首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Autophagy》2013,9(2):127-158
Autophagy is the degradative process by which eukaryotic cells digest their own components using acid hydrolases within the lysosome. Originally thought to function almost exclusively in providing starving cells with nutrients taken from their own cellular constituents, autophagy is in fact involved in numerous cellular events including differentiation, turnover of macromolecules and organelles, and defense against parasitic invaders. During the last 10-20 years, molecular components of the autophagic machinery have been discovered, revealing a complex interactome of proteins and lipids, which, in a concerted way, induce membrane formation to engulf cellular material and target it for lysosomal degradation. Here, our emphasis is autophagy in protists. We discuss experimental and genomic data indicating that the canonical autophagy machinery characterized in animals and fungi appeared prior to the radiation of major eukaryotic lineages. Moreover, we describe how comparative bioinformatics revealed that this canonical machinery has been subject to moderation, outright loss or elaboration on multiple occasions in protist lineages, most probably as a consequence of diverse lifestyle adaptations. We also review experimental studies illustrating how several pathogenic protists either utilize autophagy mechanisms or manipulate host-cell autophagy in order to establish or maintain infection within a host. The essentiality of autophagy for the pathogenicity of many parasites, and the unique features of some of the autophagy-related proteins involved, suggest possible new targets for drug discovery. Further studies of the molecular details of autophagy in protists will undoubtedly enhance our understanding of the diversity and complexity of this cellular phenomenon and the opportunities it offers as a drug target.  相似文献   

3.
Itay Koren  Eran Reem  Adi Kimchi 《Autophagy》2010,6(8):1179-1180
Autophagy, a highly regulated catabolic process, is controlled by the action of positive and negative regulators. While many of the positive mediators of autophagy have been identified, very little is known about negative regulators that might counterbalance the process. We recently identified death-associated protein 1 (DAP1) as a suppressor of autophagy and as a novel direct substrate of mammalian target of rapamycin (mTOR). We found that DAP1 is functionally silent in cells growing under rich nutrient supplies through mTOR-dependent inhibitory phosphorylation on two sites, which were mapped to Ser3 and Ser51. During amino acid starvation, mTOR activity is turned off resulting in a rapid reduction in the phosphorylation of DAP1. This caused the conversion of the protein into a suppressor of autophagy, thus providing a buffering mechanism that counterbalances the autophagic flux and prevents its overactivation under conditions of nutrient deprivation. Based on these studies we propose the “gas and brake” concept in which mTOR, the main sensor that regulates autophagy in response to amino acid deprivation, also controls the activity of a specific balancing brake to prevent the overactivation of autophagy.Key words: DAP1, mTOR, autophagy, amino acid starvation, phosphorylationIn recent years, many of the genes controlling and executing the autophagic process have been identified. Most of these genes act as positive mediators of the various steps of the process, including the ULK1 complex, which regulates the induction step, the Vps34-Beclin 1 complex that participates in the vesicle nucleation step and two ubiquitin-like pathways, the Atg12-Atg5 and the LC3-phosphatidylethanolamine (PE) conjugation steps, which play a central role in the vesicle elongation process. To date, only a few negative regulators of autophagy have been identified, including mTOR and the anti-apoptotic Bcl-2 family members. mTOR Ser/Thr kinase is a central suppressor of autophagy acting at the initiating regulatory steps of the process. Many signaling pathways act to inhibit mTOR activity, thus relieving its inhibitory effects on autophagy. The anti-apoptotic Bcl-2 and Bcl-XL proteins, on the other hand, act at the nucleation step, by directly binding to Beclin 1''s BH3 domain, thus reducing the activation of Vps34 and subsequent autophagy. This inhibition can be relieved through dissociation of the complex, following either JNK-1 mediated phosphorylation of Bcl-2 or DAP kinase-mediated phosphorylation of the BH3 domain of Beclin 1.DAP1 is a small (∼15 kDa), ubiquitously expressed protein, rich in prolines and lacking known functional motifs. DAP1 was isolated more than a decade ago in our laboratory using a functional approach to gene cloning aimed at identifying novel mediators of IFNγ-induced cell death in mammalian cell cultures. Until recently, very little was known about the cellular and molecular functions of DAP1, mainly due to the lack of homology to other known proteins and the lack of functional motifs that could indicate a possible cellular function and studies in mammalian systems were missing.Recently, we discovered that DAP1 is another negative regulator of autophagy; yet, interestingly, its suppressive activity is selectively turned on during the autophagic process. Moreover, we found that DAP1 suppressive activity is tightly linked to the status of mTOR kinase activity. Under nutrient-rich culture conditions, DAP1 is phosphorylated by mTOR on two sites, Ser3 and Ser51, resulting in its inactivation. In response to nutrient deprivation, mTOR is inhibited and DAP1 undergoes rapid dephosphorylation. By knocking down the endogenous DAP1 and introducing either the phosphomimetic or the nonphosphorylatible DAP1 mutants, we found that the dephosphorylation leads to activation of the autophagic suppressive function of DAP1, whereas the phophorylated form is inactive. These results led to a “gas and brake” model, in which at the same time that autophagy is induced, some brakes such as DAP1 are also activated to provide a buffering mechanism that counterbalances the autophagic flux and prevents its overactivation under nutrient-deprivation conditions (Fig. 1). Notably, balancing autophagy is extremely important, since deregulated or excessive autophagy has been implicated in the pathogenesis of diverse diseases, such as certain types of neuronal degeneration and cancer and also in cellular aging.Open in a separate windowFigure 1“Gas and brake” model. During nutrient-rich conditions, active mTORC1 phosphorylates and inactivates the components of the ULK1 complex, ULK1 and Atg13, thus preventing the induction of autophagy. DAP1 is also inactivated simultaneously by mTORC1-mediated phosphorylation on Ser3 and Ser51. In addition, mTORC1 phosphorylates and activates p70S6K and 4E-BP1, which mediate the protein translation and cell growth activities of mTOR. Upon nutrient starvation, mTORC1 activity is attenuated, leading to dephosphorylation and activation of ULK1. ULK1, in turn, undergoes autophosphorylation and phosphorylates Atg13 and FIP200 resulting in ULK1 complex activation and induction of autophagy. On the other hand, activation of DAP1 by dephosphorylation, results in suppression of autophagy, thus inserting a brake into the process of autophagy. Note that the inactive proteins/complexes are faded out.The current challenge is to identify the molecular basis of the suppressive functions of DAP1 on autophagy. We have recently shown that DAP1 knockdown enhances LC3 lipidation and autophagosome accumulation both during amino acid starvation and rapamycin treatment. In addition, preliminary data indicate that the knockdown of DAP1 has no effect on mTOR complex 1 (mTORC1) activity in cells, at least during the first hours of starvation. Accordingly, DAP1 may function between the mTORC1 and the LC3 conjugation systems. The potential targets may fall into one of the multiprotein complexes functioning downstream of mTOR such as the ULK1 complex, the Vps34-Beclin 1 complex and more. Future studies will be performed to identify the molecular mechanism by which DAP1 suppresses autophagy. The lack of known functional motifs in the DAP1 protein sequence suggests that this small proline-rich protein may function as an adaptor blocking autophagy by binding to critical protein partners that still await identification.Although autophagy is primarily a protective process for the cell, it can also play a role in cell death. In response to prolonged starvation, autophagy can act either as a cell survival mechanism or be recruited as a cell death executer. In the future it would be interesting to examine whether the autophagy enhancement resulting from DAP1 knockdown contributes to increased cell death in our system or even may convert the survival properties of autophagy into death induction. This will fit the “gas and brake” model, in which autophagy, which is initially recruited as a cell survival mechanism, is converted into cell death machinery when a certain threshold is crossed due to the loss of the “brake” by the knockdown of DAP1.To date, very little is known about the putative mechanisms that restrict the intensity of the autophagic flux to maintain the continuous benefits of this process under stress. Therefore, the ability of DAP1 to counterbalance and buffer the process in a manner that is tightly linked to the status of a central player in autophagy (i.e., mTOR) is an important discovery in this field and provides a target for future drug design.  相似文献   

4.
《Autophagy》2013,9(3):301-303
Recent discoveries of autophagy receptors, which specifically recognize different cellular cargo destined for degradation, have opened a new chapter in the autophagy field. Selective cargo recognition by autophagic machinery is important in the context of cellular homeostasis and survival. One of the crucial homeostasis events involving autophagy is the removal of damaged or excessive mitochondria through mitophagy. Future studies on mitochondrial receptors and proteins associated with mitochondrial clearance will help us better understand the role of mitophagy in normal physiological processes as well as in diverse pathological conditions.  相似文献   

5.
6.
Recently, using a co-culture system, we demonstrated that MCF7 epithelial cancer cells induce oxidative stress in adjacent cancer-associated fibroblasts, resulting in the autophagic/lysosomal degradation of stromal caveolin-1 (Cav-1). However, the detailed signaling mechanism(s) underlying this process remain largely unknown. Here, we show that hypoxia is sufficient to induce the autophagic degradation of Cav-1 in stromal fibroblasts, which is blocked by the lysosomal inhibitor chloroquine. Concomitant with the hypoxia-induced degradation of Cav-1, we see the upregulation of a number of well-established autophagy/mitophagy markers, namely LC3, ATG16L, BNIP3, BNIP3L, HIF-1α and NFκB. In addition, pharmacological activation of HIF-1α drives Cav-1 degradation, while pharmacological inactivation of HIF-1 prevents the downregulation of Cav-1. Similarly, pharmacological inactivation of NFκB-another inducer of autophagy-prevents Cav-1 degradation. Moreover, treatment with an inhibitor of glutathione synthase, namely BSO, which induces oxidative stress via depletion of the reduced glutathione pool, is sufficient to induce the autophagic degradation of Cav-1. Thus, it appears that oxidative stress mediated induction of HIF1- and NFκB-activation in fibroblasts drives the autophagic degradation of Cav-1. In direct support of this hypothesis, we show that MCF7 cancer cells activate HIF-1α- and NFκB-driven luciferase reporters in adjacent cancer-associated fibroblasts, via a paracrine mechanism. Consistent with these findings, acute knock-down of Cav-1 in stromal fibroblasts, using an siRNA approach, is indeed sufficient to induce autophagy, with the upregulation of both lysosomal and mitophagy markers. How does the loss of stromal Cav-1 and the induction of stromal autophagy affect cancer cell survival? Interestingly, we show that a loss of Cav-1 in stromal fibroblasts protects adjacent cancer cells against apoptotic cell death. Thus, autophagic cancer-associated fibroblasts, in addition to providing recycled nutrients for cancer cell metabolism, also play a protective role in preventing the death of adjacent epithelial cancer cells. We demonstrate that cancer-associated fibroblasts upregulate the expression of TIGAR in adjacent epithelial cancer cells, thereby conferring resistance to apoptosis and autophagy. Finally, the mammary fat pads derived from Cav-1 (-/-) null mice show a hypoxia-like response in vivo, with the upregulation of autophagy markers, such as LC3 and BNIP3L. Taken together, our results provide direct support for the "Autophagic Tumor Stroma Model of Cancer Metabolism," and explain the exceptional prognostic value of a loss of stromal Cav-1 in cancer patients. Thus, a loss of stromal fibroblast Cav-1 is a biomarker for chronic hypoxia, oxidative stress and autophagy in the tumor microenvironment, consistent with its ability to predict early tumor recurrence, lymph node metastasis and tamoxifen-resistance in human breast cancers. Our results imply that cancer patients lacking stromal Cav-1 should benefit from HIF-inhibitors, NFκB-inhibitors, anti-oxidant therapies, as well as autophagy/lysosomal inhibitors. These complementary targeted therapies could be administered either individually or in combination, to prevent the onset of autophagy in the tumor stromal compartment, which results in a "lethal" tumor microenvironment.  相似文献   

7.
Sibling species groups are suitable models for the understanding of inter‐ and intraspecific processes in taxonomy and biogeography. We analysed 262 individuals from the Alps of the Coenonympha arcania/gardetta species complex by allozyme electrophoresis. These taxa showed high variance amongst populations (FST: 0.391) and strong intertaxon genetic differentiation (FCT: 0.376). Although morphologically similar, Coenonympha gardetta and Coenonympha arcania clearly differ in their genetic characteristics; the morphologically intermediate taxa Coenonympha darwiniana darwiniana and Coenonympha darwiniana macromma are genetically well distinguished from each other and the two other taxa. Coenonympha arcania and C. d. macromma most probably share a common ancestor and evolved by cladogenesis, whereas the taxonomic situation of C. d. darwiniana is still unresolved: This taxon might be the result of hybridization between C. arcania and C. gardetta or it might have a common ancestor together with C. gardetta. We suggest species rank for all four taxa. The distribution of genetic diversity of these populations and the differentiation amongst populations suggest rather different biogeographical scenarios: C. arcania most probably is of Mediterranean origin with postglacial range expansion northwards; C. gardetta survived the last ice age in peripheral refugia of the Alps and has spread all over this high mountain system in the postglacial; C. darwiniana and C. macromma survived the Würm in geographic proximity to their actual distribution areas and only have performed moderate uphill translocations during postglacial warming. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159 , 890–904.  相似文献   

8.
9.
FAK     
During the formation of neural circuitry, axons are known to be guided to their specific targets by a relatively small arsenal of guidance signals. However, the molecular integration of this guidance information inside the axonal growth cone (GC) is still baffling. Focal adhesion kinase (FAK) is a cytosolic kinase which interacts with a complex molecular network via multiple phosphorylation sites. Paradoxically, FAK activation is required by both attractive and repulsive cues to control respectively axon outgrowth and disassembly of adhesive structures together with cytoskeletal dynamics. It was suggested that FAK might work as a versatile molecular integrator switching to different functions depending on its activation state. Two studies published recently by our group and Woo et al. shed light on this issue: for the first time, these works report a detailed molecular analysis of FAK activation and phosphorylation pattern in primary neuronal cultures in response to the repulsive cues Semaphorin3A and ephrinA1 respectively. Here we comment on the major novelties provided by these papers in the context of previous literature and we speculate on the future avenues of investigation opened by these works.  相似文献   

10.
We examined the relationships between xylem resistance to cavitation and 16 structural and functional traits across eight unrelated Populus deltoides×Populus nigra genotypes grown under two contrasting water regimes. The xylem water potential inducing 50% loss of hydraulic conductance (Ψ50) varied from ?1.60 to ?2.40 MPa. Drought‐acclimated trees displayed a safer xylem, although the extent of the response was largely genotype dependant, with Ψ50 being decreased by as far as 0.60 MPa. At the tissue level, there was no clear relationship between xylem safety and either xylem water transport efficiency or xylem biomechanics; the only structural trait to be strongly associated with Ψ50 was the double vessel wall thickness, genotypes exhibiting a thicker double wall being more resistant. At the leaf level, increased cavitation resistance was associated with decreased stomatal conductance, while no relationship could be identified with traits associated with carbon uptake or bulk leaf carbon isotope discrimination, a surrogate of intrinsic water‐use efficiency. At the whole‐plant level, increased safety was associated with higher shoot growth potential under well‐irrigated regime only. We conclude that common trade‐offs between xylem resistance to cavitation and other physiological traits that are observed across species may not necessarily hold true at narrower scales.  相似文献   

11.
Tyrosinase related protein‐1 (TRP‐1) is a melanocyte‐specific gene product involved in eumelanin synthesis. Mutation in the Tyrp1 gene is associated with brown pelage in mouse and oculocutaneous albinism Type 3 in humans (OCA3). It has been demonstrated that TRP‐1 expresses DHICA oxidase activity in the murine system. However, its actual function in the human system is still unclear. The study was designed to determine the effects of mutation at two Typr1 alleles, namely the Tyrp1b (brown) and Tyrp1b‐cj (cordovan) compared with wild type Tyrp1B (black) on melanocyte function and melanin biosynthesis. The most significant finding was that both of the Tyrp1 mutations (i.e. brown expressing a point mutation and cordovan expressing decreased amount of TRP‐1 protein) resulted in attenuation of cell proliferation rates. Neither necrosis nor apoptosis was responsible for the observed decrease in cell proliferation rates of the brown and cordovan melanocytes. Ultrastructural evaluation by electron microscopic analysis revealed that both mutations in Tyrp1 affected melanosome maturation without affecting its structure. These observations demonstrate that mutation in Tyrp1 compromised tyrosinase activity within the organelle. DOPA histochemistry revealed differences in melanosomal stages between black and brown melanocytes but not between black and cordovan melanocytes. There were no significant differences in tyrosine hydroxylase activities of tyrosinase and TRP‐1 in wild type black, brown and cordovan melanocyte cell lysates. We conclude that mutations in Tyrp1 compromise cell proliferation and melanosomal maturation in mouse melanocyte cultures.  相似文献   

12.
《Autophagy》2013,9(3):336-337
In a manifestation of the immunological autophagy termed xenophagy, autophagic adapter proteins such as p62 and NDP52 directly capture microbes for delivery to autophagosomal organelles where they are eliminated. In a mirror image phenomenon, which is also an immunological variant of the process termed decryption, p62 and autophagy contribute to the elimination of Mycobacterium tuberculosis. During decryption, p62 sequesters cytosolic proteins into autophagosomes where they are proteolytically converted into peptides termed cryptides. A subset of cryptides possesses antimicrobial peptide properties exhibited upon their delivery to parasitophorous vacuoles where they kill intracellular microbes.  相似文献   

13.
Many questions in vegetation science related to species ranges and species performance could be resolved by appropriate bioclimatological data. In the case of small‐stature plants, such as herbs and grasses, but also seedlings of trees, weather station data are inappropriate to describe their life conditions – an important point not only in empirical research, but also for modellers.  相似文献   

14.
Exposure of C3HBYB/Wq hairless (hr/hr) mice to ultra‐violet radiation (UVR) for 15 days induced intense tanning of their dorsal skin. Small, dark freckles appeared first, gradually enlarging and coalescing as treatment progressed yielding a uniform tan. Histologically, the gross changes in skin color were matched initially by the appearance of scattered epidermal melanocytes that subsequently proliferated to form discrete, progressively expanding and abutting populations resulting in a uniform melanocyte network throughout the basal layer of the interfollicular epidermis. In contrast, when applied topically before each daily exposure to UVR, a cream or lotion vehicle containing both vitamins C and E (Vits C/E) inhibited UVR‐induced erythema and tanning. Application of Vits C/E, both before and after irradiation, was no more effective in providing photoprotection than pre‐treatment only. At the tissue level, UVR‐induced proliferation and melanogenesis of melanocytes were reduced compared with irradiated controls. The density of individual melanocyte populations was reduced, as was the number of melanocyte populations achieving merger (confluence) with others. Confluence grades and cell counts, estimating the maximum density of melanocyte populations in UVR–Vits C/E‐treated mice, were approximately two thirds those of UVR–vehicle‐treated controls. However, tanning was only one fifth that of UVR–vehicle‐treated controls, suggesting that melanogenesis was also inhibited. In addition to its inhibitory actions on irradiated melanocytes, Vits C/E also inhibited UVR‐induced suppression of contact hypersensitivity (CHS) in haired (Hr/hr) and hr/hr mice of the C3HBYB/Wq strain. The common denominators for most, if not all, of the influences of topically‐applied Vits C/E in muting the responses of the melanocyte and immune systems to UVR may stem from the vitamins’ combined ability to suppress UVR‐stimulated inflammation and its associated cascade of mediators.  相似文献   

15.
Rapid membrane expansion is the key to autophagosome formation during nutrient starvation. In this issue, Yamamoto et al. (2012. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201202061) now provide a mechanism for vesicle-mediated initiation of autophagosome biogenesis. They show that Atg9 vesicles, produced de novo during starvation, are ~30-60 nm in size and contain ~30 molecules of Atg9. These vesicles assemble to form an autophagosome, and subsequently, the Atg9 embedded in the outer membrane is recycled to avoid degradation.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号