首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Staying alive     
Quiescence is a state of reversible cell cycle arrest that can grant protection against many environmental insults. In some systems, cellular quiescence is associated with a low metabolic state characterized by a decrease in glucose uptake and glycolysis, reduced translation rates and activation of autophagy as a means to provide nutrients for survival. For cells in multiple different quiescence model systems, including Saccharomyces cerevisiae, mammalian lymphocytes and hematopoietic stem cells, the PI3Kinase/TOR signaling pathway helps to integrate information about nutrient availability with cell growth rates. Quiescence signals often inactivate the TOR kinase, resulting in reduced cell growth and biosynthesis. However, quiescence is not always associated with reduced metabolism; it is also possible to achieve a state of cellular quiescence in which glucose uptake, glycolysis and flux through central carbon metabolism are not reduced. In this review, we compare and contrast the metabolic changes that occur with quiescence in different model systems.  相似文献   

2.
Quiescence is a state of reversible cell cycle arrest that can grant protection against many environmental insults. In some systems, cellular quiescence is associated with a low metabolic state characterized by a decrease in glucose uptake and glycolysis, reduced translation rates and activation of autophagy as a means to provide nutrients for survival. For cells in multiple different quiescence model systems, including Saccharomyces cerevisiae, mammalian lymphocytes and hematopoietic stem cells, the PI3Kinase/TOR signaling pathway helps to integrate information about nutrient availability with cell growth rates. Quiescence signals often inactivate the TOR kinase, resulting in reduced cell growth and biosynthesis. However, quiescence is not always associated with reduced metabolism; it is also possible to achieve a state of cellular quiescence in which glucose uptake, glycolysis and flux through central carbon metabolism are not reduced. In this review, we compare and contrast the metabolic changes that occur with quiescence in different model systems.  相似文献   

3.
4.
ABSTRACT: The cell cycle is a tightly controlled series of events that ultimately lead to cell division. The literature deciphering the molecular processes involved in regulating the consecutive cell cycle steps is colossal. By contrast, much less is known about non-dividing cellular states, even if they concern the vast majority of cells, from prokaryotes to multi-cellular organisms. Indeed, cells decide to enter the division cycle only if conditions are favourable. Otherwise they may enter quiescence, a reversible non-dividing cellular state. Recent studies in yeast have shed new light on the transition between proliferation and quiescence, re-questioning the notion of cell cycle commitment. They also indicate a predominant role for cellular metabolic status as a major regulator of quiescence establishment and exit. Additionally, a growing body of evidence indicates that environmental conditions, and notably the availability of various nutrients, by impinging on specific metabolic routes, directly regulate specific cellular re-organization that occurs upon proliferation/quiescence transitions.  相似文献   

5.
Tesio M  Trumpp A 《Cell Stem Cell》2011,9(3):187-192
The cell cycle regulators involved in maintaining the quiescence, and thereby the self-renewal capacity, of somatic stem cells have long been elusive. Two new Cell Stem Cell articles in this issue (Matsumoto et?al., 2011; Zou et?al., 2011) now show that the CDK inhibitor p57 is a crucial brake for cycling HSCs, and links self-renewal activity to cell cycle quiescence.  相似文献   

6.
7.
Blood-forming hematopoietic stem cells (HSCs) ensure production of all mature blood cells during homeostatic and regenerative hematopoiesis. Proliferation, cell cycle regulation, and quiescence are key processes involved in this function, and in a recent issue of Cancer Cell, show that HSC quiescence is actively regulated by specific molecular mechanisms that appear to distinguish normal HSC maintenance from HSC responses to hematologic injury.  相似文献   

8.
Quiescence is a critical determinant for sustained stem cell function throughout life. Disruption of cellular quiescence leads to loss of the stem cell pool and impaired tissue repair. In adult skeletal muscle, Pax7+ satellite cells (the muscle stem cells) are capable of self-renewal and differentiation in their endogenous environment during repair. In response to muscle injury, Pax7+ satellite cells enter the cell cycle; subpopulation returns to quiescence to fully replenish the satellite cell pool while others contribute to myofiber repair. We demonstrate that Sprouty1 (Spry1), an inhibitor of receptor tyrosine kinase signaling is required for the return to quiescence of the self-renewing Pax7+ satellite cell pool during repair. The temporal regulation of Spry1 expression during repair and its functional requirement in a subpopulation of cycling Pax7+ cells during repair ensure that tissue regeneration and re-establishment of the dormant stem cell pool are coordinated.  相似文献   

9.
Several cancers are thought to be driven by cells with stem cell like properties. An important characteristic of stem cells, which also applies to primitive tumor cells, is the ability to undergo quiescence, where cells can temporarily stop the cell cycle. Cellular quiescence can affect the kinetics of tumor growth, and the susceptibility of the cells to therapy. To study how quiescence affects treatment, we formulate a stochastic birth-death process with quiescence, on a combinatorial cellular mutation network, and consider the pre-treatment (growth) and treatment (decay) regimes. We find that, in the absence of mutations, treatment (if sufficiently strong) will proceed as a biphasic decline with the first (faster) phase driven by the elimination of the cycling cells and the second (slower) phase limited by the process of cell awakening. Other regimes are possible for weaker treatments. We also describe how the process of mutant generation is influenced by quiescence. Interestingly, for single-drug treatments, the probability to have resistance at start of treatment is independent of quiescence. For two or more drugs, the probability to have generated resistant mutants before treatment grows with quiescence. Finally, we study the influence of quiescence on the treatment phase. Starting from a given composition of mutants, the chances of treatment success are not influenced by the presence of quiescence.  相似文献   

10.
Several cancers are thought to be driven by cells with stem cell like properties. An important characteristic of stem cells, which also applies to primitive tumor cells, is the ability to undergo quiescence, where cells can temporarily stop the cell cycle. Cellular quiescence can affect the kinetics of tumor growth, and the susceptibility of the cells to therapy. To study how quiescence affects treatment, we formulate a stochastic birth–death process with quiescence, on a combinatorial cellular mutation network, and consider the pre-treatment (growth) and treatment (decay) regimes. We find that, in the absence of mutations, treatment (if sufficiently strong) will proceed as a biphasic decline with the first (faster) phase driven by the elimination of the cycling cells and the second (slower) phase limited by the process of cell awakening. Other regimes are possible for weaker treatments. We also describe how the process of mutant generation is influenced by quiescence. Interestingly, for single-drug treatments, the probability to have resistance at start of treatment is independent of quiescence. For two or more drugs, the probability to have generated resistant mutants before treatment grows with quiescence. Finally, we study the influence of quiescence on the treatment phase. Starting from a given composition of mutants, the chances of treatment success are not influenced by the presence of quiescence.  相似文献   

11.
Members of the transforming growth factor (TGF)‐β family govern a wide range of mechanisms in brain development and in the adult, in particular neuronal/glial differentiation and survival, but also cell cycle regulation and neural stem cell maintenance. This clearly created some discrepancies in the field with some studies favouring neuronal differentiation/survival of progenitors and others favouring cell cycle exit and neural stem cell quiescence/maintenance. Here, we provide a unifying hypothesis claiming that through its regulation of neural progenitor cell (NPC) proliferation, TGF‐β signalling might be responsible for (i) maintaining stem cells in a quiescent stage, and (ii) promoting survival of newly generated neurons and their functional differentiation. Therefore, we performed a detailed histological analysis of TGF‐β1 signalling in the hippocampal neural stem cell niche of a transgenic mouse that was previously generated to express TGF‐β1 under a tetracycline regulatable Ca‐Calmodulin kinase promoter. We also analysed NPC proliferation, quiescence, neuronal survival and differentiation in relation to elevated levels of TGF‐β1 in vitro and in vivo conditions. Finally, we performed a gene expression profiling to identify the targets of TGF‐β1 signalling in adult NPCs. The results demonstrate that TGF‐β1 promotes stem cell quiescence on one side, but also neuronal survival on the other side. Thus, considering the elevated levels of TGF‐β1 in ageing and neurodegenerative diseases, TGF‐β1 signalling presents a molecular target for future interventions in such conditions.  相似文献   

12.
13.
Hematopoietic stem cells (HSCs) give rise to all lineages of blood cells. Because HSCs must persist for a lifetime, the balance between their proliferation and quiescence is carefully regulated to ensure blood homeostasis while limiting cellular damage. Cell cycle regulation therefore plays a critical role in controlling HSC function during both fetal life and in the adult. The cell cycle activity of HSCs is carefully modulated by a complex interplay between cell-intrinsic mechanisms and cell-extrinsic factors produced by the microenvironment. This fine-tuned regulatory network may become altered with age, leading to aberrant HSC cell cycle regulation, degraded HSC function, and hematological malignancy.  相似文献   

14.
Adult stem cell quiescence is critical to ensure regeneration while minimizing tumorigenesis. Epigenetic regulation contributes to cell cycle control and differentiation, but few regulators of the chromatin state in quiescent cells are known. Here we report that the tumor suppressor PRDM2/RIZ, an H3K9 methyltransferase, is enriched in quiescent muscle stem cells in vivo and controls reversible quiescence in cultured myoblasts. We find that PRDM2 associates with >4400 promoters in G0 myoblasts, 55% of which are also marked with H3K9me2 and enriched for myogenic, cell cycle and developmental regulators. Knockdown of PRDM2 alters histone methylation at key promoters such as Myogenin and CyclinA2 (CCNA2), and subverts the quiescence program via global de-repression of myogenesis, and hyper-repression of the cell cycle. Further, PRDM2 acts upstream of the repressive PRC2 complex in G0. We identify a novel G0-specific bivalent chromatin domain in the CCNA2 locus. PRDM2 protein interacts with the PRC2 protein EZH2 and regulates its association with the bivalent domain in the CCNA2 gene. Our results suggest that induction of PRDM2 in G0 ensures that two antagonistic programs—myogenesis and the cell cycle—while stalled, are poised for reactivation. Together, these results indicate that epigenetic regulation by PRDM2 preserves key functions of the quiescent state, with implications for stem cell self-renewal.  相似文献   

15.
The regulatory mechanisms governing the cell cycle progression of hematopoietic stem cells (HSCs) are well characterized, but those responsible for the return of proliferating HSCs to a quiescent state remain largely unknown. Here, we present evidence that CD81, a tetraspanin molecule acutely responsive to proliferative stress, is essential for the maintenance of long-term repopulating HSCs. Cd81(-/-) HSCs showed a marked engraftment defect when transplanted into secondary recipient mice and a significantly delayed return to quiescence when stimulated to proliferate with 5-fluorouracil (5FU). In addition, we found that CD81 proteins form a polarized patch when HSCs are returning to quiescence. Thus, we propose that the spatial distribution of CD81 during the HSC recovery phase drives proliferative HSC to quiescence, and is important to preserve the self-renewal properties. Here, we show that lack of CD81 leads to loss of HSC self-renewal, and the clustering of CD81 on HSC membrane results in deactivation of Akt, which subsequently leads to nuclear translocation of FoxO1a. Thus, CD81 functions as part of a previously undefined mechanism that prohibits excessive proliferation of HSCs exposed to environmental stress.  相似文献   

16.
The stringent regulation of hematopoietic stem cell (HSC) quiescence versus cell cycle progression is essential for the preservation of a pool of long-term self-renewing cells and vital for sustaining an adequate supply of all blood lineages throughout life. Cell growth, the process that is mass increase, serves as a trigger for cell cycle progression and is regulated predominantly by mammalian target of rapamycin complex 1 (mTORC1) signaling. Emerging data from various mice models show deletion of several mTORC1 negative regulators, including PTEN, TSC1, PML and Fbxw7 result in similar HSC phenotypes characterized as HSC hyper-proliferation and subsequent exhaustion, and defective repopulating potential. Further pharmacological approaches show that PTEN, TSC1 and PML regulate HSC maintenance through mTORC1. mTORC1-mediated cell growth regulatory circuits thus plays a critical role in the regulation of HSC quiescence.  相似文献   

17.
Senescence and quiescence are frequently used as interchangeable terms in the literature unwittingly. Despite the fact that common molecules play role in decision of cell cycle arrest, senescent and quiescent cells have some distinctive phenotypes at both molecular and morphological levels. Thus, in this review we summarized the features of senescence and quiescence with respect to visual characteristics and prominent key molecules. A PubMed research was conducted for the key words; “senescence”, “quiescence” and “cell cycle arrest”. The results which are related to cell cycle control were selected. The selection criteria of the target articles used for this review included also key cell cycle molecules such as p53, pRB, p21, p16, mTOR, p27, etc. The results were not evaluated statistically. The mechanistic target of rapamycin (mTOR) has been claimed to be key molecule in switching on/off senescence/quiescence. Specifically, although maximal p53 activation blocks mTOR and causes quiescence, partial p53 activation sustains mTOR activity and causes senescence subsequently. In broader perspective, quiescence occurs due to lack of nutrition and growth factors whereas senescence takes place due to aging and serious DNA damages. Contrary to quiescence, senescence is a degenerative process ensuing a certain cell death. We highlighted several differences between senescence and quiescence and their key molecules in this review. Whereas quiescence (cell cycle arrest) is only one half of the senescence, the other half is growth stimulation which causes actual senescence phenotype.  相似文献   

18.
Transforming growth factor-beta1 (TGF-beta1) has been described as an efficient growth inhibitor that maintains the CD34(+) hematopoietic progenitor cells in quiescence. The concept of high proliferative potential-quiescent cells or HPP-Q cells has been introduced as a working model to study the effect of TGF-beta1 in maintaining the reversible quiescence of the more primitive hematopoietic stem cell compartment. HPP-Q cells are primitive quiescent stem/progenitor cells on which TGF-beta1 has downmodulated the cytokine receptors. These cells can be released from quiescence by neutralization of autocrine or endogenous TGF-beta1 with a TGF-beta1 blocking antibody or a TGF-beta1 antisense oligonucleotide. In nonhematopoietic systems, TGF-beta1 cooperates with the cyclin-dependent kinase inhibitor, p21(cip1), to induce cell cycle arrest. We therefore analyzed whether endogenous TGF-beta1 controls the expression of the p21(cip1) in the CD34(+) undifferentiated cells using a sensitive in situ hybridization method. We observed that addition of anti-TGF-beta1 is followed by a rapid decrease in the level of p21(cip1) mRNA whereas TGF-beta1 enhances p21(cip1) mRNA expression concurrently with an inhibitory effect on progenitor cell proliferation. These results suggest the involvement of p21(cip1) in the cell cycle control of early human hematopoietic quiescent stem/progenitors and not only in the differentiation of more mature myeloid cells as previously described. The modulation of p21(cip1) observed in response to TGF-beta1 allows us to further precise the working model of high proliferative potential-quiescent cells.  相似文献   

19.
Tissue regeneration and homeostasis often require recruitment of undifferentiated precursors (adult stem cells; ASCs). While many ASCs continuously proliferate throughout the lifetime of an organism, others are recruited from a quiescent state to replenish their target tissue. A long‐standing question in stem cell biology concerns how long‐lived, non‐dividing ASCs regulate the transition between quiescence and proliferation. We study the melanocyte stem cell (MSC) to investigate the molecular pathways that regulate ASC quiescence. Our prior work indicated that GABA‐A receptor activation promotes MSC quiescence in larval zebrafish. Here, through pharmacological and genetic approaches we show that GABA‐A acts through calcium signaling to maintain MSC quiescence. Unexpectedly, we identified translocator protein (TSPO), a mitochondrial membrane‐associated protein that regulates mitochondrial function and metabolic homeostasis, as a parallel regulator of MSC quiescence. We found that both TSPO‐specific ligands and induction of gluconeogenesis likely act in the same pathway to promote MSC activation and melanocyte production in larval zebrafish. In contrast, TSPO and gluconeogenesis appear to act in parallel to GABA‐A receptor signaling to regulate MSC quiescence and vertebrate pigment patterning.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号