首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
利用小鼠抗5-甲基胞嘧啶(5MeC)单克隆抗体检测了体外培养小鼠四倍体早期胚胎的基因组甲基化模式。结果表明: 利用电融合方法制备的小鼠四倍体胚胎在体外培养体系中经历细胞质融合、细胞核融合及细胞继续分裂发育直到囊胚期的过程, 在细胞质融合的时候胚胎卵裂球同体内体外培养二倍体胚胎一样, 呈现高度甲基化状态; 在细胞核开始融合的时候, 甲基化水平急速下降, 在细胞核完全融合的时候甲基化水平达到最低点; 随着胚胎继续分裂, 胚胎甲基化水平逐渐增加, 在桑葚胚期甲基化水平最高; 但是囊胚期四倍体胚胎内细胞团同滋养层细胞甲基化荧光信号没有差别, 这与体内体外培养二倍体囊胚内细胞团细胞甲基化荧光强度高于滋养层细胞甲基化荧光强度不同。因此, 小鼠体外培养四倍体胚胎的甲基化模式是不正常的, 这可能是四倍体小鼠难以发育到妊娠足月的原因之一。这是对小鼠四倍体早期胚胎基因组甲基化模式的首次报道。  相似文献   

3.
4.
Genome-wide changes of DNA methylation by active and passive demethylation processes are typical features during preimplantation development. Here we provide an insight that epigenetic reprogramming of DNA methylation is regulated in a region-specific manner, not a genome-wide fashion. To address this hypothesis, methylation states of three repetitive genomic regions were monitored at various developmental stages in the mouse embryos. Active demethylation was not observed in the IAP sequences whereas methylation reprogramming of the satellite sequences was regulated only by the active mechanism. Etn elements were actively demethylated after fertilization, passively demethylated by the 8-cell stage, and de novo methylated at the morular and blastocyst stages, showing dynamic epigenetic changes. Thus, our findings suggest that the specific genomic regions or sequences may spatially/temporally have their unique characteristics in the reprogramming of the DNA methylation during preimplantation development.  相似文献   

5.
Sex difference in mouse embryonic development at neurulation   总被引:4,自引:0,他引:4  
Sixty-seven mouse embryos from 10 litters collected on the morning of Day 9 of gestation, when neurulation is beginning, were classified according to the precise stage of development reached, and sex-chromatin analysis was performed on the yolk sac. Within litters, the least developed embryos were more likely to be female than male, while the most advanced embryos were predominantly male. Taking all embryos, the mean somite number was greater in males than females.  相似文献   

6.
7.
8.
Dynamic reprogramming of DNA methylation in the early mouse embryo.   总被引:48,自引:0,他引:48  
Dynamic epigenetic modification of the genome occurs during early development of the mouse. Active demethylation of the paternal genome occurs in the zygote, followed by passive demethylation during cleavage stages, and de novo methylation, which is thought to happen after implantation. We have investigated these processes by using indirect immunofluorescence with an antibody to 5-methyl cytosine. In contrast to previous work, we show that demethylation of the male pronucleus is completed within 4 h of fertilisation. This activity is intricately linked with and not separable from pronucleus formation. In conditions permissive for polyspermy, up to five male pronuclei underwent demethylation in the same oocyte. Paternal demethylation in fertilised oocytes deficient for MBD2, the only candidate demethylase, occurred normally. Passive loss of methylation occurred in a stepwise fashion up to the morulae stage without any evidence of spatial compartmentalisation. De novo methylation was observed specifically in the inner cell mass (ICM) but not in the trophectoderm of the blastocyst and hence may have an important role in early lineage specification. This is the first complete and detailed analysis of the epigenetic reprogramming cycle during preimplantation development. The three phases of methylation reprogramming may have roles in imprinting, the control of gene expression, and the establishment of nuclear totipotency.  相似文献   

9.
DNA methylation is involved in many biological processes and is particularly important for both development and germ cell differentiation. Several waves of demethylation and de novo methylation occur during both male and female germ line development. This has been found at both the gene and all genome levels, but there is no demonstrated correlation between them. During the postnatal germ line development of spermatogenesis, we found very complex and drastic DNA methylation changes that we could correlate with chromatin structure changes. Thus, detailed studies focused on localization and expression pattern of the chromatin proteins involved in both DNA methylation, histone tails modification, condensin and cohesin complex formation, should help to gain insights into the mechanisms at the origin of the deep changes occurring during this particular period.  相似文献   

10.
Intrauterine exposure to hyperglycemia is reported to confer increased metabolic risk in later life, supporting the ‘developmental origins of health and disease’ hypothesis. Epigenetic alterations are suggested as one of the possible underlying mechanisms. In this study, we compared pairwise DNA methylation differences between siblings whose intrauterine exposure to maternal gestational diabetes (GDM) were discordant. Methylation of peripheral blood DNA of 18 sibling pairs was measured using Infinium HumanMethylation450 BeadChip assays. Of the 465,447 CpG sites analyzed, 12 showed differential methylation (false discovery rate <0.15), including markers within genes associated with monogenic diabetes (HNF4A) or obesity (RREB1). The overall methylation at HNF4A showed inverse correlations with mRNA expression levels, though non significant. In a gene set enrichment analysis, metabolism and signal transduction pathways were enriched. In conclusion, we found DNA methylation markers associated with intrauterine exposure to maternal GDM, including those within genes previously implicated in diabetes or obesity.  相似文献   

11.
12.
DNA methylation in early development   总被引:1,自引:0,他引:1  
  相似文献   

13.
Diazepam (Valium/Roche) inhibited the morphogenesis of explanted stage 8 chick embryos in a dose-related manner. Diazepam, at concn of 400-500 micrograms/ml, preferentially inhibited closure of the neural tube. This inhibition was accompanied by a significant reduction in myosin content of the developing neuroepithelium. Diazepam can be used as a probe to study the contributory role of myosin in cellular and morphogenetic movements.  相似文献   

14.
15.
Wu H  Zhang Y 《Cell Stem Cell》2012,10(5):487-489
While DNA cytosine methylation is relatively stable in somatic tissues, it is highly dynamic during preimplantation development. A recent study in Nature by Meissner and colleagues (Smith et?al., 2012) now reveals dramatic shifts in DNA methylation during the earliest stages of mouse embryogenesis at genome scale and base resolution.  相似文献   

16.
Expression profiles of adiponectin receptors in mouse embryos   总被引:2,自引:0,他引:2  
Adiponectin is a protein secreted from adipocytes and it plays an important endocrine role in glucose and lipid homeostasis. A reverse correlation between plasma adiponectin concentrations and insulin resistance has been established in both animals and humans. Adiponectin exerts its function by interacting with membrane receptors, including AdipoR1 and AdipoR2. We investigated the expression pattern of these two adiponectin receptors in mouse embryos. At stages E12.5 and E15.5, both AdipoR1 and AdipoR2 are highly expressed in the nervous system including the trigeminal ganglion, glossopharyngeal ganglion and dorsal root ganglia. AdipoR1 is highly expressed in many tissues derived from primitive gut, including the lung, liver, pancreas and small intestines. Generally, the expression level of AdipoR2 is weaker and more restricted than AdipoR1 in most of the tissues. In addition, AdipoR1 expression can be found in heart, vertebrate, developing bones and cartilage, and many other tissues. This study reveals that AdipoR1 and AdipoR2 have differential but overlapping expression profiles during mouse development.  相似文献   

17.
Genome-wide change of DNA methylation in preimplantation embryos is known to be important for the nuclear reprogramming process. A synthetic RNA encoding enhanced green fluorescence protein fused to the methyl-CpG-binding domain and nuclear localization signal of human MBD1 was microinjected into metaphase II-arrested or fertilized oocytes, and the localization of methylated DNA was monitored by live cell imaging. Both the central part of decondensing sperm nucleus and the rim region of the nucleolus in the male pronucleus were highly DNA-methylated during pronuclear formation. The methylated paternal genome undergoing active DNA demethylation in the enlarging pronucleus was dispersed, assembled, and then migrated to the nucleolar rim. The female pronucleus contained methylated DNA predominantly in the nucleoplasm. When the localization of methylated DNA in preimplantation embryos was examined, a configurational change of methylated chromatin dramatically occurred during the transition of 2-cell to 4-cell embryos. Moreover, retrospective analysis demonstrated that a noticeable number of the oocytes reconstructed by round spermatid injection (ROSI) possess small, bright dots of methylated chromatin in the nucleoplasm of male pronucleus. These ROSI oocytes showed a significantly low rate of 2-cell formation, thus suggesting that the poor embryonic development of the ROSI oocytes may result from the abnormal localization of methylated chromatin.  相似文献   

18.
DNA double-strand breaks (DSBs) are caused by various environmental stresses, such as ionizing radiation and DNA-damaging agents. When DSBs occur, cell cycle checkpoint mechanisms function to stop the cell cycle until all DSBs are repaired; the phosphorylation of H2AX plays an important role in this process. Mouse preimplantation-stage embryos are hypersensitive to ionizing radiation, and X-irradiated mouse zygotes are arrested at the G2 phase of the first cell cycle. To investigate the mechanisms responding to DNA damage at G2 in mouse preimplantation embryos, we examined G2/M checkpoint and DNA repair mechanisms in these embryos. Most of the one- and two-cell embryos in which DSBs had been induced by gamma-irradiation underwent a delay in cleavage and ceased development before the blastocyst stage. In these embryos, phosphorylated H2AX (gamma-H2AX) was not detected in the one- or two-cell stages by immunocytochemistry, although it was detected after the two-cell stage during preimplantation development. These results suggest that the G2/M checkpoint and DNA repair mechanisms have insufficient function in one- and two-cell embryos, causing hypersensitivity to gamma-irradiation. In addition, phosphorylated ataxia telangiectasia mutated protein and DNA protein kinase catalytic subunits, which phosphorylate H2AX, were detected in the embryos at one- and two-cell stages, as well as at other preimplantation stages, suggesting that the absence of gamma-H2AX in one- and two-cell embryos depends on some factor(s) other than these kinases.  相似文献   

19.
20.
Precise recapitulation of methylation change in early cloned embryos   总被引:1,自引:0,他引:1  
Change of DNA methylation during preimplantation development is very dynamic, which brings this term to the most attractive experimental target for measuring the capability of cloned embryo to reprogram its somatic genome. However, one weak point is that the preimplantation stage carries little information on genomic sequences showing a site-specific re-methylation after global demethylation; these sequences, if any, may serve as an advanced subject to test how exactly the reprogramming/programming process is recapitulated in early cloned embryos. Here, we report a unique DNA methylation change occurring at bovine neuropeptide galanin gene sequence. The galanin gene sequence in early bovine embryos derived by in vitro fertilization (IVF) maintained a undermethylated status till the morula stage. By the blastocyst, certain CpG sites became methylated specifically, which may be an epigenetic sign for the galanin gene to start a differentiation programme. The same sequence was moderately methylated in somatic donor cell and, after transplanted into an enucleated oocyte by nuclear transfer (NT), came rapidly demethylated to a completion, and then, at the blastocyst stage, re-methylated at exactly the same CpG sites, as observed so in normal blastocysts. The precise recapitulation of normal methylation reprogramming and programming at the galanin gene sequence in bovine cloned embryos gives a cue for the potential of cloned embryo to superintend the epigenetic states of foreign genome, even after global demethylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号