首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
SIRT1 is a NAD-dependent deacetylase that regulates a variety of pathways including the stress protection pathway. SIRT1 deacetylates a number of protein substrates, including histones, FOXOs, PGC-1α, and p53, leading to cellular protection. We identified a functional interaction between cJUN N-terminal kinase (JNK1) and SIRT1 by coimmunoprecipitation of endogenous proteins. The interaction between JNK1 and SIRT1 was identified under conditions of oxidative stress and required activation of JNK1 via phosphorylation. Modulation of SIRT1 activity or protein levels using nicotinamide or RNAi did not modify JNK1 activity as measured by its ability to phosphorylate cJUN. In contrast, human SIRT1 was phosphorylated by JNK1 on three sites: Ser27, Ser47, and Thr530 and this phosphorylation of SIRT1 increased its nuclear localization and enzymatic activity. Surprisingly, JNK1 phosphorylation of SIRT1 showed substrate specificity resulting in deacetylation of histone H3, but not p53. These findings identify a mechanism for regulation of SIRT1 enzymatic activity in response to oxidative stress and shed new light on its role in the stress protection pathway.  相似文献   

2.
Mammalian SIRT1 is an NAD-dependent deacetylase with critical roles in the maintenance of homeostasis and cell survival. Elevated levels of SIRT1 protein are evident in cancer in which SIRT1 can function as a cancer-specific survival factor. Here we demonstrate that elevated SIRT1 protein in human cells is not attributable to increased SIRT1 mRNA levels but, instead, reflects SIRT1 protein stability. RNAi-mediated depletion of JNK2 reduced the half-life of SIRT1 protein from > 9h to < 2h and this correlated with lack of SIRT1 protein phosphorylation at serine 27. In contrast, depletion of JNK1 had no effect upon SIRT1 protein stability and SIRT1 phosphorylation at serine 47 showed no correlation with SIRT1 protein stability. Thus we show that JNK2 is linked, directly or indirectly, with SIRT1 protein stability and that this function is coupled with SIRT1 phosphorylation at serine 27. Our observations identify a route for therapeutic modulation of SIRT1 protein levels in SIRT1-linked diseases including cancer, neurodegeneration and diabetes.  相似文献   

3.
Microtubule-interfering agents are widely used in cancer chemotherapy, and prognostic results vary significantly from tumor to tumor, depending on the p53 status. In preliminary experiments, we compared the expression and phosphorylation profiles of more than 100 protein kinases and protein phosphatases in human colorectal carcinoma cell line HCT116 between p53+/+ and p53-/- cells in response to short term nocodazole treatment through application of Kinetworks immunoblotting screens. Among the proteins tracked, the regulation of the phosphorylation of c-Jun N-terminal kinase (JNK)1/2 at Thr-183/Tyr-185 was the major difference between p53+/+ and p53-/- cells. With the loss of the p53 gene, the levels of phosphorylation of Ser-63 of c-Jun and Thr-183/Tyr-185 of JNK1/2 in p53-/- cells did not increase as markedly as in p53+/+ cells in response to a 1-h treatment with nocodazole or other microtubule-disrupting drugs such as vinblastine and colchicine. Similar observations were also made in MCF-7 and A549 tumor cells, which were rendered p53-deficient by E6 oncoprotein expression. However, arsenate-induced JNK activation in p53-/- cells was preserved. Inhibition of p53 expression by its antisense oligonucleotide also attenuated nocodazole-induced JNK activation in p53+/+ cells. Surprisingly, cotransfection of p53+/+ cells with dominant negative mutants of JNK isoforms and treatment of p53+/+ cells with the JNK inhibitor SP600125 actually further enhanced apoptosis in p53+/+ cells by up to 2-fold in response to nocodazole. These findings indicate that inhibition of p53-mediated JNK1/2 activity in certain tumor cells could serve to enhance the apoptosis-inducing actions of cancer chemotherapeutic agents that disrupt mitotic spindle function.  相似文献   

4.
目的:探究缺氧微环境SIRT1亚细胞定位对结直肠癌细胞凋亡的影响及其分子机制。方法:将编码过表达野生型SIRT1以及核定位序列(nuclear localization sequence,NLS)突变型SIRT1(SIRT1NLSmt)的慢病毒载体转染人类结肠癌HCT116细胞株,经嘌呤霉素筛选获得稳定过表达野生型SIRT1细胞株(LV-SIRT1细胞)和细胞质定位的NLS突变型SIRT1细胞株(LV-SIRT1NLSmt细胞),通过观察慢病毒载体编码的SIRT1-GFP融合蛋白的荧光定位,明确稳定转染细胞中外源性SIRT1的亚细胞定位。利用real-time PCR、Western blot法对分离提取的核-质蛋白进行检测,证实外源性SIRT1的表达和亚细胞定位情况。利用CCK-8细胞毒性实验、流式细胞术检测和TUNEL染色比较缺氧(1%O2)处理前后LV-SIRT1和LV-SIRT1NLSmt细胞存活或凋亡情况,Western blot法检测凋亡相关蛋白p53、ac-p53(K382)、Bcl-2、Bax、caspase-3和cleaved caspase-3表达水平。结果:Western blot、real-time PCR和免疫荧光染色结果显示稳定转染细胞均存在外源性SIRT1的过表达,NLS突变可导致SIRT1NLSmt富集于细胞质中;与亲本细胞HCT116和LV-SIRT1NLSmt细胞相比,LV-SIRT1细胞对缺氧的耐受能力最差、细胞凋亡水平最高,凋亡相关蛋白p53、Bax、caspase-3、cleaved caspase-3表达水平显著升高,ac-p53(K382)和Bcl-2表达水平显著下降,且LV-SIRT1细胞的胞核ac-p53下降最为显著。结论:在缺氧微环境中,细胞核定位的SIRT1通过影响p53的去乙酰化水平促进结直肠癌细胞凋亡。  相似文献   

5.
We previously reported that the suppression of SIRT2, an NAD + -dependent protein deacetylases, induces p53 accumulation via degradation of p300 and the subsequent MDM2 degradation, eventually leading to apoptosis in HeLa cells. The present study identified a novel pathway of p53 accumulation by SIRT2 suppression in HCT116(p53+/+) cells in which SIRT2 suppression led to escape from mitotic cell death caused by spindle assembly checkpoint activation induced by microtubule inhibitors such as nocodazole but not apoptosis or G1 or G2 arrest. We found that SIRT2 interacts with P/CAF, a histone acetyltransferase, which also acts as a ubiquitin ligase against MDM2. SIRT2 suppression led to an increase of P/CAF acetylation and its stabilization followed by a decrease in MDM2 and activation of the p53-p21 pathway. Depression of mitotic cell death in HCT116(p53+/+) cells with SIRT2 suppression was released by suppression of P/CAF or p21. Thus, the P/CAF-MDM2-p53-p21 axis enables the escape from mitotic cell death and confers resistance to nocodazole in HCT116(p53+/+) cells with SIRT2 suppression. As SIRT2 has attracted attention as a potential target for cancer therapeutics for p53 regulation, the present study provides a molecular basis for the efficacy of SIRT2 for future cancer therapy based on p53 regulation. These findings also suggest an undesirable function of the SIRT2 suppression associated with activation of the p53-p21 pathway in the suppression of mitotic cell death caused by spindle assembly checkpoint activation.  相似文献   

6.
Jang SY  Kim SY  Bae YS 《FEBS letters》2011,585(21):3360-3366
Cellular senescence is thought to be an important tumor suppression process in vivo. We have previously shown that p53 activation is necessary for CKII inhibition-mediated cellular senescence. Here, CKII inhibition induced acetylation of p53 at K382 in HCT116 and HEK293 cells. This acetylation event was suppressed by SIRT1 activation. CKIIα and CKIIβ were co-immunoprecipitated with SIRT1 in a p53-independent manner. Maltose binding protein pull-down and yeast two-hybrid indicated that SIRT1 bound to CKIIβ, but not to CKIIα. CKII inhibition reduced SIRT1 activity in cells. CKII phosphorylated and activated human SIRT1 in vitro. Finally, SIRT1 overexpression antagonized CKII inhibition-mediated cellular senescence. These results reveal that CKII downregulation induces p53 stabilization by negatively regulating SIRT1 deacetylase activity during senescence.  相似文献   

7.
8.
The abilities of mutated active K-RAS and H-RAS proteins, in an isogenic human carcinoma cell system, to modulate the activity of signaling pathways and cell cycle progression following exposure to ionizing radiation is largely unknown. Loss of K-RAS D13 expression in parental HCT116 colorectal carcinoma cells blunted basal ERK1/2, AKT and JNK1/2 activity by ~70%. P38 activity was not detected. Deletion of the allele to express activated K-RAS nearly abolished radiation-induced activation of all signaling pathways. Expression of H-RAS V12 in HCT116 cells lacking an activated RAS molecule (H-RAS V12 cells) restored basal ERK1/2 and AKT activity to that observed in parental cells, but did not restore or alter basal JNK1/2 and p38 activity. In parental cells radiation (1 Gy) caused stronger ERK1/2 pathway activation compared to that of the PI3K/AKT pathway. In H-RAS V12 cells radiation caused stronger PI3K/AKT pathway activation compared to that of the ERK1/2 pathway. Radiation (1 Gy) promoted S phase entry in parental HCT116 cells within 24h, but not in either HCT116 cells lacking K-RAS D13 expression or in H-RAS V12 cells. In parental cells radiation-stimulated S phase entry correlated with ERK1/2-, JNK1/2- and PI3K-dependent increased expression of cyclin D1 and cyclin A, and to a lesser extent cyclin E, 6–24 h after exposure. Cyclin A and cyclin D1 expression were not increased by radiation in cells lacking K-RAS D13 expression or in H-RAS V12 cells. Radiation (1 Gy) modestly enhanced expression of p53, hMDM2 and p21 in parental cells 2-6h after exposure, which was abolished in cells lacking K-RAS D13 expression. Introduction of H-RAS V12 into cells lacking mutant active RAS partially restored radiation-induced expression of p21 and p53, and enhanced the induction of hMDM2 beyond that observed in parental cells. Collectively, our findings argue that the coordinated activation of multiple signaling pathways, in particular ERK1/2 and JNK1/2, by radiation is required to elevate the expression of G1 and S phase cyclin proteins and to promote S phase entry in human colon carcinoma cells expressing wild type p53. In HCT116 cells H-RAS V12 promotes hMDM2 expression after radiation exposure which correlates with reduced p53 expression and increased cell survival.  相似文献   

9.
Downregulation of microRNA-590-3p (miR-590-3p) is a frequently occurring, nonphysiological event which is observed in several human cancers, especially breast cancer. However, the significance of miR-590-3p still remain unclear in the progression of this disease. This study explored the role of miR-590-3p in apoptosis of breast cancer cells. Gene expression of miR-590-3p, Sirtuin-1 (SIRT1), Bcl-2 associated X protein (BAX), and p21 was evaluated with real-time polymerase chain reaction (PCR) and SIRT1 protein expression was assessed by Western blot analysis in breast cancer cell lines. Bioinformatics analysis and luciferase reporter assay were used to evaluate targeting of SIRT1 messenger RNA (mRNA) by miR-590-3p. Cells were transfected with miR-590-3p mimic and inhibitor and their effects on the expression and activity of SIRT1 were evaluated. The effects of miR-590-3p upregulation on the acetylation of p53 as well as cell viability and apoptosis were assessed by Western blot analysis, WST-1 assay, and flow cytometry, respectively. miR-590-3p expression was considerably downregulated in breast cancer cells which was accompanied by upregulation of SIRT1 expression. SIRT1 was recognized as a direct target for miR-590-3p in breast cancer cells and its protein expression and activity was dramatically inhibited by the miR-590-3p. In addition, there was an increase in p53 and its acetylated form that ultimately led to upregulation of BAX and p21 expression, suppression of cell survival, and considerable induction of apoptosis in breast cancer cells. These findings suggest that miR-590-3p exerts tumor-suppressing effects through targeting SIRT1 in breast cancer cells, which makes it a potential therapeutic target for developing more efficient treatments for breast cancer.  相似文献   

10.
SIRT1 is an NAD-dependent deacetylase and epigenetic regulator essential for normal mammalian development and homeostasis. Here we describe a human SIRT1 splice variant, designated SIRT1-Δ2/9, in which the deacetylase coding sequence is lost due to splicing between exons 2 and 9. This work aimed to determine if SIRT1-Δ2/9 is a novel functional product of the SIRT1 gene. Endogenous SIRT1-Δ2/9 protein was identified in human cell lysate by immunoblotting and splice variant-specific RNA interference (RNAi). SIRT1-Δ2/9 mRNA is bound by CUGBP2, which downregulates its translation. Using pulldown assays, we demonstrate that SIRT1-Δ2/9 binds p53 protein. SIRT1-Δ2/9 maintains basal p53 protein levels and supports p53 function in response to DNA damage, as evidenced by RNAi-mediated depletion of SIRT1-Δ2/9 prior to damage. In turn, basal p53 downregulates SIRT1-Δ2/9 RNA levels, while stress-activated p53 eliminates SIRT1-Δ2/9. Loss of wild-type (wt) p53 has been correlated with overexpression of SIRT1-Δ2/9 in a range of human cancers. Exogenous SIRT1-Δ2/9 protein associates with specific promoters in chromatin and can regulate cancer-related gene expression, as evidenced by chromatin immunoprecipitation analysis and RNAi/genomic array data. SIRT1 is of major therapeutic importance, and potential therapeutic drugs are screened against SIRT1 deacetylase activity. Our discovery of SIRT1-Δ2/9 identifies a new, deacetylase-independent therapeutic target for SIRT1-related diseases, including cancer.  相似文献   

11.
SIRT3, one of seven mammalian sirtuins, is a NAD-dependent deacetylase. SIRT3 localises to mitochondria where it deacetylates and thus activates acetyl-CoA synthetase 2 (AceCS2), indicating a role for SIRT3 in metabolism. Here we provide evidence that SIRT3 also impacts upon apoptosis and cell growth control. Using RNAi under basal (non-stress) conditions we show that SIRT3 is required for apoptosis induced by selective silencing of Bcl-2 in HCT116 human epithelial cancer cells. Identical treatment of ARPE19 epithelial non-cancer cells induces G1 growth arrest which also proved to be SIRT3-dependent. Previously we have identified SIRT1 and JNK2 as constitutive suppressors of apoptosis in HCT116 cells. We now demonstrate that SIRT3 functions in JNK2-regulated apoptosis but is dispensable for SIRT1-regulated apoptosis. SIRT3 is also dispensable for stress-induced apoptosis. Thus the pro-apoptotic functioning of SIRT3 is selectively coupled with defined pathways regulating cell survival under basal conditions.  相似文献   

12.
Double-stranded RNA (dsRNA) is a biologically active molecule that plays important roles in normal cell growth and function. Accordingly, the cell uses multiple mechanisms to control its level. The tumor suppressor protein p53 possesses intrinsic 3′→5′ exonuclease activity. The aim of the present study was to elucidate the degradation of dsRNA by the exonuclease activity of p53. The results show that recombinant, purified wtp53 and endogenous protein in cytoplasmic fractions of cells remove nucleotides from 3’-ends of dsRNA. Several lines of evidence support a connection between p53 and dsRNase activity in cytoplasm: (1) this activity parallels the status of endogenous cytoplasmic p53; (2) the endogenous exonuclease displays a similar dsRNA excision profile characteristic for purified wtp53; (3) cytoplasmic fractions of HCT116(p53+/+) cells exert higher levels of exonuclease activity compared to those of HCT116(p53-/-) cells; (4) transfection of the wtp53, but not exonuclease-deficient mutant p53-R175H, into HCT116 (p53-/-) cells induced high levels of dsRNase activity in cytoplasm; (5) the accumulation of p53 in cytoplasm following the γ-irradiation stress stimuli correlates with the increase in the excision of dsRNA and (6) the dsRNA forms a complex with a protein that can be disrupted by an anti-p53 antibody. Our data suggest that the degradation of dsRNA by p53 protein may direct either the complete degradation of and decrease in the level of dsRNA or incomplete degradation and the generation of short dsRNA products. The possible roles of p53 dsRNase activity in cytoplasm in the inhibition of translation and induction of cell apoptosis, is discussed.  相似文献   

13.
c-Jun N-terminal kinase (JNK) plays a critical role in coordinating the cellular response to stress and has been implicated in regulating cell growth and transformation. To investigate the growth-regulatory functions of JNK1 and JNK2, we used specific antisense oligonucleotides (AS) to inhibit their expression. A survey of several human tumor cell lines revealed that JNKAS treatment markedly inhibited the growth of cells with mutant p53 status but not that of cells with normal p53 function. To further examine the influence of p53 on cell sensitivity to JNKAS treatment, we compared the responsiveness of RKO, MCF-7, and HCT116 cells with normal p53 function to that of RKO E6, MCF-7 E6, and HCT116 p53(-/-), which were rendered p53 deficient by different methods. Inhibition of JNK2 (and to a lesser extent JNK1) expression dramatically reduced the growth of p53-deficient cells but not that of their normal counterparts. JNK2AS-induced growth inhibition was correlated with significant apoptosis. JNK2AS treatment induced the expression of the cyclin-dependent kinase inhibitor p21(Cip1/Waf1) in parental MCF-7, RKO, and HCT116 cells but not in the p53-deficient derivatives. That p21(Cip1/Waf1) expression contributes to the survival of JNK2AS-treated cells was supported by additional experiments demonstrating that p21(Cip1/Waf1) deficiency in HCT116 cells also results in heightened sensitivity to JNKAS treatment. Our results indicate that perturbation of JNK2 expression adversely affects the growth of otherwise nonstressed cells. p53 and its downstream effector p21(Cip1/Waf1) are important in counteracting these detrimental effects and promoting cell survival.  相似文献   

14.
Doxorubicin, an anthracycline antibiotic, is widely used in cancer treatment. Doxorubicin produces genotoxic stress and p53 activation in both carcinoma and non-carcinoma cells. Although its side effects in non-carcinoma cells, especially in heart tissue, are well known, the molecular targets of doxorubicin are poorly characterized. Here, we report that doxorubicin inhibits AMP-activated protein kinase (AMPK) resulting in SIRT1 dysfunction and p53 accumulation. Spontaneously immortalized mouse embryonic fibroblasts (MEFs) or H9C2 cardiomyocyte were exposed to doxorubicin at different doses and durations. Cell death and p53, SIRT1, and AMPK levels were examined by Western blot. In MEFs, doxorubicin inhibited AMPK activation, increased cell death, and induced robust p53 accumulation. Genetic deletion of AMPKα1 reduced NAD(+) levels and SIRT1 activity and significantly increased the levels of p53 and cell death. Pre-activation of AMPK by 5-aminoimidazole-4-carboxamide ribonucleoside or transfection with an adenovirus encoding a constitutively active AMPK (AMPK-CA) markedly reduced the effects of doxorubicin in MEFs from Ampkα1 knock-out mice. Conversely, pre-inhibition of Ampk further sensitized MEFs to doxorubicin-induced cell death. Genetic knockdown of p53 protected both wild-type and Ampkα1(-/-) MEFs from doxorubicin-induced cell death. p53 accumulation in Ampkα1(-/-) MEFs was reversed by SIRT1 activation by resveratrol. Taken together, these data suggest that AMPK inhibition by doxorubicin causes p53 accumulation and SIRT1 dysfunction in MEFs and further suggest that pharmacological activation of AMPK might alleviate the side effects of doxorubicin.  相似文献   

15.
16.
Wild-type p53-induced phosphatase (Wip1) is induced by p53 in response to stress, which results in the dephosphorylation of proteins (i.e. p38 MAPK, p53, and uracil DNA glycosylase) involved in DNA repair and cell cycle checkpoint pathways. p38 MAPK-p53 signaling is a unique way to induce Wip1 in response to stress. Here, we show that c-Jun directly binds to and activates the Wip1 promoter in response to UV irradiation. The binding of p53 to the promoter occurs earlier than that of c-Jun. In experiments, mutation of the p53 response element (p53RE) or c-Jun consensus sites reduced promoter activity in both non-stressed and stressed A549 cells. Overexpression of p53 significantly decreased Wip1 expression in HCT116 p53+/+ cells but increased it in HCT116 p53−/− cells. Adenovirus-mediated p53 overexpression greatly decreased JNK activity. Up-regulation of Wip1 via the p38 MAPK-p53 and JNK-c-Jun pathways is specific, as demonstrated by our findings that p38 MAPK and JNK inhibitors affected the expression of the Wip1 protein, whereas an ERK inhibitor did not. c-Jun activation occurred much more quickly, and to a greater extent, in A549-E6 cells than in A549 cells, with delayed but fully induced Wip1 expression. These data indicate that Wip1 is activated via both the JNK-c-Jun and p38 MAPK-p53 signaling pathways and that temporal induction of Wip1 depends largely on the balance between c-Jun and p53, which compete for JNK binding. Moreover, our results suggest that JNK-c-Jun-mediated Wip1 induction could serve as a major signaling pathway in human tumors in response to frequent p53 mutation.  相似文献   

17.
Previous studies indicate that Krüppel-like factor 4 (KLF4 or GKLF) controls the G1/S cell cycle checkpoint upon DNA damage. We present evidence for an equally important role of KLF4 in maintaining the integrity of the G2/M checkpoint following DNA damage. HCT116, a colon cancer cell line with wild type p53 alleles, underwent sustained G2 arrest up to 4 days after gamma-irradiation. In contrast, HCT116 cells null for p53 were able to enter mitosis following irradiation. Western blot analyses of irradiated HCT116 cells showed increased levels of p53, KLF4, and p21WAF1/CIP1 and decreased levels of cyclin B1 when compared with unirradiated controls. In contrast, the levels of cyclin B1 increased in irradiated HCT116 p53-/- cells, in which KLF4 failed to increase due to the absence of p53. When KLF4 was inhibited by small interfering RNA, irradiated HCT116 cells exhibited increased mitotic indices and a rise in cyclin B1 levels. Conversely, irradiated HCT116 p53-/- cells that were infected with KLF4-expressing adenoviruses demonstrated a concurrent reduction in mitotic indices and cyclin B1 levels. In each case, Cdc2 kinase measurements showed an inverse correlation between Cdc2 kinase activities and KLF4 levels. Co-transfection experiments showed that KLF4 repressed the cyclin B1 promoter through a specific GC-rich element. Moreover, chromatin immunoprecipitation experiments demonstrated that both KLF4 and HDAC were associated with the cyclin B1 promoter in irradiated HCT116 cells. We conclude that KLF4 is essential in preventing mitotic entry following gamma-irradiation and does so by inhibiting cyclin B1 expression.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号