首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The replication licensing system ensures the precise duplication of chromosomal DNA in each cell cycle. In metazoans, a small protein called geminin plays a central role in negatively regulating licensing late in the cell cycle. Recent work using Xenopus egg extracts shows how geminin activity is downregulated on exit from metaphase in a process that requires mitotic cyclin-dependent kinases (CDKs). Geminin is polyubiquitinated by the Anaphase Promoting Complex, but instead of being proteolysed-the normal fate of polyubiquitinated proteins-much of the geminin is deubiquitinated, leaving it inactive. These results suggest a simple model for how precise chromosome duplication is ensured in the Xenopus model system.  相似文献   

2.
Cdt1 plays a key role in licensing DNA for replication. In the somatic cells of metazoans, both Cdt1 and its natural inhibitor geminin show reciprocal fluctuations in their protein levels owing to cell cycle-dependent proteolysis. Here, we show that the protein levels of Cdt1 and geminin are persistently high during the rapid cell cycles of the early Xenopus embryo. Immunoprecipitation of Cdt1 and geminin complexes, together with their cell cycle spatiotemporal dynamics, strongly supports the hypothesis that Cdt1 licensing activity is regulated by periodic interaction with geminin rather than its proteolysis. Overexpression of ectopic geminin slows down, but neither arrests early embryonic cell cycles nor affects endogenous geminin levels; apparent embryonic lethality is observed around 3-4 hours after mid-blastula transition. However, functional knockdown of geminin by ΔCdt1_193-447, which lacks licensing activity and degradation sequences, causes cell cycle arrest and DNA damage in affected cells. This contributes to subsequent developmental defects in treated embryos. Our results clearly show that rapidly proliferating early Xenopus embryonic cells are able to regulate replication licensing in the persistent presence of high levels of licensing proteins by relying on changing interactions between Cdt1 and geminin during the cell cycle, but not their degradation.  相似文献   

3.
Li A  Blow JJ 《The EMBO journal》2005,24(2):395-404
In late mitosis and G1, Mcm2-7 are assembled onto replication origins to 'license' them for initiation. At other cell cycle stages, licensing is inhibited, thus ensuring that origins fire only once per cell cycle. Three additional factors--the origin recognition complex, Cdc6 and Cdt1--are required for origin licensing. We examine here how licensing is regulated in Xenopus egg extracts. We show that Cdt1 is downregulated late in the cell cycle by two different mechanisms: proteolysis, which occurs in part due to the activity of the anaphase-promoting complex (APC/C), and inhibition by a protein called geminin. If both these regulatory mechanisms are abrogated, extracts undergo uncontrolled re-licensing and re-replication. The extent of re-replication is limited by checkpoint kinases that are activated as a consequence of re-replication itself. These results allow us to build a comprehensive model of how re-replication of DNA is prevented in Xenopus, with Cdt1 regulation being the key feature. The results also explain the original experiments that led to the proposal of a replication licensing factor.  相似文献   

4.
Li A  Blow JJ 《Nature cell biology》2004,6(3):260-267
In late mitosis and G1, a complex of the essential initiation proteins Mcm2-7 are assembled onto replication origins to 'license' them for initiation. At other times licensing is inhibited by cyclin-dependent kinases (CDKs) and geminin, thus ensuring that origins fire only once per cell cycle. Here we show that, paradoxically, CDKs are also required to inactivate geminin and activate the licensing system. On exit from metaphase in Xenopus laevis egg extracts, CDK-dependent activation of the anaphase-promoting complex (APC/C) results in the transient polyubiquitination of geminin. This ubiquitination triggers geminin inactivation without requiring ubiquitin-dependent proteolysis, and is essential for replication origins to become licensed. This reveals an unexpected role for CDKs and ubiquitination in activating chromosomal DNA replication.  相似文献   

5.
During late mitosis and early interphase, origins of replication become "licensed" for DNA replication by loading Mcm2-7 complexes. Mcm2-7 complexes are removed from origins as replication forks initiate replication, thus preventing rereplication of DNA in a single cell cycle. Premature origin licensing is prevented in metaphase by the action of geminin, which binds and inhibits Cdt1/RLF-B, a protein that is required for the loading of Mcm2-7. Recombinant geminin that is added to Xenopus egg extracts is efficiently degraded upon exit from metaphase. Here, we show that recombinant and endogenous forms of Xenopus geminin behave differently from one another, such that a significant proportion of endogenous geminin escapes proteolysis upon exit from metaphase. During late mitosis and early G1, the surviving population of endogenous geminin does not associate with Cdt1/RLF-B and does not inhibit licensing. Following nuclear assembly, geminin is imported into nuclei and becomes reactivated to bind Cdt1/RLF-B. This reactivated geminin provides the major nucleoplasmic inhibitor of origin relicensing during late interphase. Since the initiation of replication at licensed origins depends on nuclear assembly, our results suggest an elegant and novel mechanism for preventing rereplication of DNA in a single cell cycle.  相似文献   

6.
Initiation of DNA synthesis involves the loading of the MCM2-7 helicase onto chromatin by Cdt1 (origin licensing). Geminin is thought to prevent relicensing by binding and inhibiting Cdt1. Here we show, using Xenopus egg extracts, that geminin binding to Cdt1 is not sufficient to block its activity and that a Cdt1-geminin complex licenses chromatin, but prevents rereplication, working as a molecular switch at replication origins. We demonstrate that geminin is recruited to chromatin already during licensing, while bulk geminin is recruited at the onset of S phase. A recombinant Cdt1-geminin complex binds chromatin, interacts with the MCM2-7 complex and licenses chromatin once per cell cycle. Accordingly, while recombinant Cdt1 induces rereplication in G1 or G2 and activates an ATM/ATR-dependent checkpoint, the Cdt1-geminin complex does not. We further demonstrate that the stoichiometry of the Cdt1-geminin complex regulates its activity. Our results suggest a model in which the MCM2-7 helicase is loaded onto chromatin by a Cdt1-geminin complex, which is inactivated upon origin firing by binding additional geminin. This origin inactivation reaction does not occur if only free Cdt1 is present on chromatin.  相似文献   

7.
During late mitosis and early G1, replication origins are licensed for subsequent replication by loading heterohexamers of the mini-chromosome maintenance proteins (Mcm2-7). To prevent re-replication of DNA, the licensing system is down-regulated at other cell cycle stages. A small protein called geminin plays an important role in this down-regulation by binding and inhibiting the Cdt1 component of the licensing system. We examine here the organization of Xenopus Cdt1, delimiting regions of Cdt1 required for licensing and regions required for geminin interaction. The C-terminal 377 residues of Cdt1 are required for licensing and the extreme C-terminus contains a domain that interacts with an Mcm(2,4,6,7) complex. Two regions of Cdt1 interact with geminin: one at the N-terminus, and one in the centre of the protein. Only the central region binds geminin tightly enough to successfully compete with full-length Cdt1 for geminin binding. This interaction requires a predicted coiled-coil domain that is conserved amongst metazoan Cdt1 homologues. Geminin forms a homodimer, with each dimer binding one molecule of Cdt1. Separation of the domains necessary for licensing activity from domains required for a strong interaction with geminin generated a construct, whose licensing activity was partially insensitive to geminin inhibition.  相似文献   

8.
Replication licensing--defining the proliferative state?   总被引:16,自引:0,他引:16  
The proliferation of eukaryotic cells is a highly regulated process that depends on the precise duplication of chromosomal DNA in each cell cycle. Regulation of the replication licensing system, which promotes the assembly of complexes of proteins termed Mcm2-7 onto replication origins, is responsible for preventing re-replication of DNA in a single cell cycle. Recent work has shown how the licensing system is directly controlled by cyclin-dependent kinases (CDKs). Repression of origin licensing is emerging as a ubiquitous route by which the proliferative capacity of cells is lowered, and Mcm2-Mcm7 proteins show promise as diagnostic markers of early cancer stages. These results have prompted us to propose a functional distinction between the proliferative state and the non-proliferative state (including G0) depending on whether origins are licensed.  相似文献   

9.
Cdt1 is a conserved replication factor required in licensing the chromosome for a single round of DNA synthesis. The activity of Cdt1 is inhibited by geminin. The mechanism by which geminin interferes with Cdt1 activity is unknown. It is thought that geminin binds to and sequestrate Cdt1. We show that geminin does not interfere with the chromatin association of Cdt1 and that inhibition of DNA synthesis by geminin is observed following its accumulation on chromatin. The binding of geminin to chromatin has been investigated during S phase. We demonstrate that loading of geminin onto chromatin requires Cdt1, suggesting that geminin is targeted at replication origins. We also show that geminin binds chromatin at the transition from the pre-replication to pre-initiation complexes, which overlaps with the release of Cdt1. This regulation is strikingly different from that observed in somatic cells where the chromatin binding of these proteins is mutually exclusive. In contrast to somatic cells, we further show that geminin is stable during the early embryonic cell cycles. These results suggest a specific regulation of origin firing adapted to the rapid cell cycles of Xenopus and indicate that periodic degradation of geminin is not relevant to licensing during embryonic development.  相似文献   

10.
Eukaryotic replication origins are 'licensed' for replication early in the cell cycle by loading Mcm(2-7) proteins. As chromatin replicates, Mcm(2-7) are removed, thus preventing the origin from firing again. Here we report the purification of the RLF-B component of the licensing system and show that it corresponds to Cdt1. RLF-B/Cdt1 was inhibited by geminin, a protein that is degraded during late mitosis. Immunodepletion of geminin from metaphase extracts allowed them to assemble licensed replication origins. Inhibition of CDKs in metaphase stimulated origin assembly only after the depletion of geminin. These experiments suggest that geminin-mediated inhibition of RLF-B/Cdt1 is essential for repressing origin assembly late in the cell cycle of higher eukaryotes.  相似文献   

11.
12.
Blow JJ  Tanaka TU 《EMBO reports》2005,6(11):1028-1034
During the cell-division cycle, chromosomal DNA must initially be precisely duplicated and then correctly segregated to daughter cells. The accuracy of these two events is maintained by two interlinked cycles: the replication licensing cycle, which ensures precise duplication of DNA, and the cohesion cycle, which ensures correct segregation. Here we provide a general overview of how these two systems are coordinated to maintain genetic stability during the cell cycle.  相似文献   

13.
To ensure genomic integrity, the genome must be duplicated exactly once per cell cycle. Disruption of replication licensing mechanisms may lead to re-replication and genomic instability. Cdt1, also known as Double-parked (Dup) in Drosophila, is a key regulator of the assembly of the pre-replicative complex (pre-RC) and its activity is strictly limited to G1 by multiple mechanisms including Cul4-Ddb1 mediated proteolysis and inhibition by geminin. We assayed the genomic consequences of disregulating the replication licensing mechanisms by RNAi depletion of geminin. We found that not all origins of replication were sensitive to geminin depletion and that heterochromatic sequences were preferentially re-replicated in the absence of licensing mechanisms. The preferential re-activation of heterochromatic origins of replication was unexpected because these are typically the last sequences to be duplicated in a normal cell cycle. We found that the re-replication of heterochromatin was regulated not at the level of pre-RC activation, but rather by the formation of the pre-RC. Unlike the global assembly of the pre-RC that occurs throughout the genome in G1, in the absence of geminin, limited pre-RC assembly was restricted to the heterochromatin by elevated cyclin A-CDK activity. These results suggest that there are chromatin and cell cycle specific controls that regulate the re-assembly of the pre-RC outside of G1.  相似文献   

14.
We have examined the behavior of pre-replication complex (pre-RC) proteins in relation to key cell cycle transitions in Chinese Hamster Ovary (CHO) cells. ORC1, ORC4 and Cdc6 were stable (T1/2 >2 h) and associated with a chromatin-containing fraction throughout the cell cycle. Green fluorescent protein-tagged ORC1 associated with chromatin throughout mitosis in living cells and co-localized with ORC4 in metaphase spreads. Association of Mcm proteins with chromatin took place during telophase, approximately 30 min after the destruction of geminin and cyclins A and B, and was coincident with the licensing of chromatin to replicate in geminin-supplemented Xenopus egg extracts. Neither Mcm recruitment nor licensing required protein synthesis throughout mitosis. Moreover, licensing could be uncoupled from origin specification in geminin-supplemented extracts; site-specific initiation within the dihydrofolate reductase locus required nuclei from cells that had passed through the origin decision point (ODP). These results demonstrate that mammalian pre-RC assembly takes place during telophase, mediated by post-translational modifications of pre-existing proteins, and is not sufficient to select specific origin sites. A subsequent, as yet undefined, step selects which pre-RCs will function as replication origins.  相似文献   

15.
Background information. Centrosome duplication normally parallels with DNA replication and is responsible for correct segregation of replicated DNA into the daughter cells. Although geminin interacts with Cdt1 to prevent loading of MCMs (minichromosome maintenance proteins) on to the replication origins, inactivation of geminin nevertheless causes centrosome over‐duplication in addition to the re‐replication of the genome, suggesting that geminin may play a role in centrosome duplication. However, the exact mechanism by which loss of geminin affects centrosomal duplication remains unclear and the possible direct interaction of geminin with centrosomal‐localized proteins is still unidentified. Results. We report in the present study that geminin is physically localized to the centrosome. This unexpected geminin localization is cell‐cycle dependent and mediated by the actin‐related protein, Arp1, one subunit of the dynein—dynactin complex. Disruption of the integrity of the dynein—dynactin complex by overexpression of dynamitin/p50, a well‐characterized inhibitor of dynactin, reduces the centrosomal localization of both geminin and Arp1. Enrichment of geminin on centrosomes was enhanced when cellular ATP production was suppressed in the ATP‐inhibitor assay, whereas the accumulation of geminin on the centrosome was disrupted by depolymerization of the microtubules using nocodazole. We further demonstrate that the coiled‐coil motif of geminin is required for its centrosomal localization and the interaction of geminin with Arp1. Depletion of geminin by siRNA (small interfering RNA) in MDA‐MB‐231 cells led to centrosome over‐duplication. Conversely, overexpression of geminin inhibits centrosome over‐duplication induced by HU in S‐phase‐arrested cells, and the coiled‐coil‐motif‐mediated centrosomal localization of geminin is required for its inhibition of centrosome over‐duplication. Centrosomal localization of geminin is conserved among mammalian cells and geminin might perform as an inhibitor of centrosome duplication. Conclusions. The results of the present study demonstrate that a fraction of geminin is localized on the centrosome, and the centrosomal localization of geminin is Arp1‐mediated and dynein—dynactin‐dependent. The coiled‐coil motif of geminin is required for its targeting to the centrosome and inhibition of centrosome duplication. Thus the centrosomal localization of geminin might perform an important role in regulation of proper centrosome duplication.  相似文献   

16.
Once per cell cycle replication is crucial for maintaining genome integrity. Geminin interacts with the licensing factor Cdt1 to prevent untimely replication and is controlled by APC/C-dependent cell cycle specific proteolysis during mitosis and in G1. We show here that human geminin, when expressed in human cells in culture under a constitutive promoter, is excluded from the nucleus during part of the G1 phase and at the transition from G0 to G1. The N-terminal 30 amino acids of geminin, which contain its destruction box, are essential for nuclear exclusion. In addition, 30 amino acids within the central domain of geminin are required for both nuclear exclusion and nuclear accumulation. Cdt1 overexpression targets geminin to the nucleus, while reducing Cdt1 levels by RNAi leads to the appearance of endogenous geminin in the cytoplasm. Our data propose a novel means of regulating the balance of Cdt1/geminin in human cells, at the level of the subcellular localization of geminin.  相似文献   

17.
Cdt1 is an essential component for the assembly of a pre-replicative complex. Cdt1 activity is inhibited by geminin, which also participates in neural development and embryonic differentiation in many eukaryotes. Although Cdt1 homologues have been identified in organisms ranging from yeast to human, geminin homologues had not been described for Caenorhabditis elegans and fungi. Here, we identify the C. elegans geminin, GMN-1. Biochemical analysis reveals that GMN-1 associates with C. elegans CDT-1, the Hox protein NOB-1, and the Six protein CEH-32. GMN-1 inhibits not only the interaction between mouse Cdt1 and Mcm6 but also licensing activity in Xenopus egg extracts. RNA interference-mediated reduction of GMN-1 is associated with enlarged germ nuclei with aberrant nucleolar morphology, severely impaired gametogenesis, and chromosome bridging in intestinal cells. We conclude that the Cdt1-geminin system is conserved throughout metazoans and that geminin has evolved in these taxa to regulate proliferation and differentiation by directly interacting with Cdt1 and homeobox proteins.  相似文献   

18.
A crucial regulation for maintaining genome integrity in eukaryotes is to limit DNA replication in S phase to only one round. Several models have been proposed; one of which, the licensing model, predicted that formation of the nuclear membrane restricts access to chromatin to a positive replication factor. Cdt1, a factor binding to origins and recruiting the MCM2-7 helicase, has been identified as a component of the licensing system in Xenopus and other eukaryotes. Nevertheless, evidence is missing demonstrating a direct role for unscheduled Cdt1 expression in promoting illegitimate reinitiation of DNA synthesis. We show here that Xenopus Cdt1 is absent in G2 nuclei, suggesting that it might be either degraded or exported. Recombinant Cdt1, added to egg extracts in G2, crosses the nuclear membrane, binds to chromatin, and relicenses the chromosome for new rounds of DNA synthesis in combination with chromatin bound Cdc6. The mechanism involves rebinding of MCM3 to chromatin. Reinitiation is blocked by geminin only in G2 and is not stimulated by Cdc6, demonstrating that Cdt1, but not Cdc6, is limiting for reinitiation in egg extracts. These results suggest that removal of Cdt1 from chromatin and its nuclear exclusion in G2 is critical in regulating licensing and that override of this control is sufficient to promote illegitimate firing of origins.  相似文献   

19.
20.
Geminin controls proper centrosome duplication, cell division, and differentiation. We investigated the function of geminin in oogenesis, fertilization, and early embryo development by deleting the geminin gene in oocytes from the primordial follicle stage. Oocyte-specific disruption of geminin results in low fertility in mice. Even though there was no evident anomaly of oogenesis, oocyte meiotic maturation, natural ovulation, or fertilization, early embryo development and implantation were impaired. The fertilized eggs derived from mutant mice showed developmental delay, and many were blocked at the late zygote stage. Cdt1 protein was decreased, whereas Chk1 and H2AX phosphorylation was increased, in fertilized eggs after geminin depletion. Our results suggest that disruption of maternal geminin may decrease Cdt1 expression and cause DNA rereplication, which then activates the cell cycle checkpoint and DNA damage repair and thus impairs early embryo development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号