首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
钙信号是胞内主要的第二信使之一,发挥广泛的作用如细胞分裂、细胞凋亡等,对细胞的生命活动起着非常重要的作用。在精子和卵母细胞中,钙信号对精子获能、顶体反应、卵母细胞成熟、受精及卵裂等一系列复杂的过程有非常重要的影响。现就Ca2 在卵母细胞中的释放机制、信号转导途径、调控功能作一综述。  相似文献   

2.
Comment on: Rokavec M, et al. Mol Cell 2012; 45:777-89.  相似文献   

3.
Comment on: Rokavec M, et al. Mol Cell 2012; 45:777-89.  相似文献   

4.
The tyrosine kinase, c-Abl, plays important roles in many aspects of cellular function. Previous reports showed that c-Abl is involved in NF-κB signaling. However, the functions of c-Abl in innate immunity are still unknown. Here we demonstrate that the mitochondrial antiviral signaling (MAVS) protein can be physically associated with c-Abl in vivo and in vitro. MAVS interacted with c-Abl through its Card and TM domain. A phosphotyrosine-specific antibody indicated that MAVS was phosphorylated by c-Abl. Functional impairment of c-Abl attenuated MAVS or VSV induced type-I IFN production. Importantly, c-Abl knockdown in MCF7 cells displayed impaired MAVS-mediated NF-κB and IRF3 activation. Taken together, our results suggest that c-Abl modulates innate immune response through MAVS.

Structured summary

MINT-7297498, MINT-7297511, MINT-7297557, MINT-7297574: MAVS (uniprotkb:Q7Z434) physically interacts (MI:0915) with c-Abl (uniprotkb:P00519) by anti tag coimmunoprecipitation (MI:0007)MINT-7297542: c-Abl (uniprotkb:P00519) physically interacts (MI:0915) with MAVS (uniprotkb:Q7Z434) by anti bait coimmunoprecipitation (MI:0006)MINT-7297526: c-Abl (uniprotkb:P00519) physically interacts (MI:0915) with MAVS (uniprotkb:Q7Z434) by far western blotting (MI:0047)  相似文献   

5.
Photodynamic therapy combines three non-toxic components: light, oxygen and a photosensitizer to generate singlet oxygen and/or other ROS molecules in order to target destruction of cancer cells. The damage induced in the targeted cells can furthermore propagate to non-exposed bystander cells thereby exacerbating the damage. Ca2+ signaling is strongly intertwined with ROS signaling and both play crucial roles in cell death. In this review we aimed to review current knowledge on the role of Ca2+ and ROS signaling, their effect on cell-cell propagation via connexin-linked mechanisms and the outcome in terms of cell death. In general, photodynamic therapy results in an increased cytosolic Ca2+ concentration originating from Ca2+ entry or Ca2+ release from internal stores. While photodynamic therapy can certainly induce cell death, the outcome depends on the cell type and the photosensitizer used. Connexin channels propagating the Ca2+ signal, and presumably regenerating ROS at distance, may play a role in spreading the effect to neighboring non-exposed bystander cells. Given the various cell types and photosensitizers used, there is currently no unified signaling scheme to explain the role of Ca2+ and connexins in the responses following photodynamic therapy. This article is part of a Special Issue entitled: Calcium signaling in health, disease and therapy edited by Geert Bultynck and Jan Parys.  相似文献   

6.
BACKGROUND: A Boolean network is a simple computational model that may provide insight into the overall behavior of genetic networks and is represented by variables with two possible states (on/off), of the individual nodes/genes of the network. In this study, a Boolean network model has been used to simulate a molecular pathway between two neurotransmitter receptor, dopamine and glutamate receptor, systems in order to understand the consequence of using logic gate rules between nodes, which have two possible states (active and inactive). RESULTS: The dynamical properties of this Boolean network model of the biochemical pathway shows that, the pathway is stable and that, deletion/knockout of certain biologically important nodes cause significant perturbation to this network. The analysis clearly shows that in addition to the expected components dopamine and dopamine receptor 2 (DRD2), Ca(2+) ions play a critical role in maintaining stability of the pathway. CONCLUSION: So this method may be useful for the identification of potential genetic targets, whose loss of function in biochemical pathways may be responsible for disease onset. The molecular pathway considered in this study has been implicated with a complex disorder like schizophrenia, which has a complex multifactorial etiology.  相似文献   

7.
8.
  相似文献   

9.
10.
Using a mini-Tn5lacZ1 reporter transposon, lacZ fusions have been identified in Proteus mirabilis that are activated by the accumulation of self-produced extracellular signals. Genes identified by this approach include putative homologs of pgm, nlpA and two genes of unknown function. The extracellular signal(s) involved in activation were resistant to the effects of acid and alkali. The signal required for activation of (nlpA) cma482::lacZ was sensitive to protease, suggesting the signal is a peptide or small protein. The signals behaved as polar molecules and were not extractable with ethyl acetate. A mini-Tn5Cm insertion was identified in a probable ptsI homolog that blocked activation of the cma134::lacZ fusion by an extracellular signal. The ptsI mutation did not alter extracellular signal production and may have a role in signal response.  相似文献   

11.
Recently it was demonstrated that PO activity is switched by calcium within the typical range of apoplastic free calcium concentrations (Plieth and Vollbehr, Plant Signal Behav 2012;7: 650–660). The heat stability of POs is also dependent on calcium. Here, a scenario is put forward which assigns calcium a switch-off function under heat: Peroxidases are switched off by heat stress-triggered apoplastic calcium depletion. It is assumed that this initiates apoplastic accumulation of reactive oxygen species (ROS) and eventually triggers a self-amplifying cascade of cellular events involving plasma membrane ion transport. Calcium depletion-initiated ROS accumulation (CaDIRA) may also trigger signal percolation and the formation of systemic responses to many different stress factors in plants. This hypothesis can explain some as yet unexplained observations.  相似文献   

12.
Since the discovery of fibroblast growth factors (FGFs) much focus has been placed on elucidating the roles for each vertebrate FGF ligand, receptor, and regulating molecules in the context of vertebrate development, human disorders and cancer. Studies in human, mouse, frog, chick, and zebrafish have made great contributions to our understanding of the role of FGFs in specific processes. However, in recent years, as more genomes are sequenced, information is becoming available from many non‐vertebrate models and a more complete picture of the FGF superfamily as a whole is emerging. In some cases, less redundancy in these FGF signaling systems may allow for more mechanistic insights. Studies in sea anemones have highlighted how ancient FGF signaling is and helped provide insight into the evolution of the FGF gene family. Work in nematodes has shown that different splice forms can be used for functional specificity in invertebrate FGF signaling. Comparing FGFs between urochordates and vertebrates as well as between different insect species reveals important clues into the process of gene loss, duplication and subfunctionalization of FGFs throughout evolution. Finally, comparing all members of the FGF ligand superfamily reveals variability in many properties, which may point to a feature of FGFs as being highly adaptable with regards to protein structure and signaling mechanism. Further studies on FGF signaling outside of vertebrates is likely to continue to complement work in vertebrates by contributing additional insights to the FGF field and providing unexpected information that could be used for medical applications. Birth Defects Research (Part C) 90:214–227, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Comparative studies of vulva development between Caenorhabditis elegans and other nematode species have provided some insight into the evolution of patterning networks. However, molecular genetic details are available only in C. elegans and Pristionchus pacificus. To extend our knowledge on the evolution of patterning networks, we studied the C. elegans male hook competence group (HCG), an equivalence group that has similar developmental origins to the vulval precursor cells (VPCs), which generate the vulva in the hermaphrodite. Similar to VPC fate specification, each HCG cell adopts one of three fates (1°, 2°, 3°), and 2° HCG fate specification is mediated by LIN-12/Notch. We show that 2° HCG specification depends on the presence of a cell with the 1° fate. We also provide evidence that Wnt signaling via the Frizzled-like Wnt receptor LIN-17 acts to specify the 1° and 2° HCG fate. A requirement for EGF signaling during 1° fate specification is seen only when LIN-17 activity is compromised. In addition, activation of the EGF pathway decreases dependence on LIN-17 and causes ectopic hook development. Our results suggest that WNT plays a more significant role than EGF signaling in specifying HCG fates, whereas in VPC specification EGF signaling is the major inductive signal. Nonetheless, the overall logic is similar in the VPCs and the HCG: EGF and/or WNT induce a 1° lineage, and LIN-12/NOTCH induces a 2° lineage. Wnt signaling is also required for execution of the 1° and 2° HCG lineages. lin-17 and bar-1/β-catenin are preferentially expressed in the presumptive 1° cell P11.p. The dynamic subcellular localization of BAR-1-GFP in P11.p is concordant with the timing of HCG fate determination.  相似文献   

14.
《Cell metabolism》2022,34(11):1824-1842.e9
  1. Download : Download high-res image (211KB)
  2. Download : Download full-size image
  相似文献   

15.
16.
《Current biology : CB》2021,31(21):4697-4712.e6
  1. Download : Download high-res image (258KB)
  2. Download : Download full-size image
  相似文献   

17.
18.
Context: Although ZAP-70 is required for T-cell development, it’s unclear how this kinase controls both positive and negative selection.

Objective and methods: Using OT-I pre-selection thymocytes and a panel of peptide major histocompatibility complex (pMHC) ligands of defined affinity, the recruitment, phosphorylation and activity of ZAP-70 was determined at the interface with antigen-presenting cells (APCs).

Results: pMHC ligands promoting negative selection induce a discrete elevation of ZAP-70 recruitment, phosphorylation and enzymatic activity in the thymocyte:APCs interface.

Discussion: The quantity of ZAP-70 kinase activity per cell is a key parameter controlling the fate of a developing thymocyte since partial inhibition of ZAP-70 kinase activity converted negative into positive selection. Surprisingly, the amount of ZAP-70 enzymatic activity observed during negative selection is not controlled by differential phosphorylation of the ZAP-70 protein but rather by the total amount of T-cell receptor and co-associated ZAP-70 recruited to the thymocyte:APC interface.

Conclusions: These data provide evidence that a burst of ZAP-70 activity initiates the signaling pathways for negative selection.  相似文献   

19.
Apoptosis signaling pathways and lymphocyte homeostasis   总被引:3,自引:0,他引:3  
Xu G  Shi Y 《Cell research》2007,17(9):759-771
It has been almost three decades since the term "apoptosis" was first coined to describe a unique form of cell death that involves orderly, gene-dependent cell disintegration. It is now well accepted that apoptosis is an essential life process for metazoan animals and is critical for the formation and function of tissues and organs. In the adult mammalian body, apoptosis is especially important for proper functioning of the immune system. In recent years, along with the rapid advancement of molecular and cellular biology, great progress has been made in understanding the mechanisms leading to apoptosis. It is generally accepted that there are two major pathways ofapoptotic cell death induction: extrin- sic signaling through death receptors that leads to the formation of the death-inducing signaling complex (DISC), and intrinsic signaling mainly through mitochondria which leads to the formation of the apoptosome. Formation of the DISC or apoptosome, respectively, activates initiator and common effector caspases that execute the apoptosis process. In the immune system, both pathways operate; however, it is not known whether they are sufficient to maintain lymphocyte homeostasis. Recently, new apoptotic mechanisms including caspase-independent pathways and granzyme-initiated pathways have been shown to exist in lymphocytes. This review will summarize our understanding of the mechanisms that control the homeostasis of various lymphocyte populations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号