首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
3.
The Id4 HLH protein and the timing of oligodendrocyte differentiation   总被引:10,自引:0,他引:10  
Kondo T  Raff M 《The EMBO journal》2000,19(9):1998-2007
  相似文献   

4.
5.
6.
7.
8.
9.
10.

Background

Transplantation of neural stem cells (NSCs) is a promising novel approach to the treatment of neuroinflammatory diseases such as multiple sclerosis (MS). NSCs can be derived from primary central nervous system (CNS) tissue or obtained by neural differentiation of embryonic stem (ES) cells, the latter having the advantage of readily providing an unlimited number of cells for therapeutic purposes. Using a mouse model of MS, we evaluated the therapeutic potential of NSCs derived from ES cells by two different neural differentiation protocols that utilized adherent culture conditions and compared their effect to primary NSCs derived from the subventricular zone (SVZ).

Methodology/Principal Findings

The proliferation and secretion of pro-inflammatory cytokines by antigen-stimulated splenocytes was reduced in the presence of SVZ-NSCs, while ES cell-derived NSCs exerted differential immunosuppressive effects. Surprisingly, intravenously injected NSCs displayed no significant therapeutic impact on clinical and pathological disease outcomes in mice with experimental autoimmune encephalomyelitis (EAE) induced by recombinant myelin oligodendrocyte glycoprotein, independent of the cell source. Studies tracking the biodistribution of transplanted ES cell-derived NSCs revealed that these cells were unable to traffic to the CNS or peripheral lymphoid tissues, consistent with the lack of cell surface homing molecules. Attenuation of peripheral immune responses could only be achieved through multiple high doses of NSCs administered intraperitoneally, which led to some neuroprotective effects within the CNS.

Conclusion/Significance

Systemic transplantation of these NSCs does not have a major influence on the clinical course of rMOG-induced EAE. Improving the efficiency at which NSCs home to inflammatory sites may enhance their therapeutic potential in this model of CNS autoimmunity.  相似文献   

11.
Cell patterning in the vertebrate CNS reflects the combination of localized cell induction, migration and differentiation. A striking example of patterning is the myelination of visual system. In many species, retinal ganglion cell axons are myelinated in the optic nerve but are unmyelinated in the retina. Here, we confirm that rat and mouse retina lack oligodendrocytes and their precursors and identify multiple mechanisms that might contribute to their absence. Soluble cues from embryonic retina inhibit the induction of oligodendrocytes from neural stem cells and their differentiation from optic nerve precursors. This inhibition is mediated by retinal-derived BMPs. During development BMPs are expressed in the retina and addition of the BMP antagonist Noggin reversed retinal inhibition of oligodendrocyte development. The lack of retinal oligodendrocytes does not simply reflect expression of BMPs, since no oligodendrocytes or their precursors developed when embryonic retinal cells were grown in the presence of Noggin and/or inductive cues such as Shh and IGF-1. Similarly, injection of Noggin into the postnatal rat eye failed to induce oligodendrocyte differentiation. These data combined with the proposed inhibition of OPC migration by molecules selectively expressed at the nerve retina junction suggest that multiple mechanisms combine to suppress retinal myelination during development.  相似文献   

12.
Neural stem cells (NSCs) play an essential role in both the developing embryonic nervous system through to adulthood where the capacity for self-renewal may be important for normal function of the CNS, such as in learning, memory and response to injury. There has been much excitement about the possibility of transplantation of NSCs to replace damaged or lost neurones, or by recruitment of endogenous precursors. However, before the full potential of NSCs can be realized, it is essential to understand the physiological pathways that control their proliferation and differentiation, as well as the influence of extrinsic factors on these processes. In the present study we used the NSC line C17.2 and primary embryonic cortical NSCs (cNSCs) to investigate the effects of the environmental contaminant methylmercury (MeHg) on survival and differentiation of NSCs. The results show that NSCs, in particular cNSCs, are highly sensitive to MeHg. MeHg induced apoptosis in both models via Bax activation, cytochrome c translocation, and caspase and calpain activation. Remarkably, exposure to MeHg at concentrations comparable to the current developmental exposure (via cord blood) of the general population in many countries inhibited spontaneous neuronal differentiation of NSCs. Our studies also identified the intracellular pathway leading to MeHg-induced apoptosis, and indicate that NSCs are more sensitive than differentiated neurones or glia to MeHg-induced cytotoxicity. The observed effects of MeHg on NSC differentiation offer new perspectives for evaluating the biological significance of MeHg exposure at low levels.  相似文献   

13.
Myelin in the mammalian central nervous system (CNS) is produced by oligodendrocytes, most of which arise from oligodendrocyte precursor cells (OPCs) during late embryonic and early postnatal development. Both external and internal cues have been implicated in regulating OPC exit from the cell cycle and differentiation into oligodendrocytes. In this study, we demonstrate that differentiation of cultured OPCs into mature oligodendrocytes is associated with lower levels of activity of telomerase, the ribonucleoprotein that synthesizes telomeric DNA at the ends of chromosomes. Differentiation is also associated with lower levels of mRNA encoding the catalytic subunit of telomerase (TERT), whereas no difference is seen in the expression of its telomeric template RNA component (TR). These data suggest a possible role for telomerase during normal growth and differentiation of oligodendrocytes that may be relevant to the mechanism of myelination in the CNS.  相似文献   

14.
An intracellular timer in oligodendrocyte precursor cells is thought to help control the timing of their differentiation. We show here that the expression of the Hes5 and Mash1 genes, which encode neural-specific bHLH proteins, decrease and increase, respectively, in these cells with a time course expected if the proteins are part of the timer. We show that enforced expression of Hes5 in purified precursor cells strongly inhibits the normal increase in the thyroid hormone receptor protein TR(&bgr;)1, which is thought to be part of the timing mechanism; it also strongly inhibits the differentiation induced by either mitogen withdrawal or thyroid hormone treatment. Enforced expression of Mash1, by contrast, somewhat accelerates the increase in TR(beta)1 protein. These findings suggest that Hes5 and Mash1 may be part of the cell-intrinsic timer in the precursor cells.  相似文献   

15.
The roles of specific microRNAs (miRNA) in oligodendrocyte (OL) differentiation have been studied in depth. However, miRNAs in OL precursors and oligodendrocyte progenitor cells (OPCs) have been less extensively investigated. MiR‐145‐5p is highly expressed in OPCs relative to differentiating OLs, suggesting this miRNA may serve a function specifically in OPCs. Knockdown of miR‐145‐5p in primary OPCs led to spontaneous differentiation, as evidenced by an increased proportion of MAG+ cells, increased cell ramification, and upregulation of multiple myelin genes including MYRF, TPPP, and MAG, and OL cell cycle exit marker Cdkn1c. Supporting this transition to a differentiating state, proliferation was reduced in miR‐145‐5p knockdown OPCs. Further, knockdown of miR‐145‐5p in differentiating OLs showed enhanced differentiation, with increased branching, myelin membrane production, and myelin gene expression. We identified several OL‐specific genes targeted by miR‐145‐5p that exhibited upregulation with miR‐145‐5p knockdown, including myelin gene regulatory factor (MYRF), that could be regulating the prodifferentiation phenotype in both miR‐145 knockdown OPCs and OLs. Indeed, spontaneous differentiation with knockdown of miR‐145‐5p was fully rescued by concurrent knockdown of MYRF. However, proliferation rate was only partially rescued with MYRF knockdown, and overexpression of miR‐145‐5p in OPCs increased proliferation rate without affecting expression of already lowly expressed differentiation genes. Taken together, these data suggest that in OPCs miR‐145‐5p both prevents differentiation at least in part by preventing expression of MYRF and promotes proliferation via as‐yet‐unidentified mechanisms. These findings clarify the need for differential regulation of miR‐145‐5p between OPCs and OLs and may have further implications in demyelinating diseases such as multiple sclerosis where miR‐145‐5p is dysregulated.  相似文献   

16.
Myelin in the mammalian central nervous system (CNS) is produced by oligodendrocytes, most of which arise from oligodendrocyte precursor cells (OPCs) during late embryonic and early postnatal development. Both external and internal cues have been implicated in regulating OPC exit from the cell cycle and differentiation into oligodendrocytes. In this study, we demonstrate that differentiation of cultured OPCs into mature oligodendrocytes is associated with lower levels of activity of telomerase, the ribonucleoprotein that synthesizes telomeric DNA at the ends of chromosomes. Differentiation is also associated with lower levels of mRNA encoding the catalytic subunit of telomerase (TERT), whereas no difference is seen in the expression of its telomeric template RNA component (TR). These data suggest a possible role for telomerase during normal growth and differentiation of oligodendrocytes that may be relevant to the mechanism of myelination in the CNS. © 2001 John Wiley & Sons, Inc. J Neurobiol 49: 224–234, 2001  相似文献   

17.
18.
19.
20.
目的观察博尔纳病病毒核蛋白(Borna disease virus p40,BDV p40)对大鼠海马源性神经干细胞(Neural stem cells,NSCs)增殖、存活、分化及ERK1/2信号通路的影响,揭示BDV引起神经精神疾病的部分发病机制。方法(1)分别用pEGFP—N1—p40及pEGFP—N1质粒转染NSCs,观察转染效率并鉴定BDVp40在NSCs中的表达。(2)实验设置3组:未转染组、pEGFP—N1空转对照组及pEGFP—N1—p40转染组,用CCK-8试剂盒、Brdu摄入实验及免疫组化分别检测细胞存活、增殖及分化为神经元、星型胶质细胞、少突胶质细胞的比例的变化,并经Western Blot检测ERK1/2磷酸化的改变。结果(1)成功建立表达BDVp40的NSCs模型;PCR结果显示只有pEGFP—N1-p40转染组细胞有BDVp40基因表达。(2)BDVp40抑制NSCs的存活、增殖,但对于转染后贴壁分化14d时3组细胞分化为神经元、星型胶质细胞、少突胶质细胞的比例未见显著差异。WesternBlot结果显示BDVp40下调了磷酸化ERK1/2在蛋白水平的表达。结论BDVp40抑制NSCs的存活、增殖,但是对NSCs的分化方向没有明显的影响。BDVp40有可能通过下调磷酸化ERK1/2活性对NSCs的存活、增殖起抑制作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号