possible future directions for this research considered. 相似文献
13.
14.
Duncan M Mouihate A Mackie K Keenan CM Buckley NE Davison JS Patel KD Pittman QJ Sharkey KA 《American journal of physiology. Gastrointestinal and liver physiology》2008,295(1):G78-G87
Enhanced intestinal transit due to lipopolysaccharide (LPS) is reversed by cannabinoid (CB)2 receptor agonists in vivo, but the site and mechanism of action are unknown. We have tested the hypothesis that CB2 receptors are expressed in the enteric nervous system and are activated in pathophysiological conditions. Tissues from either saline- or LPS-treated (2 h; 65 microg/kg ip) rats were processed for RT-PCR, Western blotting, and immunohistochemistry or were mounted in organ baths where electrical field stimulation was applied in the presence or absence of CB receptor agonists. Whereas the CB2 receptor agonist JWH133 did not affect the electrically evoked twitch response of the ileum under basal conditions, in the LPS-treated tissues JWH133 was able to reduce the enhanced contractile response in a concentration-dependent manner. Rat ileum expressed CB2 receptor mRNA and protein under physiological conditions, and this expression was not affected by LPS treatment. In the myenteric plexus, CB2 receptors were expressed on the majority of neurons, although not on those expressing nitric oxide synthase. LPS did not alter the distribution of CB2 receptor expression in the myenteric plexus. In vivo LPS treatment significantly increased Fos expression in both enteric glia and neurons. This enhanced expression was significantly attenuated by JWH133, whose action was reversed by the CB2 receptor antagonist AM630. Taking these facts together, we conclude that activation of CB2 receptors in the enteric nervous system of the gastrointestinal tract dampens endotoxin-induced enhanced intestinal contractility. 相似文献
15.
一种新颖的轴突断端(axon bleb)膜片钳记录方法大力促进了中枢神经系统轴突功能的研究。我们的工作应用这一方法揭示了大脑皮层锥体神经元的数码信号(具全或无特性的动作电位)的爆发和传播机制。在轴突始段(axon initial segment,AIS)远端高密度聚集的低阈值Na+通道亚型Nav1.6决定动作电位的爆发;而在AIS近端高密度聚集的高阈值Na+通道亚型Nav1.2促进动作电位向胞体和树突的反向传播。应用胞体和轴突的同时记录,我们发现胞体阈下膜电位的变化可以在轴突上传播较长的距离并可到达那些离胞体较近的突触前终末。进一步的研究证明了胞体膜电位的变化调控动作电位触发的突触传递,该膜电位依赖的突触传递是一种模拟式的信号传递。轴突上一类特殊K+通道(Kv1)的活动调制动作电位的波形,特别是其波宽,从而调控各种突触前膜电位水平下突触强度的变化。突触前终末的背景Ca2+浓度也可能参与模拟信号的传递。这些发现深化了我们对中枢神经系统内神经信号处理基本原理的认识,进而帮助我们理解脑如何工作。 相似文献
16.
17.
18.
Cannabinoid receptors and their endogenous ligands 总被引:1,自引:0,他引:1
Delta9-Tetrahydrocannabinol, a major psychoactive component of marijuana, has been shown to interact with specific cannabinoid receptors, thereby eliciting a variety of pharmacological responses in experimental animals and human. In 1990, the gene encoding a cannabinoid receptor (CB1) was cloned. This prompted the search for endogenous ligands. In 1992, N-arachidonoylethanolamine (anandamide) was isolated from pig brain as an endogenous ligand, and in 1995, 2-arachidonoylglycerol was isolated from rat brain and canine gut as another endogenous ligand. Both anandamide and 2-arachidonoylglycerol exhibit various cannabimimetic activities. The results of structure-activity relationship experiments, however, revealed that 2-arachidonoylglycerol, but not anandamide, is the intrinsic natural ligand for the cannabinoid receptor. 2-Arachidonoylglycerol is a degradation product of inositol phospholipids that links the function of cannabinoid receptors with the enhanced inositol phospholipid turnover in stimulated tissues and cells. The possible physiological roles of cannabinoid receptors and 2-arachidonoylglycerol in various mammalian tissues such as those of the nervous system are discussed. 相似文献
19.
Cannabinoid induced degranulation of rabbit neutrophils 总被引:1,自引:0,他引:1
P H Naccache M Volpi E L Becker A Makryannis R I Sha'afi 《Biochemical and biophysical research communications》1982,106(4):1286-1290
We have examined the effects of various cannabinoids on the degranulation of rabbit peritoneal neutrophils. Several cannabinoids were found to cause a dose-dependent and noncytotoxic release of lysosomal enzymes from the neutrophils. The degranulation induced by cannabidiol is rapid (), and enhanced by extracellular calcium and cytochalasin B. In addition to their intrinsic activity, cannabinoids also modulate the neutrophils' responses to the chemotactic peptide formyl-methionyl-leucyl-phenylalanine. This investigation represents the initial step toward the characterization of the effect of cannabinoids on the excitation-activation coupling sequence of hormonally responsive cells. 相似文献