首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Biomarkers》2013,18(5):399-405
Abstract

Objective: To identify methylated genes in serum with diagnostic potentials for early colorectal cancer (CRC).

Methods: Serum methylation levels of up to 12 genes were measured in two sets of serum samples with the second set from 26 stage I CRC patients and 26 age/gender-matched controls.

Results: Serum methylation levels of TAC1, SEPT9, and EYA4 were significant discriminants between stage I CRC and healthy controls. Combination of TAC1 and SEPT9 rendered 73.1% sensitivity with 92.3% specificity.

Conclusion: Serum methylation levels of TAC1. SEPT9 and EYA4 may be useful biomarkers for early detection of CRC though a validation study is necessary.  相似文献   

2.
3.
ABSTRACT

One of the supposed mechanisms that may lead to breast cancer (BC) is an alteration of circadian gene expression and DNA methylation. We undertook an integrated approach to identify methylation pattern of core circadian promoter regions in BC patients with regard to clinical features. We performed a quantitative methylation-specific real-time PCR analysis of a promoter methylation profile in 107 breast tumor and matched non-tumor tissues. A panel of circadian genes CLOCK, BMAL1, PERIOD (PER1, 2, 3), CRYPTOCHROME (CRY1, 2) and TIMELESS as well as their association with clinicopathological characteristics were included in the analysis. Three out of the eight analyzed genes exhibited marked hypermethylation (PER1, 2, 3), whereas CLOCK, BMAL1, CRY2 showed significantly lower promoter CpG methylation in the BC tissues when compared to the non-tumor tissues. Among variously methylated genes we found an association between the elevated methylation level of PERs promoter region and molecular subtypes, histological subtypes and tumor grading of BC. Methylation status may be associated with a gene expression level of circadian genes in BC patients. An aberrant methylation pattern in circadian genes in BC may provide information that could be used as novel biomarkers in clinics and molecular epidemiology as well as play an important role in BC etiology.  相似文献   

4.
《Epigenetics》2013,8(3):428-436
Genes with altered DNA methylation can be used as biomarkers for cancer detection and assessment of prognosis. Here we analyzed the methylation status of a colorectal cancer biomarker panel (CNRIP1, FBN1, INA, MAL, SNCA, and SPG20) in 97 cancer cell lines, derived from 17 different cancer types. Interestingly, the genes were frequently methylated also in hematological cancer types and were therefore subjected to analyses in primary tumor samples from the major types of non-Hodgkin lymphomas (NHL) and in healthy controls. In total, the genes CNRIP1, FBN1, INA, MAL, SNCA, and SPG20 were methylated in 53%, 23%, 52%, 69%, 97%, and 92% of the tumor samples, respectively, and were unmethylated in all healthy controls. With the exception of a single tumor sample, a correct prediction of lymphoma or normal sample was made in a blinded analysis of the validation series using a combination of SNCA and SPG20. The combined ROC-curve analysis of these genes resulted in an area under the curve of 0.999 (P = 4.2 × 10?18), and a sensitivity and specificity of 98% and 100%, respectively, across the test and validation series. Interestingly, the promoter methylation of CNRIP1 was associated with decreased overall survival in diffuse large B-cell lymphoma (DLBCL) (P = 0.03).

In conclusion, our results demonstrate that SNCA and SPG20 methylation might be suitable for early detection and monitoring of NHL. Furthermore, CNRIP1 could potentially be used as a prognostic factor in DLBCL.  相似文献   

5.
Genes with altered DNA methylation can be used as biomarkers for cancer detection and assessment of prognosis. Here we analyzed the methylation status of a colorectal cancer biomarker panel (CNRIP1, FBN1, INA, MAL, SNCA, and SPG20) in 97 cancer cell lines, derived from 17 different cancer types. Interestingly, the genes were frequently methylated also in hematological cancer types and were therefore subjected to analyses in primary tumor samples from the major types of non-Hodgkin lymphomas (NHL) and in healthy controls. In total, the genes CNRIP1, FBN1, INA, MAL, SNCA, and SPG20 were methylated in 53%, 23%, 52%, 69%, 97%, and 92% of the tumor samples, respectively, and were unmethylated in all healthy controls. With the exception of a single tumor sample, a correct prediction of lymphoma or normal sample was made in a blinded analysis of the validation series using a combination of SNCA and SPG20. The combined ROC-curve analysis of these genes resulted in an area under the curve of 0.999 (P = 4.2 × 10−18), and a sensitivity and specificity of 98% and 100%, respectively, across the test and validation series. Interestingly, the promoter methylation of CNRIP1 was associated with decreased overall survival in diffuse large B-cell lymphoma (DLBCL) (P = 0.03).   In conclusion, our results demonstrate that SNCA and SPG20 methylation might be suitable for early detection and monitoring of NHL. Furthermore, CNRIP1 could potentially be used as a prognostic factor in DLBCL.  相似文献   

6.
《Epigenetics》2013,8(2):308-317
Cervical cancer is a major health concern among women in Latin America due to its high incidence and mortality. Therefore, the discovery of molecular markers for cervical cancer screening and triage is imperative. The aim of this study was to use a genome wide DNA methylation approach to identify novel methylation biomarkers in cervical cancer. DNA from normal cervical mucosa and cervical cancer tissue samples from Chile was enriched with Methylated DNA Immunoprecipitation (MeDIP), hybridized to oligonucleotide methylation microarrays and analyzed with a stringent bioinformatics pipeline to identify differentially methylated regions (DMRs) as candidate biomarkers. Quantitative Methylation Specific PCR (qMSP) was used to study promoter methylation of candidate DMRs in clinical samples from two independent cohorts. HPV detection and genotyping were performed by Reverse Line Blot analysis. Bioinformatics analysis revealed GGTLA4, FKBP6, ZNF516, SAP130, and INTS1 to be differentially methylated in cancer and normal tissues in the Discovery cohort. In the Validation cohort FKBP6 promoter methylation had 73% sensitivity and 80% specificity (AUC = 0.80). ZNF516 promoter methylation was the best biomarker, with both sensitivity and specificity of 90% (AUC = 0.92), results subsequently corroborated in a Prevalence cohort. Together, ZNF516 and FKBP6 exhibited a sensitivity of 84% and specificity of 81%, when considering both cohorts. Our genome wide DNA methylation assessment approach (MeDIP-chip) successfully identified novel biomarkers that differentiate between cervical cancer and normal samples, after adjusting for age and HPV status. These biomarkers need to be further explored in case-control and prospective cohorts to validate them as cervical cancer biomarkers.  相似文献   

7.
DNA methylation can regulate gene expression and is pivotal in the occurrence and development of bladder cancer. In this study, we analyzed whole-genome DNA methylation on the basis of data from The Cancer Genome Atlas to select epigenetic biomarkers predictive of survival and further understand the molecular mechanisms underlying methylation patterns in bladder cancer. We identified 540 differentially methylated genes between tumor and normal tissues, including a number of independent prognostic factors based on univariate analysis. Genes (MIR6732, SOWAHC, SERPINI1, OR10W1, OR7G3, AIM1, and ZFAND5) were integrated to establish a risk model for prognostic assessment based on multivariate Cox analysis. The methylation of SOWAHC was negatively correlated with its messenger RNA expression, and together these were significantly correlated with prognosis. This study took advantage of high-throughput data mining to provide new bioinformatics evidence and ideas for further study into the pathogenesis and prognosis of bladder cancer.  相似文献   

8.
The incidence of nontuberculous Mycobacterium (NTM) lung disease is rapidly increasing; however, its diagnosis and prognosis remain unclear while selecting patients who will respond to appropriate treatment. Differences in DNA methylation patterns between NTM patients with good or poor prognosis could provide important therapeutic targets. We used the Illumina MethylationEPIC (850k) DNA methylation microarray to determine the pattern between differentially methylated regions (DMRs) in NTM patients with good or poor prognosis (n = 4/group). Moreover, we merged and compared 20 healthy controls from previous Illumina Methylation450k DNA methylation microarray data. We selected and visualized the DMRs in the form of heatmaps, and enriched terms associated with these DMRs were identified by functional annotation with the “pathfinder” package. In total, 461 and 293 DMRs (|Log2 fold change| > 0.1 and P < 0.03) were more methylated in patients with four poor and four good prognoses, respectively. Furthermore, 337 and 771 DMRs (|Log2 fold change| > 0.08 and P < 0.001) were more methylated in eight NTM patients and 20 healthy controls, respectively. TGFBr1 was significantly less methylated, whereas HLA-DR1 and HLA-DR5 were more methylated in patients with poor prognosis (compared to those with good prognosis). LRP5, E2F1, and ADCY3 were the top three less-methylated genes in NTM patients (compared with the controls). The mTOR and Wnt signaling pathway-related genes were less methylated in patients with NTM. Collectively, genes related to Th1- cell differentiation, such as TGFBr1 and HLA-DR, may be used as biomarkers for predicting the treatment response in patients with NTM lung disease.  相似文献   

9.
10.
11.
Oral and oropharyngeal squamous cell carcinoma (OOSCC) have a low survival rate, mainly due to metastasis to the regional lymph nodes. For optimal treatment of these metastases, a neck dissection is required; however, inaccurate detection methods results in under- and over-treatment. New DNA prognostic methylation biomarkers might improve lymph node metastases detection. To identify epigenetically regulated genes associated with lymph node metastases, genome-wide methylation analysis was performed on 6 OOSCC with (pN+) and 6 OOSCC without (pN0) lymph node metastases and combined with a gene expression signature predictive for pN+ status in OOSCC. Selected genes were validated using an independent OOSCC cohort by immunohistochemistry and pyrosequencing, and on data retrieved from The Cancer Genome Atlas. A two-step statistical selection of differentially methylated sequences revealed 14 genes with increased methylation status and mRNA downregulation in pN+ OOSCC. RAB25, a known tumor suppressor gene, was the highest-ranking gene in the discovery set. In the validation sets, both RAB25 mRNA (P = 0.015) and protein levels (P = 0.012) were lower in pN+ OOSCC. RAB25 mRNA levels were negatively correlated with RAB25 methylation levels (P < 0.001) but RAB25 protein expression was not. Our data revealed that promoter methylation is a mechanism resulting in downregulation of RAB25 expression in pN+ OOSCC and decreased expression is associated with lymph node metastasis. Detection of RAB25 methylation might contribute to lymph node metastasis diagnosis and serve as a potential new therapeutic target in OOSCC.  相似文献   

12.
Head and Neck Squamous Cell Carcinoma (HNSCC) is the fifth most common cancer, annually affecting over half a million people worldwide. Presently, there are no accepted biomarkers for clinical detection and surveillance of HNSCC. In this work, a comprehensive genome-wide analysis of epigenetic alterations in primary HNSCC tumors was employed in conjunction with cancer-specific outlier statistics to define novel biomarker genes which are differentially methylated in HNSCC. The 37 identified biomarker candidates were top-scoring outlier genes with prominent differential methylation in tumors, but with no signal in normal tissues. These putative candidates were validated in independent HNSCC cohorts from our institution and TCGA (The Cancer Genome Atlas). Using the top candidates, ZNF14, ZNF160, and ZNF420, an assay was developed for detection of HNSCC cancer in primary tissue and saliva samples with 100% specificity when compared to normal control samples. Given the high detection specificity, the analysis of ZNF DNA methylation in combination with other DNA methylation biomarkers may be useful in the clinical setting for HNSCC detection and surveillance, particularly in high-risk patients. Several additional candidates identified through this work can be further investigated toward future development of a multi-gene panel of biomarkers for the surveillance and detection of HNSCC.  相似文献   

13.
Ras-association domain family of genes consist of 10 members (RASSF1-RASSF10), all containing a Ras-association (RA) domain in either the C- or the N-terminus. Several members of this gene family are frequently methylated in common sporadic cancers; however, the role of the RASSF gene family in rare types of cancers, such as bone cancer, has remained largely uninvestigated. In this report, we investigated the methylation status of RASSF1A and RASSF2 in Ewing sarcoma (ES). Quantitative real-time methylation analysis (MethyLight) demonstrated that both genes were frequently methylated in Ewing sarcoma tumors (52.5% and 42.5%, respectively) as well as in ES cell lines and gene expression was upregulated in methylated cell lines after treatment with 5-aza-2′-deoxcytidine. Overexpression of either RASSF1A or RASSF2 reduced colony formation ability of ES cells. RASSF2 methylation correlated with poor overall survival (p = 0.028) and this association was more pronounced in patients under the age of 18 y (p = 0.002). These results suggest that both RASSF1A and RASSF2 are novel epigenetically inactivated tumor suppressor genes in Ewing sarcoma and RASSF2 methylation may have prognostic implications for ES patients.  相似文献   

14.
Aberrant DNA methylation is a common epigenetic alteration found in colorectal adenomas and cancers and plays a role in cancer initiation and progression. Aberrantly methylated DNA loci can also be found infrequently present in normal colon tissue, where they seem to have potential to be used as colorectal cancer (CRC) risk biomarkers. However, detection and precise quantification of the infrequent methylation events seen in normal colon is likely beyond the capability of commonly used PCR technologies. To determine the potential for methylated DNA loci as CRC risk biomarkers, we developed MethyLight droplet digital PCR (ddPCR) assays and compared their performance to the widely used conventional MethyLight PCR. Our analyses demonstrated the capacity of MethyLight ddPCR to detect a single methylated NTRK3 allele from among more than 3125 unmethylated alleles, 25-fold more sensitive than conventional MethyLight PCR. The MethyLight ddPCR assay detected as little as 19 and 38 haploid genome equivalents of methylated EVL and methylated NTRK3, respectively, which far exceeded conventional MethyLight PCR (379 haploid genome equivalents for both genes). When assessing methylated EVL levels in CRC tissue samples, MethyLight ddPCR reduced coefficients of variation (CV) to 6–65% of CVs seen with conventional MethyLight PCR. Importantly, we showed the ability of MethyLight ddPCR to detect infrequently methylated EVL alleles in normal colon mucosa samples that could not be detected by conventional MethyLight PCR. This study suggests that the sensitivity and precision of methylation detection by MethyLight ddPCR enhances the potential of methylated alleles for use as CRC risk biomarkers.  相似文献   

15.
MMASS: an optimized array-based method for assessing CpG island methylation   总被引:4,自引:2,他引:2  
We describe an optimized microarray method for identifying genome-wide CpG island methylation called microarray-based methylation assessment of single samples (MMASS) which directly compares methylated to unmethylated sequences within a single sample. To improve previous methods we used bioinformatic analysis to predict an optimized combination of methylation-sensitive enzymes that had the highest utility for CpG-island probes and different methods to produce unmethylated representations of test DNA for more sensitive detection of differential methylation by hybridization. Subtraction or methylation-dependent digestion with McrBC was used with optimized (MMASS-v2) or previously described (MMASS-v1, MMASS-sub) methylation-sensitive enzyme combinations and compared with a published McrBC method. Comparison was performed using DNA from the cell line HCT116. We show that the distribution of methylation microarray data is inherently skewed and requires exogenous spiked controls for normalization and that analysis of digestion of methylated and unmethylated control sequences together with linear fit models of replicate data showed superior statistical power for the MMASS-v2 method. Comparison with previous methylation data for HCT116 and validation of CpG islands from PXMP4, SFRP2, DCC, RARB and TSEN2 confirmed the accuracy of MMASS-v2 results. The MMASS-v2 method offers improved sensitivity and statistical power for high-throughput microarray identification of differential methylation.  相似文献   

16.
《Epigenetics》2013,8(4):503-512
The identification of genes that are differentially methylated in colorectal cancer (CRC) has potential value for both diagnostic and therapeutic interventions specifically in high-risk populations such as African Americans (AAs). However, DNA methylation patterns in CRC, especially in AAs, have not been systematically explored and remain poorly understood. Here, we performed DNA methylome profiling to identify the methylation status of CpG islands within candidate genes involved in critical pathways important in the initiation and development of CRC. We used reduced representation bisulfite sequencing (RRBS) in colorectal cancer and adenoma tissues that were compared with DNA methylome from a healthy AA subject’s colon tissue and peripheral blood DNA. The identified methylation markers were validated in fresh frozen CRC tissues and corresponding normal tissues from AA patients diagnosed with CRC at Howard University Hospital. We identified and validated the methylation status of 355 CpG sites located within 16 gene promoter regions associated with CpG islands. Fifty CpG sites located within CpG islands—in genes ATXN7L1 (2), BMP3 (7), EID3 (15), GAS7 (1), GPR75 (24), and TNFAIP2 (1)—were significantly hypermethylated in tumor vs. normal tissues (P < 0.05). The methylation status of BMP3, EID3, GAS7, and GPR75 was confirmed in an independent, validation cohort. Ingenuity pathway analysis mapped three of these markers (GAS7, BMP3 and GPR) in the insulin and TGF-β1 network—the two key pathways in CRC. In addition to hypermethylated genes, our analysis also revealed that LINE-1 repeat elements were progressively hypomethylated in the normal-adenoma-cancer sequence. We conclude that DNA methylome profiling based on RRBS is an effective method for screening aberrantly methylated genes in CRC. While previous studies focused on the limited identification of hypermethylated genes, ours is the first study to systematically and comprehensively identify novel hypermethylated genes, as well as hypomethylated LINE-1 sequences, which may serve as potential biomarkers for CRC in African Americans. Our discovered biomarkers were intimately linked to the insulin/TGF-B1 pathway, further strengthening the association of diabetic disorders with colon oncogenic transformation.  相似文献   

17.
《Epigenetics》2013,8(5):502-513
This study aimed to clarify genetic and epigenetic alterations that occur during lung carcinogenesis and to design perspective sets of newly identified biomarkers. The original method includes chromosome 3 specific NotI-microarrays containing 180 NotI clones associated with genes for hybridization with 40 paired normal/tumor DNA samples of primary lung tumors: 28 squamous cell carcinomas (SCC) and 12 adenocarcinomas (ADC). The NotI-microarray data were confirmed by qPCR and bisulfite sequencing analyses. Forty-four genes showed methylation and/or deletions in more than 15% of non–small cell lung cancer (NSCLC) samples. In general, SCC samples were more frequently methylated/deleted than ADC. Moreover, the SCC alterations were observed already at stage I of tumor development, whereas in ADC many genes showed tumor progression specific methylation/deletions. Among genes frequently methylated/deleted in NSCLC, only a few were already known tumor suppressor genes: RBSP3 (CTDSPL), VHL and THRB. The RPL32, LOC285205, FGD5 and other genes were previously not shown to be involved in lung carcinogenesis. Ten methylated genes, i.e., IQSEC1, RBSP3, ITGA9, FOXP1, LRRN1, GNAI2, VHL, FGD5, ALDH1L1 and BCL6 were tested for expression by qPCR and were found downregulated in the majority of cases. Three genes (RBSP3, FBLN2 and ITGA9) demonstrated strong cell growth inhibition activity. A comprehensive statistical analysis suggested the set of 19 gene markers, ANKRD28, BHLHE40, CGGBP1, RBSP3, EPHB1, FGD5, FOXP1, GORASP1/TTC21, IQSEC1, ITGA9, LOC285375, LRRC3B, LRRN1, MITF, NKIRAS1/RPL15, TRH, UBE2E2, VHL, WNT7A, to allow early detection, tumor progression, metastases and to discriminate between SCC and ADC with sensitivity and specificity of 80–100%.  相似文献   

18.
《Epigenetics》2013,8(6):499-508
We performed a genome-wide analysis of aberrant DNA methylation in chronic lymphocytic leukemia (CLL) using methylated CpG island amplification (MCA) coupled with a promoter microarray. We identified 280 potential targets of aberrant DNA methylation in CLL. These genes were located more frequently in chromosomes 19 (16%, p=0.001), 16 (11%, p=0.001), 17 (10%, p=0.02) and 11 (9%, p=0.02) and could be grouped in several functional networks. Methylation status was confirmed for 22 of these genes (SOX11, DLX1, FAM62C, SOX14, RSPO1, ADCY5, HAND2,SPOCK, MLL, ING1, PRIMA1, BCL11B, LTBP2, BNC1, NR2F2, SALL1, GALGT2, LHX1, DLX4, KLK10, TFAP2 and APP) in 78 CLL patients by pyrosequencing. As a proof of principle, we analyzed the expression of 2 genes, PRIMA1 and APP, in primary cells and of GALGT2, TFAP2C and PRIMA1 in leukemia cells. There was an inverse association between methylation and gene expression. This could be reversed by treatment with 5-aza-2’-deoxycytidine in cell lines. Treatment in a clinical trial with 5-azacitidine resulted in decreased methylation of LINE, DLX4 and SALL1 in the peripheral blood B-cells of patients with CLL. IgVH mutational status or ZAP-70 expression were not associated with specific methylation profiles. By multivariate analysis, methylation of LINE and APP was associated with shorter overall survival (p = 0.045 and 0.0035, respectively). This study demonstrates that aberrant DNA methylation is common and has potential prognostic and therapeutic value in CLL.  相似文献   

19.
《Epigenetics》2013,8(8):1138-1148
Lung cancer is a worldwide health problem and a leading cause of cancer-related deaths. Silencing of potential tumor suppressor genes (TSGs) by aberrant promoter methylation is an early event in the initiation and development of cancer. Thus, methylated cancer type-specific TSGs in DNA can serve as useful biomarkers for early cancer detection. We have now developed a “Multiplex Methylation Specific PCR” (MMSP) assay for analysis of the methylation status of multiple potential TSGs by a single PCR reaction. This method will be useful for early diagnosis and treatment outcome studies of non-small cell lung cancer (NSCLC). Genome-wide CpG methylation and expression microarrays were performed on lung cancer tissues and matched distant non-cancerous tissues from three NSCLC patients from China. Thirty-eight potential TSGs were selected and analyzed by methylation PCR on bisulfite treated DNA. On the basis of sensitivity and specificity, six marker genes, HOXA9, TBX5, PITX2, CALCA, RASSF1A, and DLEC1, were selected to establish the MMSP assay. This assay was then used to analyze lung cancer tissues and matched distant non-cancerous tissues from 70 patients with NSCLC, as well as 24 patients with benign pulmonary lesion as controls. The sensitivity of the assay was 99% (69/70). HOXA9 and TBX5 were the 2 most sensitive marker genes: 87% (61/70) and 84% (59/70), respectively. RASSF1A and DLEC1 showed the highest specificity at 99% (69/70). Using the criterion of identifying at least any two methylated marker genes, 61/70 cancer samples were positive, corresponding to a sensitivity of 87% and a specificity of 94%. Early stage I or II NSCLC could even be detected with a 100% specificity and 86% sensitivity. In conclusion, MMSP has the potential to be developed into a population-based screening tool and can be useful for early diagnosis of NSCLC. It might also be suitable for monitoring treatment outcome and recurrence.  相似文献   

20.
《Epigenetics》2013,8(1):105-112
Keap1 (Kelch-like ECH-associated protein 1) is an adaptor protein that mediates the ubiquitination/degradation of genes regulating cell survival and apoptosis under oxidative stress conditions. We determined methylation status of the KEAP1 promoter in 102 primary breast cancers, 14 pre-invasive lesions, 38 paired normal breast tissues and 6 normal breast from reductive mammoplasty by quantitative methylation specific PCR (QMSP). Aberrant promoter methylation was detected in 52 out of the 102 primary breast cancer cases (51%) and 10 out of 14 pre-invasive lesions (71%). No mutations of the KEAP1 gene were identified in the 20 breast cancer cases analyzed by fluorescence based direct sequencing. Methylation was more frequent in the subgroup of patients identified as ER positive-HER2 negative tumors (66.7%) as compared with triple-negative breast cancers (35%) (p = 0.05, Chi-square test). The impact of the interactions between Er, PgR, Her2 expression and KEAP1 methylation on mortality was investigated by RECPAM multivariable statistical analysis, identifying four prognostic classes at different mortality risks. Triple-negative breast cancer patients with KEAP1 methylation had higher mortality risk than patients without triple-negative breast cancer (HR = 14.73, 95%CI: 3.65–59.37). Both univariable and multivariable COX regressions analyses showed that KEAP1 methylation was associated with a better progression free survival in patients treated with epirubicin/cyclophosfamide and docetaxel as sequential chemotherapy (HR = 0.082; 95%CI: 0.007–0.934). These results indicate that aberrant promoter methylation of the KEAP1 gene is involved in breast cancerogenesis. In addition, identifying patients with KEAP1 epigenetic abnormalities may contribute to disease progression prediction in breast cancer patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号