首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CY Lai  AC Tsai  MC Chen  LH Chang  HL Sun  YL Chang  CC Chen  CM Teng  SL Pan 《PloS one》2012,7(8):e42192
Aciculatin, a natural compound extracted from the medicinal herb Chrysopogon aciculatus, shows potent anti-cancer potency. This study is the first to prove that aciculatin induces cell death in human cancer cells and HCT116 mouse xenografts due to G1 arrest and subsequent apoptosis. The primary reason for cell cycle arrest and cell death was p53 accumulation followed by increased p21 level, dephosphorylation of Rb protein, PUMA expression, and induction of apoptotic signals such as cleavage of caspase-9, caspase-3, and PARP. We demonstrated that p53 allele-null (-/-) (p53-KO) HCT116 cells were more resistant to aciculatin than cells with wild-type p53 (+/+). The same result was achieved by knocking down p53 with siRNA in p53 wild-type cells, indicating that p53 plays a crucial role in aciculatin-induced apoptosis. Although DNA damage is the most common event leading to p53 activation, we found only weak evidence of DNA damage after aciculatin treatment. Interestingly, the aciculatin-induced downregulation of MDM2, an important negative regulator of p53, contributed to p53 accumulation. The anti-cancer activity and importance of p53 after aciculatin treatment were also confirmed in the HCT116 xenograft models. Collectively, these results indicate that aciculatin treatment induces cell cycle arrest and apoptosis via inhibition of MDM2 expression, thereby inducing p53 accumulation without significant DNA damage and genome toxicity.  相似文献   

2.
3.
4.
Unrepaired or inaccurately repaired DNA damage can lead to a range of cell fates, such as apoptosis, cellular senescence or cancer, depending on the efficiency and accuracy of DNA damage repair and on the downstream DNA damage signalling. DNA damage repair and signalling have been studied and modelled in detail separately, but it is not yet clear how they integrate with one another to control cell fate. In this study, we have created an integrated stochastic model of DNA damage repair by non-homologous end joining and of gamma irradiation-induced cellular senescence in human cells that are not apoptosis-prone. The integrated model successfully explains the changes that occur in the dynamics of DNA damage repair after irradiation. Simulations of p53/p21 dynamics after irradiation agree well with previously published experimental studies, further validating the model. Additionally, the model predicts, and we offer some experimental support, that low-dose fractionated irradiation of cells leads to temporal patterns in p53/p21 that lead to significant cellular senescence. The integrated model is valuable for studying the processes of DNA damage induced cell fate and predicting the effectiveness of DNA damage related medical interventions at the cellular level.  相似文献   

5.
Infection with human herpesvirus (HHV)-6B alters cell cycle progression and stabilizes tumor suppressor protein p53. In this study, we have analyzed the activity of p53 after stimulation with p53-dependent and -independent DNA damaging agents during HHV-6B infection. Microarray analysis, Western blotting and confocal microscopy demonstrated that HHV-6B-infected cells were resistant to p53-dependent arrest and cell death after γ irradiation in both permissive and non-permissive cell lines. In contrast, HHV-6B-infected cells died normally through p53-independet DNA damage induced by UV radiation. Moreover, we identified a viral protein involved in inhibition of p53 during HHV-6B-infection. The protein product from the U19 ORF was able to inhibit p53-dependent signaling following γ irradiation in a manner similar to that observed during infection. Similar to HHV-6B infection, overexpression of U19 failed to rescue the cells from p53-independent death induced by UV radiation. Hence, infection with HHV-6B specifically blocks DNA damage-induced cell death associated with p53 without inhibiting the p53-independent cell death response. This block in p53 function can in part be ascribed to the activities of the viral U19 protein.  相似文献   

6.
Cytotoxic agents form the basis of most cancer therapies. These agents primarily affect rapidly proliferating cells, so their use incurs morbidity associated with damage to tissues such as bone marrow and gastrointestinal mucosa. Clinical outcome would be improved if it were possible to develop therapeutics with more specific activity against p53-deficient cancers, which account for over 50% of all cases. p53 deficiency alters the cellular response to DNA damage in that it leaves cells with attenuated DNA damage checkpoint controls and a reduced propensity for apoptotic cell death. Thus, the DNA repair capacity of these cells is reduced but survival is increased. This promotes genomic instability and contributes to the resistance of p53-deficient cells to cytotoxic agents. Disabling the residual G(2) checkpoint function of p53-deficient cells may favour cell death following DNA damage. Several potential strategies for G(2) checkpoint abrogation show promise for the specific sensitization of cancer cells. Here we detail how the G(2) DNA damage checkpoint is influenced by p53 status and how the loss of p53 function in cancer cells can be exploited to enhance the cytotoxicity of anti-cancer agents.  相似文献   

7.
Cytotoxic agents form the basis of most cancer therapies. These agents primarily affect rapidly proliferating cells, so their use incurs morbidity associated with damage to tissues such as bone marrow and gastrointestinal mucosa. Clinical outcome would be improved if it were possible to develop therapeutics with more specific activity against p53-deficient cancers, which account for over 50% of all cases. p53 deficiency alters the cellular response to DNA damage in that it leaves cells with attenuated DNA damage checkpoint controls and a reduced propensity for apoptotic cell death. Thus, the DNA repair capacity of these cells is reduced but survival is increased. This promotes genomic instability and contributes to the resistance of p53-deficient cells to cytotoxic agents. Disabling the residual G2 checkpoint function of p53-deficient cells may favour cell death following DNA damage. Several potential strategies for G2 checkpoint abrogation show promise for the specific sensitization of cancer cells. Here we detail how the G2 DNA damage checkpoint is influenced by p53 status and how the loss of p53 function in cancer cells can be exploited to enhance the cytotoxicity of anti-cancer agents.  相似文献   

8.
Tumor suppressor p53 plays a critical role in cellular responses, such as cell cycle arrest and apoptosis following DNA damage. DNA damage-induced cell death can be mediated by a p53-dependent or p53-independent pathway. Although p53-mediated apoptosis has been well documented, little is known about the signaling components of p53-independent cell death. Here we report that the death domain kinase, RIP (receptor-interacting protein), is important for DNA damage-induced, p53-independent cell death. DNA damage induces cell death in both wild-type and p53-/- mouse embryonic fibroblast cells. We found that RIP-/- mouse embryonic fibroblast cells, which have a mutant form of the p53 protein, are resistant to DNA damage-induced cell death. The reconstitution of RIP protein expression in RIP-/- cells restored the sensitivity of cells to DNA damage-induced cell death. We also found that RIP mediates this process through activating mitogen-activated protein kinase, JNK1. Furthermore, knocking down the expression of RIP blocked DNA damage-induced cell death in the human colon cancer cell line, p53 null HCT 116. Taken together, our study demonstrates that RIP is one of the critical components involved in mediating DNA damage-induced, p53-independent cell death.  相似文献   

9.
10.
11.
Osteosarcoma becomes the second leading cause of cancer death in the younger population. Current outcomes of chemotherapy on osteosarcoma were unsatisfactory to date, demanding development of effective therapies. Tea is a commonly used beverage beneficial to human health. As a major component of tea, theabrownin has been reported to possess anti‐cancer activity. To evaluate its anti‐osteosarcoma effect, we established a xenograft model of zebrafish and employed U2OS cells for in vivo and in vitro assays. The animal data showed that TB significantly inhibited the tumour growth with stronger effect than that of chemotherapy. The cellular data confirmed that TB‐triggered DNA damage and induced apoptosis of U2OS cells by regulation of Mki67, PARP, caspase 3 and H2AX, and Western blot assay showed an activation of p53 signalling pathway. When P53 was knocked down by siRNA, the subsequent downstream signalling was blocked, indicating a p53‐dependent mechanism of TB on U2OS cells (p53 wt). Using osteosarcoma cell lines with p53 mutations (HOS, SAOS‐2 and MG63), we found that TB exerted stronger inhibitory effect on U2OS cells than that on p53‐mut cell lines, but it also exerted obvious effect on SAOS‐2 cells (p53 null), suggesting an activation of p53‐independent pathway in the p53‐null cells. Interestingly, theabrownin was found to have no toxicity on normal tissue in vivo and could even increase the viability of p53‐wt normal cells. In sum, theabrownin could trigger DNA damage and induce apoptosis on U2OS cells via a p53‐dependent mechanism, being a promising candidate for osteosarcoma therapy.  相似文献   

12.
Several reports indicate that the mechanism of resistance to cisplatin is multifactorial. However, DNA damage tolerance appears to be the more significant mechanism. It is clear that resistance in general is a major clinical concern, and a number of approaches have been taken to circumvent this clinical impediment. One approach is through analog development, and we have identified 1,2-diaminocyclohexane-diacetatodichloro-platinum(IV) as an analog with activity in cisplatin resistance. The activity is greatest against ovarian tumor cell lines where the latent, non-inducible wild-type p53 function can be reactivated by the analog. This functional activation of p53 also corresponds to a reduced threshold for tolerance to DNA damage induced by the analog. Interestingly, cell lines with mutant or null p53 are cross-resistant to the analog. The data indicate that cisplatin resistance due to an increase in DNA damage tolerance can arise through a loss of p53 function, and that functional activation of latent wild-type p53 by the analog facilitates cell death and circumvents this resistance mechanism.  相似文献   

13.
Human SIRT1 is an enzyme that deacetylates the p53 tumor suppressor protein and has been suggested to modulate p53-dependent functions including DNA damage-induced cell death. In this report, we used EX-527, a novel, potent, and specific small-molecule inhibitor of SIRT1 catalytic activity to examine the role of SIRT1 in p53 acetylation and cell survival after DNA damage. Treatment with EX-527 dramatically increased acetylation at lysine 382 of p53 after different types of DNA damage in primary human mammary epithelial cells and several cell lines. Significantly, inhibition of SIRT1 catalytic activity by EX-527 had no effect on cell growth, viability, or p53-controlled gene expression in cells treated with etoposide. Acetyl-p53 was also increased by the histone deacetylase (HDAC) class I/II inhibitor trichostatin A (TSA). EX-527 and TSA acted synergistically to increase acetyl-p53 levels, confirming that p53 acetylation is regulated by both SIRT1 and HDACs. While TSA alone reduced cell survival after DNA damage, the combination of EX-527 and TSA had no further effect on cell viability and growth. These results show that, although SIRT1 deacetylates p53, this does not play a role in cell survival following DNA damage in certain cell lines and primary human mammary epithelial cells.  相似文献   

14.
15.
Poly(ADP-ribose) polymerase (PARP) is a DNA binding zinc finger protein that catalyzes the transfer of ADP-ribose residues from NAD(+) to itself and different chromatin constituents, forming branched ADP-ribose polymers. The enzymatic activity of PARP is induced upon DNA damage and the PARP protein is cleaved during apoptosis, which suggested a role of PARP in DNA repair and DNA damage-induced cell death. We have generated transgenic mice that lack PARP activity in thymocytes owing to the targeted expression of a dominant negative form of PARP. In the presence of single-strand DNA breaks, the absence of PARP activity correlated with a strongly increased rate of apoptosis compared to cells with intact PARP activity. We found that blockage of PARP activity leads to a drastic increase of p53 expression and activity after DNA damage and correlates with an accelerated onset of Bax expression. DNA repair is almost completely blocked in PARP-deficient thymocytes regardless of p53 status. We found the same increased susceptibility to apoptosis in PARP null mice, a similar inhibition of DNA repair kinetics, and the same upregulation of p53 in response to DNA damage. Thus, based on two different experimental in vivo models, we identify a direct, p53-independent, functional connection between poly(ADP-ribosyl)ation and the DNA excision repair machinery. Furthermore, we propose a p53-dependent link between PARP activity and DNA damage-induced cell death.  相似文献   

16.
Cleavage and Inactivation of ATM during Apoptosis   总被引:10,自引:0,他引:10       下载免费PDF全文
The activation of the cysteine proteases with aspartate specificity, termed caspases, is of fundamental importance for the execution of programmed cell death. These proteases are highly specific in their action and activate or inhibit a variety of key protein molecules in the cell. Here, we study the effect of apoptosis on the integrity of two proteins that have critical roles in DNA damage signalling, cell cycle checkpoint controls, and genome maintenance-the product of the gene defective in ataxia telangiectasia, ATM, and the related protein ATR. We find that ATM but not ATR is specifically cleaved in cells induced to undergo apoptosis by a variety of stimuli. We establish that ATM cleavage in vivo is dependent on caspases, reveal that ATM is an efficient substrate for caspase 3 but not caspase 6 in vitro, and show that the in vitro caspase 3 cleavage pattern mirrors that in cells undergoing apoptosis. Strikingly, apoptotic cleavage of ATM in vivo abrogates its protein kinase activity against p53 but has no apparent effect on the DNA binding properties of ATM. These data suggest that the cleavage of ATM during apoptosis generates a kinase-inactive protein that acts, through its DNA binding ability, in a trans-dominant-negative fashion to prevent DNA repair and DNA damage signalling.  相似文献   

17.
DNA damage induced by reactive oxygen species and several chemotherapeutic agents promotes both p53 and poly (ADP-ribose) polymerase (PARP) activation. p53 activation is well known to regulate apoptotic cell death, whereas robust activation of PARP-1 has been shown to promote a necrotic cell death associated with energetic collapse. Here we identify a novel role for p53 in modulating PARP enzymatic activity to regulate necrotic cell death. In mouse embryonic fibroblasts, human colorectal and human breast cancer cell lines, loss of p53 function promotes resistance to necrotic, PARP-mediated cell death. We therefore demonstrate that p53 can regulate both necrotic and apoptotic cell death, mutations or deletions in this tumor-suppressor protein may be selected by cancer cells to provide not only their resistance to apoptosis but also to necrosis, and explain resistance to chemotherapy and radiation even when it kills via non-apoptotic mechanisms.  相似文献   

18.
Two faces of p53: aging and tumor suppression   总被引:7,自引:1,他引:6  
The p53 tumor suppressor protein, often termed guardian of the genome, integrates diverse physiological signals in mammalian cells. In response to stress signals, perhaps the best studied of which is the response to DNA damage, p53 becomes functionally active and triggers either a transient cell cycle arrest, cell death (apoptosis) or permanent cell cycle arrest (cellular senescence). Both apoptosis and cellular senescence are potent tumor suppressor mechanisms that irreversibly prevent damaged cells from undergoing neoplastic transformation. However, both processes can also deplete renewable tissues of proliferation-competent progenitor or stem cells. Such depletion, in turn, can compromise the structure and function of tissues, which is a hallmark of aging. Moreover, whereas apoptotic cells are by definition eliminated from tissues, senescent cells can persist, acquire altered functions, and thus alter tissue microenvironments in ways that can promote both cancer and aging phenotypes. Recent evidence suggests that increased p53 activity can, at least under some circumstances, promote organismal aging. Here, we discuss the role of p53 as a key regulator of the DNA damage responses, and discuss how p53 integrates the outcome of the DNA damage response to optimally balance tumor suppression and longevity.  相似文献   

19.
20.
p53 mediates DNA damage‐induced cell‐cycle arrest, apoptosis, or senescence, and it is controlled by Mdm2, which mainly ubiquitinates p53 in the nucleus and promotes p53 nuclear export and degradation. By searching for the kinases responsible for Mdm2 S163 phosphorylation under genotoxic stress, we identified S6K1 as a multifaceted regulator of Mdm2. DNA damage activates mTOR‐S6K1 through p38α MAPK. The activated S6K1 forms a tighter complex with Mdm2, inhibits Mdm2‐mediated p53 ubiquitination, and promotes p53 induction, in addition to phosphorylating Mdm2 on S163. Deactivation of mTOR‐S6K1 signalling leads to Mdm2 nuclear translocation, which is facilitated by S163 phosphorylation, a reduction in p53 induction, and an alteration in p53‐dependent cell death. These findings thus establish mTOR‐S6K1 as a novel regulator of p53 in DNA damage response and likely in tumorigenesis. S6K1–Mdm2 interaction presents a route for cells to incorporate the metabolic/energy cues into DNA damage response and links the aging‐controlling Mdm2–p53 and mTOR‐S6K pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号