共查询到20条相似文献,搜索用时 0 毫秒
1.
Adva Benmocha Guggenheimer Lior Almagor Vladimir Tsemakhovich Debi Ranjan Tripathy Joel A Hirsch 《Channels (Austin, Tex.)》2016,10(1):55-68
The modulation and regulation of voltage-gated Ca2+ channels is affected by the pore-forming segments, the cytosolic parts of the channel, and interacting intracellular proteins. In this study we demonstrate a direct physical interaction between the N terminus (NT) and C terminus (CT) of the main subunit of the L-type Ca2+ channel CaV1.2, α1C, and explore the importance of this interaction for the regulation of the channel. We used biochemistry to measure the strength of the interaction and to map the location of the interaction sites, and electrophysiology to investigate the functional impact of the interaction. We show that the full-length NT (amino acids 1-154) and the proximal (close to the plasma membrane) part of the CT, pCT (amino acids 1508-1669) interact with sub-micromolar to low-micromolar affinity. Calmodulin (CaM) is not essential for the binding. The results further suggest that the NT-CT interaction regulates the channel's inactivation, and that Ca2+, presumably through binding to calmodulin (CaM), reduces the strength of NT-CT interaction. We propose a molecular mechanism in which NT and CT of the channel serve as levers whose movements regulate inactivation by promoting changes in the transmembrane core of the channel via S1 (NT) or S6 (pCT) segments of domains I and IV, accordingly, and not as a kind of pore blocker. We hypothesize that Ca2+-CaM-induced changes in NT-CT interaction may, in part, underlie the acceleration of CaV1.2 inactivation induced by Ca2+ entry into the cell. 相似文献
2.
《Life sciences》1993,53(8):PL135-PL140
Activation of the α1-adrenoceptor (α1-AR) in mouse peritoneal macrophages induces a Ca2+-dependent K+ current via release of Ca2+ from internal stores [Hara et al. (1991) Pflügers Arch 419: 371–379]. In order to characterize the α1-AR subtype in macrophages, we examined potencies of the α1-AR subtype-selective antagonists against epinephrine-induced increases in intracellular Ca2+ concentration ([Ca2+]i). The Ki values for the α1-AR in macrophages of WB4101, 5-methylurapidil and phentolamine were 0.13 nM, 0.15 nM and 7.0 nM, respectively. (+)-Niguldipine (10 nM) completely blocked the response. Treatment with chloroethylclonidine (CEC) did not abolish the response. These pharmacological properties of the α1-AR in macrophages agree quite well with those of the α1A subtype. 相似文献
3.
4.
5.
《Cell calcium》2019
Ca2+ is a pleiotropic messenger that controls life and death decisions from fertilisation until death. Cellular Ca2+ handling mechanisms show plasticity and are remodelled throughout life to meet the changing needs of the cell. In turn, as the demands on a cell alter, for example through a change in its niche environment or its functional requirements, Ca2+ handling systems may be targeted to sustain the remodelled cellular state. Nowhere is this more apparent than in cancer. Oncogenic transformation is a multi-stage process during which normal cells become progressively differentiated towards a cancerous state that is principally associated with enhanced proliferation and avoidance of death. Ca2+ signalling is intimately involved in almost all aspects of the life of a transformed cell and alterations in Ca2+ handling have been observed in cancer. Moreover, this remodelling of Ca2+ signalling pathways is also required in some cases to sustain the transformed phenotype. As such, Ca2+ handling is hijacked by oncogenic processes to deliver and maintain the transformed phenotype. Central to generation of intracellular Ca2+ signals is the release of Ca2+ from the endoplasmic reticulum intracellular (ER) Ca2+ store via inositol 1,4,5-trisphosphate receptors (InsP3Rs). Upon depletion of ER Ca2+, store-operated Ca2+ entry (SOCE) across the plasma membrane occurs via STIM-gated Orai channels. SOCE serves to both replenish stores but also sustain Ca2+ signalling events. Here, we will discuss the role and regulation of these two signalling pathways and their interplay in oncogenic transformation. 相似文献
6.
The Ca2+ channel 1B subunit is a pore-forming component capable of generating N-type Ca2+ channel activity. Although N-type Ca2+ channel plays a role in a variety of neuronal functions, 1B-deficient mice exhibit normal life span without apparent abnormalities of behavior, histology or plasma norepinephrine level, presumably owing to compensation by some other Ca2+ channel 1 or subunit. In this study, we studied the levels of 1A, 1C, 1D, 1E, 1, 2, 3 and 4 mRNAs in adrenal gland of 1B-deficient mice. The 1A mRNA in homozygous mice was expressed at higher level than in wild or heterozygous mice, but no difference in the expression levels of 1C, 1D, 1E, 1, 2, 3 and 4 was found among wild, heterozygous and homozygous mice. The protein level of 1A in homozygous mice was also expressed at higher level than in wild or heterozygous mice. To examine whether increased expression is induced by cis-regulatory element within 5-upstream region of 1A gene, we examined lacZ expression in 1B-deficient × 1A6.3-lacZ mice (carrying a 6.3-kb 5-upstream fragment of 1A gene fused to E. coli lacZ reporter gene), which express lacZ in medullar chromaffin cells, but not in cortex. The levels of lacZ expression in homozygous 1B-deficient × 1A6.3-lacZ mice were higher than in wild or heterozygous mice. Therefore, a possible explanation of the normal behavior and plasma norepinephrine level of 1B-deficient mice is that compensation by 1A subunit occurs and that 6.3-kb 5-upstream region of 1A gene contains enhancer cis-element(s) for compensation in adrenal medulla chromaffin cells. (Mol Cell Biochem 271: 91–99, 2005) 相似文献
7.
《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2019,1866(7):1124-1136
Store operated Ca2+ entry (SOCE) is the most important Ca2+ entry pathway in non-excitable cells. However, SOCE can also play a pivotal role in excitable cells such as anterior pituitary (AP) cells. The AP gland contains five different cell types that release six major AP hormones controlling most of the entire endocrine system. AP hormone release is modulated by Ca2+ signals induced by different hypothalamic releasing hormones (HRHs) acting on specific receptors in AP cells. TRH and LHRH both induce Ca2+ release and Ca2+ entry in responsive cells while GHRH and CRH only induce Ca2+ entry. SOCE has been shown to contribute to Ca2+ responses induced by TRH and LHRH but no molecular evidence has been provided. Accordingly, we used AP cells isolated from mice devoid of Orai1 channels (noted as Orai1−/− or Orai1 KO mice) and mice lacking expression of all seven canonical TRP channels (TRPC) from TRPC1 to TRPC7 (noted as heptaTRPC KO mice) to investigate contribution of these putative channel proteins to SOCE and intracellular Ca2+ responses induced by HRHs. We found that thapsigargin-evoked SOCE is lost in AP cells from Orai1−/− mice but unaffected in cells from heptaTRPC KO mice. Conversely, while spontaneous intracellular Ca2+-oscillations related to electrical activity were not affected in the Orai1−/− mice, these responses were significantly reduced in heptaTRPC KO mice. We also found that Ca2+ entry induced by TRH and LHRH is decreased in AP cells isolated from Orai1−/−. In addition, Ca2+ responses to several HRHs, particularly TRH and GHRH, are decreased in the heptaTRPC KO mice. These results indicate that expression of Orai1, and not TRPC channel proteins, is necessary for thapsigargin-evoked SOCE and is required to support Ca2+ entry induced by TRH and LHRH in mouse AP cells. In contrast, TRPC channel proteins appear to contribute to spontaneous Ca2+-oscillations and Ca2+ responses induced by TRH and GHRH. We conclude that expression of Orai1 and TRPC channels proteins may play differential and significant roles in AP physiology and endocrine control. 相似文献
8.
Age D. Boelens Ranjan K. Pradhan Christoph A. Blomeyer Amadou K. S. Camara Ranjan K. Dash David F. Stowe 《Journal of bioenergetics and biomembranes》2013,45(3):203-218
Cardiac mitochondrial matrix (m) free Ca2+ ([Ca2+]m) increases primarily by Ca2+ uptake through the Ca2+ uniporter (CU). Ca2+ uptake via the CU is attenuated by extra-matrix (e) Mg2+ ([Mg2+]e). How [Ca2+]m is dynamically modulated by interacting physiological levels of [Ca2+]e and [Mg2+]e and how this interaction alters bioenergetics are not well understood. We postulated that as [Mg2+]e modulates Ca2+ uptake via the CU, it also alters bioenergetics in a matrix Ca2+–induced and matrix Ca2+–independent manner. To test this, we measured changes in [Ca2+]e, [Ca2+]m, [Mg2+]e and [Mg2+]m spectrofluorometrically in guinea pig cardiac mitochondria in response to added CaCl2 (0–0.6 mM; 1 mM EGTA buffer) with/without added MgCl2 (0–2 mM). In parallel, we assessed effects of added CaCl2 and MgCl2 on NADH, membrane potential (ΔΨm), and respiration. We found that >0.125 mM MgCl2 significantly attenuated CU-mediated Ca2+ uptake and [Ca2+]m. Incremental [Mg2+]e did not reduce initial Ca2+uptake but attenuated the subsequent slower Ca2+ uptake, so that [Ca2+]m remained unaltered over time. Adding CaCl2 without MgCl2 to attain a [Ca2+]m from 46 to 221 nM enhanced state 3 NADH oxidation and increased respiration by 15 %; up to 868 nM [Ca2+]m did not additionally enhance NADH oxidation or respiration. Adding MgCl2 did not increase [Mg2+]m but it altered bioenergetics by its direct effect to decrease Ca2+ uptake. However, at a given [Ca2+]m, state 3 respiration was incrementally attenuated, and state 4 respiration enhanced, by higher [Mg2+]e. Thus, [Mg2+]e without a change in [Mg2+]m can modulate bioenergetics independently of CU-mediated Ca2+ transport. 相似文献
9.
Ivan Dimauro Ambra Antonioni Neri Mercatelli Daniela Caporossi 《Cell stress & chaperones》2018,23(4):491-505
All organisms and cells respond to various stress conditions such as environmental, metabolic, or pathophysiological stress by generally upregulating, among others, the expression and/or activation of a group of proteins called heat shock proteins (HSPs). Among the HSPs, special attention has been devoted to the mutations affecting the function of the αB-crystallin (HSPB5), a small heat shock protein (sHsp) playing a critical role in the modulation of several cellular processes related to survival and stress recovery, such as protein degradation, cytoskeletal stabilization, and apoptosis. Because of the emerging role in general health and disease conditions, the main objective of this mini-review is to provide a brief account on the role of HSPB5 in mammalian muscle physiopathology. Here, we report the current known state of the regulation and localization of HSPB5 in skeletal and cardiac tissue, making also a critical summary of all human HSPB5 mutations known to be strictly associated to specific skeletal and cardiac diseases, such as desmin-related myopathies (DRM), dilated (DCM) and restrictive (RCM) cardiomyopathy. Finally, pointing to putative strategies for HSPB5-based therapy to prevent or counteract these forms of human muscular disorders. 相似文献
10.
Journal of Molecular Histology - A combined enzyme-histochemical (ATPase reactivity) and immunohistochemical study has been performed on sections of rabbit masseter muscle. The majority of the... 相似文献
11.
《Life sciences》1996,59(14):PL221-PL226
α1-and β-adrenergic and muscarinic-cholinergic regulation in spontaneous beating and Ca2+ oscillations in neonatal rat cardiac myocytes at day 6 of culture was investigated. The spontaneous beating in myocytes decreased in the presence of 10 μM norepinephrine (NE). This negative chronotropic action was antagonized by prazosin. Carbachol (CCh) also showed negative chronotropic action which was inhibited by atropine. On the other hand, isoproterenol (ISP) increased the beating rate which was antagonized by propranolol. NE increased inositol phosphate formation whereas CCh and ISP did not. NE and CCh suppressed the frequency of the spontaneous Ca2+ oscillations but ISP increased. The present results suggest that α1-adrenergic and muscarinic receptors regulate chronotropism to be negative whereas β-adrenoceptor regulates chronotropism to be positive in cultured neonatal rat cardiac myocytes. 相似文献
12.
The Ca2+ channel α1B subunit is a pore-forming component capable of generating N-type Ca2+ channel activity. Although the N-type Ca2+ channel plays a role in a variety of neuronal functions, α1B-deficient mice did not show apparent behavioral abnormality. In a previous study, we observed a compensatory increase of
mRNA expression of the P/Q-type Ca2+ channel α1A subunit gene in olfactory bulb of α1B-deficient mice with a CBA × C57BL/6 background; these mice showed a normal reproductive ability. In this study, we found
that the mRNA expression level of the α1A subunit was the same in olfactory bulb of wild, heterozygous, and homozygous α1B-deficient mice with a CBA/JN background, and the homozygous male mice produced no offspring. These results suggest that the
genetic background influences α1A subunit mRNA expression and reproductive ability in α1B-deficient mice. 相似文献
13.
《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1986,889(2):225-235
Insulin (0.1 μM) and 1 μM epinephrine each increased the uptake and phosphorylation of 2-deoxyglucose by the perfused rat heart by increasing the apparent Vmax without altering the Km. Isoproterenol (10 μM), 50 μM methoxamine and 10 mM CaCl2 also increased uptake. Lowering of the perfusate Ca2+ concentration from 1.27 to 0.1 mM Ca2+, addition of the Ca2+ channel blocker nifedipine (1 μM) or addition of 1.7 mM EGTA decreased the basal rate of uptake of 2-deoxyglucose and prevented the stimulation due to 1 μM epinephrine. Stimulation of 2-deoxyglucose uptake by 0.1 μM insulin was only partly inhibited by Ca2+ omission, nifedipine or 1 mM EGTA. Half-maximal stimulation of 2-deoxyglucose uptake by insulin occurred at 2 nM and 0.4 nM for medium containing 1.27 and 0.1 mM Ca2+, respectively. Maximal concentrations of insulin (0.1 μM) and epinephrine (1 μM) were additive for glucose uptake and lactate output but were not additive for uptake of 2-deoxyglucose. Half-maximal stimulation of 2-deoxyglucose uptake by epinephrine occurred at 0.2 μM but maximal concentrations of epinephrine (e.g., 1 μM) gave lower rates of 2-deoxyglucose uptake than that attained by maximal concentrations of insulin. The addition of insulin increased uptake of 2-deoxyglucose at all concentrations of epinephrine but epinephrine only increased uptake at sub-maximal concentrations of insulin. The role of Ca2+ in signal reversal was also studied. Removal of 1 μM epinephrine after a 10 min exposure period resulted in a rapid return of contractility to basal values but the rate of 2-deoxyglucose uptake increased further and remained elevated at 20 min unless the Ca2+ concentration was lowered to 0.1 mM or nifedipine (1 μM) was added. Similarly, removal of 0.1 μM insulin after a 10 min exposure period did not affect the rate of 2-deoxyglucose uptake, which did not return to basal values within 20 min unless the concentration of Ca2+ was decreased to 0.1 mM. Insulin-mediated increase in 2-deoxyglucose uptake at 0.1 mM Ca2+ reversed upon hormone removal. It is concluded that catecholamines mediate a Ca2+-dependent increase in 2-deoxyglucose transport from either α or β receptors. Insulin has both a Ca2+-dependent and a Ca2+-independent component. Reversal studies suggest an additional role for Ca2+ in maintaining the activated transport state when activated by either epinephrine or insulin. 相似文献
14.
Defective cardiac mechanical activity in diabetes results from alterations in intracellular Ca2+ handling, in part, due to increased oxidative stress. Beta-blockers demonstrate marked beneficial effects in heart dysfunction with scavenging free radicals and/or acting as an antioxidant. The aim of this study was to address how β-blocker timolol-treatment of diabetic rats exerts cardioprotection. Timolol-treatment (12-week), one-week following diabetes induction, prevented diabetes-induced depressed left ventricular basal contractile activity, prolonged cellular electrical activity, and attenuated the increase in isolated-cardiomyocyte size without hyperglycemic effect. Both in vivo and in vitro timolol-treatment of diabetic cardiomyocytes prevented the altered kinetic parameters of Ca2+ transients and reduced Ca2+ loading of sarcoplasmic reticulum (SR), basal intracellular free Ca2+ and Zn2+ ([Ca2+]i and [Zn2+]i), and spatio-temporal properties of the Ca2+ sparks, significantly. Timolol also antagonized hyperphosphorylation of cardiac ryanodine receptor (RyR2), and significantly restored depleted protein levels of both RyR2 and calstabin2. Western blot analysis demonstrated that timolol-treatment also significantly normalized depressed levels of some [Ca2+]i-handling regulators, such as Na+/Ca2+ exchanger (NCX) and phospho-phospholamban (pPLN) to PLN ratio. Incubation of diabetic cardiomyocytes with 4-mM glutathione exerted similar beneficial effects on RyR2-macromolecular complex and basal levels of both [Ca2+]i and [Zn2+]i, increased intracellular Zn2+ hyperphosphorylated RyR2 in a concentration-dependent manner. Timolol also led to a balanced oxidant/antioxidant level in both heart and circulation and prevented altered cellular redox state of the heart. We thus report, for the first time, that the preventing effect of timolol, directly targeting heart, seems to be associated with a normalization of macromolecular complex of RyR2 and some Ca2+ handling regulators, and prevention of Ca2+ leak, and thereby normalization of both [Ca2+]i and [Zn2+]i homeostasis in diabetic rat heart, at least in part by controlling the cellular redox status of hyperglycemic cardiomyocytes. 相似文献
15.
Soldatov NM Zhenochin S AlBanna B Abernethy DR Morad M 《The Journal of membrane biology》2000,177(2):129-135
Molecular cloning of the human fibroblast Ca2+ channel pore-forming α1C subunit revealed (Soldatov, 1992. Proc. Natl. Acad. Sci. USA
89:4628-4632) a naturally occurring mutation g2254→ a that causes the replacement of the conservative alanine for threonine at the position 752 at the cytoplasmic end of transmembrane
segment IIS6. Using stably transfected HEK293 cell lines, we have compared electrophysiological properties of the conventional
α1C,77 human recombinant L-type Ca2+ channel with those of its mutated isoform α1C,94 containing the A752T replacement. Comparative quantification of steady-state availability of the current carried by α1C,94 and α1C,77 showed that A752T mutation prevented a large (≈25%) fraction of the current carried by Ca2+ or Ba2+ from fully inactivating. This mutation, however, did not appear to alter significantly the Ca2+-dependence and kinetics of decay of the inactivating fraction of the current or its voltage-dependence. The data suggests
that Ala752 at the cytoplasmic end of IIS6 might serve as a molecular determinant of the Ca2+ channel inactivation, possibly regulating the voltage-dependence of its availability.
Received: 14 January 2000/Revised: 20 June 2000 相似文献
16.
This study was aimed at examining the effect of tamoxifen, a selective estrogen receptor modulator, on the release of endogenous glutamate in rat cerebral cortex nerve terminals (synaptosomes) and exploring the possible mechanism. Tamoxifen inhibited the release of glutamate that was evoked by the K(+) channel blocker 4-aminopyridine (4-AP), and this phenomenon was concentration-dependent and insensitive to the estrogen receptor antagonist. The effect of tamoxifen on the evoked glutamate release was prevented by the chelating extracellular Ca(2+) ions, and by the vesicular transporter inhibitor bafilomycin A1. However, the glutamate transporter inhibitor dl-threo-beta-benzyloxyaspartate did not have any effect on the action of tamoxifen. Tamoxifen did not alter the resting synaptosomal membrane potential or 4-AP-mediated depolarization whereas it decreased the 4-AP-induced increase in cytosolic [Ca(2+)]. Furthermore, the inhibitory effect of tamoxifen on the evoked glutamate release was abolished by the Ca(v)2.2 (N-type) and Ca(v)2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC, but not by the ryanodine receptor blocker dantrolene, or the mitochondrial Na(+)/Ca(2+) exchanger blocker CGP37157. In addition, the protein kinase C (PKC) inhibitors GF109203X or Ro318220 prevented tamoxifen from inhibiting glutamate release. Western blotting showed that tamoxifen significantly decreased the 4-AP-induced phosphorylation of PKC and PKCα. Together, these results suggest that tamoxifen inhibits glutamate release from rat cortical synaptosomes, through the suppression of presynaptic voltage-dependent Ca(2+) entry and PKC activity. 相似文献
17.
18.
《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2019,1866(3):474-485
Triple negative breast cancer is an aggressive type of cancer that does not respond to hormonal therapy and current therapeutic strategies are accompanied by side effects due to cytotoxic actions on normal tissues. Therefore, there is a need for the identification of anti-cancer compounds with negligible effects on non-tumoral cells. Here we show that (−)‑oleocanthal (OLCT), a phenolic compound isolated from olive oil, selectively impairs MDA-MB-231 cell proliferation and viability without affecting the ability of non-tumoral MCF10A cells to proliferate or their viability. Similarly, OLCT selectively impairs the ability of MDA-MB-231 cells to migrate while the ability of MCF10A to migrate was unaffected. The effect of OLCT was not exclusive for triple negative breast cancer cells as we found that OLCT also attenuate cell viability and proliferation of MCF7 cells. Our results indicate that OLCT is unable to induce Ca2+ mobilization in non-tumoral cells. By contrast, OLCT induces Ca2+ entry in MCF7 and MDA-MB-231 cells, which is impaired by TRPC6 expression silencing. We have found that MDA-MB-231 and MCF7 cells overexpress the channel TRPC6 as compared to non-tumoral MCF10A and treatment with OLCT for 24–72 h downregulates TRPC6 expression in MDA-MB-231 cells. These findings indicate that OLCT impairs the ability of breast cancer cells to proliferate and migrate via downregulation of TRPC6 channel expression while having no effect on the biology of non-tumoral breast cells. 相似文献
19.
Scheffer D Sage C Plazas PV Huang M Wedemeyer C Zhang DS Chen ZY Elgoyhen AB Corey DP Pingault V 《Journal of neurochemistry》2007,103(6):2651-2664
20.
Douchi Matsuba Takako Terui Jin O-Uchi Hiroyuki Tanaka Takao Ojima Iwao Ohtsuki Shin'ichi Ishiwata Satoshi Kurihara Norio Fukuda 《The Journal of general physiology》2009,133(6):571-581
Protein kinase A (PKA)-dependent phosphorylation of troponin (Tn)I represents a major physiological mechanism during β-adrenergic stimulation in myocardium for the reduction of myofibrillar Ca2+ sensitivity via weakening of the interaction with TnC. By taking advantage of thin filament reconstitution, we directly investigated whether or not PKA-dependent phosphorylation of cardiac TnI (cTnI) decreases Ca2+ sensitivity in different types of muscle: cardiac (porcine ventricular) and fast skeletal (rabbit psoas) muscles. PKA enhanced phosphorylation of cTnI at Ser23/24 in skinned cardiac muscle and decreased Ca2+ sensitivity, of which the effects were confirmed after reconstitution with the cardiac Tn complex (cTn) or the hybrid Tn complex (designated as PCRF; fast skeletal TnT with cTnI and cTnC). Reconstitution of cardiac muscle with the fast skeletal Tn complex (sTn) not only increased Ca2+ sensitivity, but also abolished the Ca2+-desensitizing effect of PKA, supporting the view that the phosphorylation of cTnI, but not that of other myofibrillar proteins, such as myosin-binding protein C, primarily underlies the PKA-induced Ca2+ desensitization in cardiac muscle. Reconstitution of fast skeletal muscle with cTn decreased Ca2+ sensitivity, and PKA further decreased Ca2+ sensitivity, which was almost completely restored to the original level upon subsequent reconstitution with sTn. The essentially same result was obtained when fast skeletal muscle was reconstituted with PCRF. It is therefore suggested that the PKA-dependent phosphorylation or dephosphorylation of cTnI universally modulates Ca2+ sensitivity associated with cTnC in the striated muscle sarcomere, independent of the TnT isoform. 相似文献