首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymerization of filamentous (F)‐actin at the neuronal synapse plays an important role in neuronal function. However, the regulatory mechanisms controlling the levels of synaptic actin remain incompletely understood. Here, I used established pharmacological blockers to acutely disrupt the function of actin polymerization machinery, then quantified their effect on synaptic F‐actin levels. Synaptic F‐actin was modestly decreased by inhibition of Arp2/3‐dependent actin branching. Blockade of formin‐dependent actin elongation resulted in an Arp2/3‐dependent increase in synaptic actin that could be mimicked by limited actin depolymerization. Limited actin depolymerization was also sufficient to reverse a decrease in synaptic F‐actin caused by prolonged blockade of synaptic NMDA‐type glutamate receptors. These results suggest that interplay between different actin polymerization pathways may regulate synaptic actin dynamics.  相似文献   

2.
Chemical synapses are sites of contact and information transfer between a neuron and its partner cell. Each synapse is a specialized junction, where the presynaptic cell assembles machinery for the release of neurotransmitter, and the postsynaptic cell assembles components to receive and integrate this signal. Synapses also exhibit plasticity, during which synaptic function and/or structure are modified in response to activity. With a robust panel of genetic, imaging, and electrophysiology approaches, and strong evolutionary conservation of molecular components, Drosophila has emerged as an essential model system for investigating the mechanisms underlying synaptic assembly, function, and plasticity. We will discuss techniques for studying synapses in Drosophila, with a focus on the larval neuromuscular junction (NMJ), a well-established model glutamatergic synapse. Vesicle fusion, which underlies synaptic release of neurotransmitters, has been well characterized at this synapse. In addition, studies of synaptic assembly and organization of active zones and postsynaptic densities have revealed pathways that coordinate those events across the synaptic cleft. We will also review modes of synaptic growth and plasticity at the fly NMJ, and discuss how pre- and postsynaptic cells communicate to regulate plasticity in response to activity.  相似文献   

3.
Nucleolin is a RNA- and protein-binding multifunctional protein. Mainly characterized as a nucleolar protein, nucleolin is continuously expressed on the surface of different types of cells along with its intracellular pool within the nucleus and cytoplasm. By confocal and electron microscopy using specific antibodies against nucleolin, we show that cytoplasmic nucleolin is found in small vesicles that appear to translocate nucleolin to the cell surface. Translocation of nucleolin is markedly reduced at low temperature or in serum-free medium, whereas conventional inhibitors of intracellular glycoprotein transport have no effect. Thus, translocation of nucleolin is the consequence of an active transport by a pathway which is independent of the endoplasmic reticulum-Golgi complex. The cell-surface-expressed nucleolin becomes clustered at the external side of the plasma membrane when cross-linked by the nucleolin-specific monoclonal antibody mAb D3. This clustering, occurring at 20 degrees C and in a well-organized pattern, is dependent on the existence of an intact actin cytoskeleton. At 37 degrees C, mAb D3 becomes internalized, thus illustrating that surface nucleolin can mediate intracellular import of specific ligands. Our results point out that nucleolin should also be considered a component of the cell surface where it could be functional as a cell surface receptor for various ligands reported before.  相似文献   

4.
During sporulation in Saccharomyces cerevisiae, the four daughter cells (spores) are formed inside the boundaries of the mother cell. Here, we investigated the dynamics of spore assembly and the actin cytoskeleton during this process, as well as the requirements for filamentous actin during the different steps of spore formation. We found no evidence for a polarized actin cytoskeleton during sporulation. Instead, a highly dynamic network of non-polarized actin cables is present underneath the plasma membrane of the mother cell. We found that a fraction of prospore membrane (PSM) precursors are transported along the actin cables. The velocity of PSM precursors is diminished if Myo2p or Tpm1/2p function is impaired. Filamentous actin is not essential for meiotic progression, for shaping of the PSMs or for post-meiotic cytokinesis. However, actin is essential for spore wall formation. This requires the function of the Arp2/3p complex and involves large carbohydrate-rich compartments, which may be chitosome analogous structures.  相似文献   

5.
The extension and retraction of filopodia in response to extracellular cues is thought to be an important initial step that determines the direction of growth cone advance. We sought to understand how the dynamic behavior of the actin cytoskeleton is regulated to produce extension or retraction. By observing the movement of fiduciary marks on actin filaments in growth cones of a neuroblastoma cell line, we found that filopodium extension and retraction are governed by a balance between the rate of actin cytoskeleton assembly at the tip and retrograde flow. Both assembly and flow rate can vary with time in a single filopodium and between filopodia in a single growth cone. Regulation of assembly rate is the dominant factor in controlling filopodia behavior in our system.  相似文献   

6.
The temporal dependence of cytoskeletal remodelling on cell-cell contact in HepG2 cells has been established here. Cell-cell contact occurred in an ultrasound standing wave trap designed to form and levitate a 2-D cell aggregate, allowing intercellular adhesive interactions to proceed, free from the influences of solid substrata. Membrane spreading at the point of contact and change in cell circularity reached 50% of their final values within 2.2 min of contact. Junctional F-actin increased at the interface but lagged behind membrane spreading, reaching 50% of its final value in 4.4 min. Aggregates had good mechanical stability after 15 min in the trap. The implication of this temporal dependence on the sequential progress of adhesion processes is discussed. These results provide insight into how biomimetic cell aggregates with some liver cell functions might be assembled in a systematic, controlled manner in a 3-D ultrasound trap.  相似文献   

7.
ABSTRACT

Maintaining the integrity and function of the presynaptic neurotransmitter release apparatus is a demanding process for a post-mitotic neuron; the mechanisms behind it are still unclear. BSN (bassoon), an active zone scaffolding protein, has been implicated in the control of presynaptic macroautophagy/autophagy, a process we recently showed depends on poly-ubiquitination of synaptic proteins. Moreover, loss of BSN was found to lead to smaller synaptic vesicle (SV) pools and younger pools of the SV protein SV2. Of note, the E3 ligase PRKN/parkin appears to be involved in BSN deficiency-related changes in autophagy levels, as shRNA-mediated knockdown of PRKN counteracts BSN-deficiency and rescues decreased SV protein levels as well as impaired SV recycling in primary cultured neurons. These data imply that BSN and PRKN act in concert to control presynaptic autophagy and maintain presynaptic proteostasis and SV turnover at the physiologically required levels.  相似文献   

8.
《Cell reports》2020,30(11):3632-3643.e8
  1. Download : Download high-res image (218KB)
  2. Download : Download full-size image
  相似文献   

9.
Members of both calpain and caspase protease families can degrade several components of focal adhesions, leading to disassembly of these complexes. In this report, we investigated the disappearance of tensin from cell adhesion sites of chicken embryonic fibroblast cells (CEFs) exposed to etoposide and demonstrated that loss of tensin from cell adhesions during etoposide-induced apoptosis may be due to degradation of tensin by caspase-3. Tensin cleavage by caspase-3 at the sequence DYPD(1226)G separates the amino-terminal region containing the actin binding domain and the carboxyl-terminal region containing the SH2 domain. The resultant carboxyl-terminal fragment of tensin is unable to bind phosphoinositide 3-kinase (PI3-kinase) transducing cell survival signaling. We also demonstrated that overexpression of the amino-terminal tensin fragment induced disruption of actin cytoskeleton in chicken embryonic fibroblasts. Therefore, caspase-mediated cleavage of tensin contributes to the disruption of actin organization and interrupts ECM-mediated survival signals through phosphatidylinositol 3-kinase.  相似文献   

10.
11.
Summary— When mouse peritoneal macrophages adherent to glass surface were removed by treatment with triethanolamine and Nonidet P-40, fine thread structures of unique loops were left behind on glass at the sites of cell adhesion. To examine the ultrastructural relationship between such looped threads and cytoskeletal components in glass-adherent macrophages, we successfully used the ‘zinc method’ to remove most of the cytoplasm including nuclei and to expose the cytoskeleton associated with the ventral plasma membrane. The cytoskeleton was seen to be mainly composed of actin filaments forming dense networks. The network contained scattered star-like foci from which actin filaments radiated. When the ventral plasma membrane-cytoskeleton complex was further treated with Nonidet P-40, the membrane was dissolved to expose the glass surface with actin foci persisting on glass. When the complex was removed by further treatment with Nonidet P-40 and DNase I, the looped threads became visible. Confocal laser microscopy of glass-adherent macrophages stained with fluorescent phalloidin showed the preferential distribution of F-actin in the ventral cytoplasm along the plasma membrane, where intense fluorescent spots were also scattered. Confocal interference reflection microscopy revealed densely populated dark dots and striae of focal contact, which corresponded in overall distribution to actin foci and looped threads. These observations suggest that actin cytoskeleton is closely associated with looped threads to reinforce cell adhesion to glass.  相似文献   

12.
The Arf (ADP-ribosylation factor) GAPs (GTPase-activating proteins) are a family of proteins with a common catalytic domain that induces hydrolysis of GTP bound to Arf GTP-binding proteins. At least three groups of multidomain Arf GAPs affect the actin cytoskeleton and cellular activities, such as migration and movement, that depend on the cytoskeleton. One role of the Arf GAPs is to regulate membrane remodelling that accompanies actin polymerization. Regulation of membrane remodelling is mediated in part by the regulation of Arf proteins. However, Arf GAPs also regulate actin independently of effects on membranes or Arf. These functions include acting as upstream regulators of Rho family proteins and providing a scaffold for Rho effectors and exchange factors. With multiple functional elements, the Arf GAPs could integrate signals and biochemical activities that result in co-ordinated changes in actin and membranes necessary for a wide range of cellular functions.  相似文献   

13.
Actin binding protein from human blood platelets is shown to exist in the resting platelet as a phosphorylated protein and contains two residues of phosphate per 260,000 kd. Removal of one-half of these residues with E. coli alkaline phosphatase results in the loss of its ability to crosslink F-actin into a low speed sedimentable complex (its cytoskeleton) and to bind to an F-actin affinity column. Thus, phosphorylation-dephosphorylation of ABP may be an important regulatory mechanism by which the platelet regulates its shape via its cytoskeletal structure.  相似文献   

14.
The docking of synaptic vesicles on the presynaptic membrane and their priming for fusion with it to mediate synaptic transmission of nerve impulses typically occur at structurally specialized regions on the membrane called active zones. Stable components of active zones include aggregates of macromolecules, ‘active zone material’ (AZM), attached to the presynaptic membrane, and aggregates of Ca2+-channels in the membrane, through which Ca2+ enters the cytosol to trigger impulse-evoked vesicle fusion with the presynaptic membrane by interacting with Ca2+-sensors on the vesicles. This laboratory has used electron tomography to study, at macromolecular spatial resolution, the structure and function of AZM at the simply arranged active zones of axon terminals at frog neuromuscular junctions. The results support the conclusion that AZM directs the docking and priming of synaptic vesicles and essential positioning of Ca2+-channels relative to the vesicles'' Ca2+-sensors. Here we review the findings and comment on their applicability to understanding mechanisms of docking, priming and Ca2+-triggering at other synapses, where the arrangement of active zone components differs.  相似文献   

15.
The amyloid precursor protein (APP) and its mammalian homologs, APLP1, APLP2, have been allocated to an organellar pool residing in the Golgi apparatus and in endosomal compartments, and in its mature form to a cell surface‐localized pool. In the brain, all APPs are restricted to neurons; however, their precise localization at the plasma membrane remained enigmatic. Employing a variety of subcellular fractionation steps, we isolated two synaptic vesicle (SV) pools from rat and mouse brain, a pool consisting of synaptic vesicles only and a pool comprising SV docked to the presynaptic plasma membrane. Immunopurification of these two pools using a monoclonal antibody directed against the 12 membrane span synaptic vesicle protein2 (SV2) demonstrated unambiguously that APP, APLP1 and APLP2 are constituents of the active zone of murine brain but essentially absent from free synaptic vesicles. The specificity of immunodetection was confirmed by analyzing the respective knock‐out animals. The fractionation experiments further revealed that APP is accumulated in the fraction containing docked synaptic vesicles. These data present novel insights into the subsynaptic localization of APPs and are a prerequisite for unraveling the physiological role of all mature APP proteins in synaptic physiology.

  相似文献   


16.
We have recently isolated a novel cytomatrix at the active zone (CAZ)-associated protein, CAST, and found it directly binds another CAZ protein RIM1 and indirectly binds Munc13-1 through RIM1; RIM1 and Munc13-1 directly bind to each other and are implicated in priming of synaptic vesicles. Here, we show that all the CAZ proteins thus far known form a large molecular complex in the brain, including CAST, RIM1, Munc13-1, Bassoon, and Piccolo. RIM1 and Bassoon directly bind to the COOH terminus and central region of CAST, respectively, forming a ternary complex. Piccolo, which is structurally related to Bassoon, also binds to the Bassoon-binding region of CAST. Moreover, the microinjected RIM1- or Bassoon-binding region of CAST impairs synaptic transmission in cultured superior cervical ganglion neurons. Furthermore, the CAST-binding domain of RIM1 or Bassoon also impairs synaptic transmission in the cultured neurons. These results indicate that CAST serves as a key component of the CAZ structure and is involved in neurotransmitter release by binding these CAZ proteins.  相似文献   

17.
The presynaptic proteome controls neurotransmitter release and the short and long term structural and functional dynamics of the nerve terminal. Using a monoclonal antibody against synaptic vesicle protein 2 we immunopurified a presynaptic compartment containing the active zone with synaptic vesicles docked to the presynaptic plasma membrane as well as elements of the presynaptic cytomatrix. Individual protein bands separated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis were subjected to nanoscale-liquid chromatography electrospray ionization-tandem mass spectrometry. Combining this method with 2-dimensional benzyldimethyl- n -hexadecylammonium chloride/sodium dodecyl sulfate-polyacrylamide gel electrophoresis and matrix-assisted laser desorption ionization time of flight and immunodetection we identified 240 proteins comprising synaptic vesicle proteins, components of the presynaptic fusion and retrieval machinery, proteins involved in intracellular signal transduction, a large variety of adhesion molecules and proteins potentially involved in regulating the functional and structural dynamics of the pre-synapse. Four maxi-channels, three isoforms of voltage-dependent anion channels and the tweety homolog 1 were co-isolated with the docked synaptic vesicles. As revealed by in situ hybridization, tweety homolog 1 reveals a distinct expression pattern in the rodent brain. Our results add novel information to the proteome of the presynaptic active zone and suggest that in particular proteins potentially involved in the short and long term structural modulation of the mature presynaptic compartment deserve further detailed analysis.  相似文献   

18.
Focal adhesion kinase (FAK) and the related proline-rich tyrosine kinase 2 (PYK2) are non-receptor protein tyrosine kinases that transduce extracellular signals through the activation of Src family kinases and are highly enriched in neurones. To further elucidate the regulation of FAK and PYK2 in nervous tissue, we investigated their distribution in brain subcellular fractions and analysed their translocation between membrane and cytosolic compartments. We have found that FAK and PYK2 are present in a small membrane-associated pool and a larger cytosolic pool in various neuronal compartments including nerve terminals. In intact nerve terminals, inhibition of Src kinases inhibited the membrane association of FAK, but not of PYK2, whereas tyrosine phosphatase inhibition sharply increased the membrane association of both FAK and PYK2. Disruption of the actin cytoskeleton was followed by a decrease in the membrane-associated pool of FAK, but not of PYK2. For both kinases, a significant correlation was found between autophosphorylation and membrane association. The data indicate that FAK and PYK2 are present in nerve terminals and that the membrane association of FAK is regulated by both phosphorylation and actin assembly, whereas that of PKY2 is primarily dependent on its phosphorylation state.  相似文献   

19.
The regulated release of neurotransmitter occurs via the fusion of synaptic vesicles (SVs) at specialized regions of the presynaptic membrane called active zones (AZs). These regions are defined by a cytoskeletal matrix assembled at AZs (CAZ), which functions to direct SVs toward docking and fusion sites and supports their maturation into the readily releasable pool. In addition, CAZ proteins localize voltage‐gated Ca2+ channels at SV release sites, bringing the fusion machinery in close proximity to the calcium source. Proteins of the CAZ therefore ensure that vesicle fusion is temporally and spatially organized, allowing for the precise and reliable release of neurotransmitter. Importantly, AZs are highly dynamic structures, supporting presynaptic remodeling, changes in neurotransmitter release efficacy, and thus presynaptic forms of plasticity. In this review, we discuss recent advances in the study of active zones, highlighting how the CAZ molecularly defines sites of neurotransmitter release, endocytic zones, and the integrity of synapses.  相似文献   

20.
《Neuron》2022,110(9):1498-1515.e8
  1. Download : Download high-res image (181KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号