首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autophagy is a cellular response to starvation which generates autophagosomes to carry cellular organelles and long-lived proteins to lysosomes for degradation. Degradation through autophagy can provide an innate defence against virus infection, or conversely autophagosomes can promote infection by facilitating assembly of replicase proteins. We demonstrate that the avian coronavirus, Infectious Bronchitis Virus (IBV) activates autophagy. A screen of individual IBV non-structural proteins (nsps) showed that autophagy was activated by IBV nsp6. This property was shared with nsp6 of mammalian coronaviruses Mouse Hepatitis Virus, and Severe Acute Respiratory Syndrome Virus, and the equivalent nsp5-7 of the arterivirus Porcine Reproductive and Respiratory Syndrome Virus. These multiple-spanning transmembrane proteins located to the endoplasmic reticulum (ER) where they generated Atg5 and LC3II-positive vesicles, and vesicle formation was dependent on Atg5 and class III PI3 kinase. The vesicles recruited double FYVE-domain containing protein (DFCP) indicating localised concentration of phosphatidylinositol 3 phosphate, and therefore shared many features with omegasomes formed from the ER in response to starvation. Omegasomes induced by viral nsp6 matured into autophagosomes that delivered LC3 to lysosomes and therefore recruited and recycled the proteins needed for autophagosome nucleation, expansion, cellular trafficking and delivery of cargo to lysosomes. The coronavirus nsp6 proteins activated omegasome and autophagosome formation independently of starvation, but activation did not involve direct inhibition of mTOR signalling, activation of sirtuin1 or induction of ER stress.  相似文献   

2.
《Autophagy》2013,9(8):1426-1441
Autophagy is a cellular response to starvation that generates autophagosomes to carry long-lived proteins and cellular organelles to lysosomes for degradation. Activation of autophagy by viruses can provide an innate defense against infection, and for (+) strand RNA viruses autophagosomes can facilitate assembly of replicase proteins. We demonstrated that nonstructural protein (NSP) 6 of the avian coronavirus, infectious bronchitis virus (IBV), generates autophagosomes from the ER. A statistical analysis of MAP1LC3B puncta showed that NSP6 induced greater numbers of autophagosomes per cell compared with starvation, but the autophagosomes induced by NSP6 had smaller diameters compared with starvation controls. Small diameter autophagosomes were also induced by infection of cells with IBV, and by NSP6 proteins of MHV and SARS and NSP5, NSP6, and NSP7 of arterivirus PRRSV. Analysis of WIPI2 puncta induced by NSP6 suggests that NSP6 limits autophagosome diameter at the point of omegasome formation. IBV NSP6 also limited autophagosome and omegasome expansion in response to starvation and Torin1 and could therefore limit the size of autophagosomes induced following inhibition of MTOR signaling, as well as those induced independently by the NSP6 protein itself. MAP1LC3B-puncta induced by NSP6 contained SQSTM1, which suggests they can incorporate autophagy cargos. However, NSP6 inhibited the autophagosome/lysosome expansion normally seen following starvation. Taken together the results show that coronavirus NSP6 proteins limit autophagosome expansion, whether they are induced directly by the NSP6 protein, or indirectly by starvation or chemical inhibition of MTOR signaling. This may favor coronavirus infection by compromising the ability of autophagosomes to deliver viral components to lysosomes for degradation.  相似文献   

3.
Autophagy is a cellular response to starvation that generates autophagosomes to carry long-lived proteins and cellular organelles to lysosomes for degradation. Activation of autophagy by viruses can provide an innate defense against infection, and for (+) strand RNA viruses autophagosomes can facilitate assembly of replicase proteins. We demonstrated that nonstructural protein (NSP) 6 of the avian coronavirus, infectious bronchitis virus (IBV), generates autophagosomes from the ER. A statistical analysis of MAP1LC3B puncta showed that NSP6 induced greater numbers of autophagosomes per cell compared with starvation, but the autophagosomes induced by NSP6 had smaller diameters compared with starvation controls. Small diameter autophagosomes were also induced by infection of cells with IBV, and by NSP6 proteins of MHV and SARS and NSP5, NSP6, and NSP7 of arterivirus PRRSV. Analysis of WIPI2 puncta induced by NSP6 suggests that NSP6 limits autophagosome diameter at the point of omegasome formation. IBV NSP6 also limited autophagosome and omegasome expansion in response to starvation and Torin1 and could therefore limit the size of autophagosomes induced following inhibition of MTOR signaling, as well as those induced independently by the NSP6 protein itself. MAP1LC3B-puncta induced by NSP6 contained SQSTM1, which suggests they can incorporate autophagy cargos. However, NSP6 inhibited the autophagosome/lysosome expansion normally seen following starvation. Taken together the results show that coronavirus NSP6 proteins limit autophagosome expansion, whether they are induced directly by the NSP6 protein, or indirectly by starvation or chemical inhibition of MTOR signaling. This may favor coronavirus infection by compromising the ability of autophagosomes to deliver viral components to lysosomes for degradation.  相似文献   

4.
Autophagy is an intracellular pathway that can contribute to innate antiviral immunity by delivering viruses to lysosomes for degradation or can be beneficial for viruses by providing specialized membranes for virus replication. Here, we show that the picornavirus foot-and-mouth disease virus (FMDV) induces the formation of autophagosomes. Induction was dependent on Atg5, involved processing of LC3 to LC3II, and led to a redistribution of LC3 from the cytosol to punctate vesicles indicative of authentic autophagosomes. Furthermore, FMDV yields were reduced in cells lacking Atg5, suggesting that autophagy may facilitate FMDV infection. However, induction of autophagosomes by FMDV appeared to differ from starvation, as the generation of LC3 punctae was not inhibited by wortmannin, implying that FMDV-induced autophagosome formation does not require the class III phosphatidylinositol 3-kinase (PI3-kinase) activity of vps34. Unlike other picornaviruses, for which there is strong evidence that autophagosome formation is linked to expression of viral nonstructural proteins, FMDV induced autophagosomes very early during infection. Furthermore, autophagosomes could be triggered by either UV-inactivated virus or empty FMDV capsids, suggesting that autophagosome formation was activated during cell entry. Unlike other picornaviruses, FMDV-induced autophagosomes did not colocalize with the viral 3A or 3D protein. In contrast, ∼50% of the autophagosomes induced by FMDV colocalized with VP1. LC3 and VP1 also colocalized with the cellular adaptor protein p62, which normally targets ubiquitinated proteins to autophagosomes. These results suggest that FMDV induces autophagosomes during cell entry to facilitate infection, but not to provide membranes for replication.  相似文献   

5.
《Autophagy》2013,9(4):496-509
Autophagy is a highly conserved cellular response to starvation that leads to the degradation of organelles and long-lived proteins in lysosomes and is important for cellular homeostasis, tissue development and as a defense against aggregated proteins, damaged organelles and infectious agents. Although autophagy has been studied in many animal species, reagents to study autophagy in avian systems are lacking. Microtubule-associated protein 1 light chain 3 (MAP1LC3/LC3) is an important marker for autophagy and is used to follow autophagosome formation. Here we report the cloning of avian LC3 paralogs A, B and C from the domestic chicken, Gallus gallus domesticus, and the production of replication-deficient, recombinant adenovirus vectors expressing these avian LC3s tagged with EGFP and FLAG-mCherry. An additional recombinant adenovirus expressing EGFP-tagged LC3B containing a G120A mutation was also generated. These vectors can be used as tools to visualize autophagosome formation and fusion with endosomes/lysosomes in avian cells and provide a valuable resource for studying autophagy in avian cells. We have used them to study autophagy during replication of infectious bronchitis virus (IBV). IBV induced autophagic signaling in mammalian Vero cells but not primary avian chick kidney cells or the avian DF1 cell line. Furthermore, induction or inhibition of autophagy did not affect IBV replication, suggesting that classical autophagy may not be important for virus replication. However, expression of IBV nonstructural protein 6 alone did induce autophagic signaling in avian cells, as seen previously in mammalian cells. This may suggest that IBV can inhibit or control autophagy in avian cells, although IBV did not appear to inhibit autophagy induced by starvation or rapamycin treatment.  相似文献   

6.
《Autophagy》2013,9(7):778-779
Macroautophagy (hereafter autophagy) is a membrane-mediated catabolic process that occurs in response to a variety of intra- and extra-cellular stresses. It is characterized by the formation of specialized double-membrane vesicles, autophagosomes, which engulf organelles and long-lived proteins, and in turn fuse with lysosomes for degradation and recycling. How autophagosomes emerge is still unclear. The Atg1 kinase plays a crucial role in the induction of autophagosome formation. While several Atg (autophagy-related) proteins have been associated with, and have been found to regulate, Atg1 kinase activity, the downstream targets of Atg1 that trigger autophagy remain unknown. Our recent studies have identified a myosin light chain kinase (MLCK)-like kinase as the Atg1 kinase effector that induces the activation of myosin II, and have found it to be required for autophagosome formation during nutrient deprivation. We further demonstrated that Atg1-mediated myosin II activation is crucial for the movement of the Atg9 transmembrane protein between the Golgi and the forming autophagosome, which provides a membrane source for the formation of autophagosomes during starvation.  相似文献   

7.
Tang HW  Chen GC 《Autophagy》2011,7(7):778-779
Macroautophagy (hereafter autophagy) is a membrane-mediated catabolic process that occurs in response to a variety of intra- and extra-cellular stresses. It is characterized by the formation of specialized double-membrane vesicles, autophagosomes, which engulf organelles and long-lived proteins, and in turn fuse with lysosomes for degradation and recycling. How autophagosomes emerge is still unclear. The Atg1 kinase plays a crucial role in the induction of autophagosome formation. While several Atg (autophagy-related) proteins have been associated with, and have been found to regulate, Atg1 kinase activity, the downstream targets of Atg1 that trigger autophagy remain unknown. Our recent studies have identified a myosin light chain kinase (MLCK)-like kinase as the Atg1 kinase effector that induces the activation of myosin II, and have found it to be required for autophagosome formation during nutrient deprivation. We further demonstrated that Atg1-mediated myosin II activation is crucial for the movement of the Atg9 transmembrane protein between the Golgi and the forming autophagosome, which provides a membrane source for the formation of autophagosomes during starvation.  相似文献   

8.
Macroautophagy mediates the bulk degradation of cytoplasmic components. It accounts for the degradation of most long-lived proteins: cytoplasmic constituents, including organelles, are sequestered into autophagosomes, which subsequently fuse with lysosomes, where degradation occurs. Although the possible involvement of autophagy in homeostasis, development, cell death, and pathogenesis has been repeatedly pointed out, systematic in vivo analysis has not been performed in mammals, mainly because of a limitation of monitoring methods. To understand where and when autophagy occurs in vivo, we have generated transgenic mice systemically expressing GFP fused to LC3, which is a mammalian homologue of yeast Atg8 (Aut7/Apg8) and serves as a marker protein for autophagosomes. Fluorescence microscopic analyses revealed that autophagy is differently induced by nutrient starvation in most tissues. In some tissues, autophagy even occurs actively without starvation treatments. Our results suggest that the regulation of autophagy is organ dependent and the role of autophagy is not restricted to the starvation response. This transgenic mouse model is a useful tool to study mammalian autophagy.  相似文献   

9.
The membrane origin of autophagosomes has long been a mystery and it may involve multiple sources. In this punctum, we discuss our recent finding that the plasma membrane contributes to the formation of pre-autophagic structures via clathrin-mediated endocytosis. Our study suggests that Atg16L1 interacts with clathrin heavy-chain/AP2 and is also localized on vesicles (positive for clathrin or cholera toxin B) close to the plasma membrane. Live-cell imaging studies revealed that the plasma membrane contributes to Atg16L1-positive structures and that this process and autophagosome formation are impaired by knockdowns of genes regulating clathrin-mediated endocytosis.Key words: autophagy, plasma membrane, endocytosis, phagophore, originWhere do autophagosomes get their membrane from? Although the field of autophagy has grown tremendously since its discovery a few decades ago, the origin(s) of the membranes that contribute to autophagosome biogenesis has been a mystery among autophagy researchers until recently. Mammalian autophagosomes are formed randomly throughout the cytoplasm via a process that involves elongation and fusion of phagophores to form double-membraned autophagosomes. This process involves two ubiquitin-like conjugation systems: conjugation of Atg12 to Atg5 that later forms a macromolecular complex with Atg16L1, and conjugation of phosphatidylethanolamine (PE) with Atg8/LC3-I. The Atg12-Atg5-Atg16L1 complex is targeted to the preautophagic structures, which then acquire Atg8. Atg12-Atg5-Atg16L1 dissociates from completed autophagosomes, while LC3-PE (LC3-II) is associated both with pre-autophagic structures and completed autophagosomes.Some recent studies have explored the contribution of membranes from different organelles supporting the general idea that autophagosomes derive membranes from pre-existing organelles. It is quite possible that there may be multiple membrane sources involved. A few groups have revisited the hypothesis that the endoplasmic reticulum (ER) may be one of the membrane donors. High-resolution 2D electron microscopy (EM) and 3D EM-tomography studies have revealed connections between the ER and the growing autophagosomes. Whether the ER contributes to general autophagy or a specific form of autophagy, reticulophagy, remains to be determined. In addition, it has not been shown if ER membrane is required for autophagosome formation. Recently another study has reported that autophagosomes receive lipids from the outer mitochondrial membrane, but only under starvation conditions, again fueling the multiple-membrane source hypothesis.We have now found evidence for plasma membrane contribution to pre-autophagic structures via endocytosis. Unlike the previous studies, which have focused on LC3- positive structures, we looked specifically at the Atg5-, Atg12- and Atg16-positive pre-autophagic structures, an idea that stemmed from our finding that clathrin heavy-chain immunoprecipitates with Atg16L1. We think that this interaction is partly mediated by the adaptor protein AP2, since knockdown of AP2 decreases the clathrin heavy-chain-Atg16L1 interaction. Immunogold EM also shows clathrin localization on Atg16L1-labeled vesicles close to the plasma membrane.These findings led us to test whether knockdown of proteins involved in clathrin-mediated endocytosis affected Atg16L1-positive pre-autophagic structures. Indeed, knockdown of key proteins in the clathrin-mediated endocytic pathway results in a decrease in the formation of Atg16L1-positive structures both under basal or autophagy-induced conditions (starvation or trehalose treatment). This correlates with a decrease in the number of LC3-labeled autophagosomes. When we directly analyzed vesicle fusion by livecell microscopy, we observed that vesicles endocytosed from the plasma membrane fuse to the Atg16L1-positive vesicles close to the plasma membrane. This was confirmed by immuno-EM when we found cholera toxin B-labeling (used to label plasma membrane that is subsequently internalized by endocytosis) on Atg16L1-vesicles. We noticed that overexpression of an Atg16L1 mutant that does not bind clathrin heavy-chain does not form Atg16L1-vesicular structures in the way we see with wild-type Atg16L1, suggesting that the binding of Atg16L1 to AP2/clathrin is required for the subsequent formation of the Atg16L1 vesicles.When we blocked endocytic vesicle scission (using both genetic and chemical inhibitors) we found that Atg16L1 strongly immunoprecipitates with clathrin-heavy chain probably due to the accumulation of clathrin-Atg16L1 structures at the plasma membrane that failed to pinch off. This was strongly supported by our fluorescence microscopy and immuno-EM studies that showed what we predicted—accumulation of Atg16L1 at the plasma membrane. This suggests that Atg16L1 in a complex with AP2/clathrin is targeted to the plasma membrane and subsequently internalized as Atg16L1-positive structures. Thus, our data strongly suggest that plasma membrane contributes to early autophagic precursors that subsequently mature to form phagophores (Fig. 1).Open in a separate windowFigure 1Plasma membrane contributes to the formation of early autophagic precursors. Previous studies show that delivery of fully formed autophagosomes to lysosomes requires fusion of such autophagosomes with early or late endosomes to form amphisomes, which are Atg16L1-negative, LC3-positive and are also positive for endosomal markers. We show that blocking clathrin-mediated endocytosis inhibits formation of Atg16L1-positive structures that mature to form phagophores and later autophagosomes. These Atg16L1-vesicles are positive for other early autophagosomal markers like Atg5 and Atg12, but are negative for early endosomal markers like EEA1, suggesting that they are high up in the autophagosome biogenesis cascade. Inhibition of dynamin with Dynsasore or the use of a dominant negative K44A mutant blocks scission and results in Atg16L1 accumulation on the plasma membrane, suggesting that endosomal scission is critical for this process.Although previous studies suggest that completely formed autophagosomes need to fuse with early or late endosomes in order for subsequent autophagosomelysosome fusion to occur, they did not look at the formation of pre-autophagic structures. Our study shows that active endocytosis is required both for the formation of autophagosomes, when very early endocytic intermediates immediately pinching off the plasma membrane (not early endosomes) fuse with Atg16L1-positive structures to form phagophores, and also for maturation of autophagosomes when early or late endosomes fuse with Atg16L1-negative but LC3-positive autophagosomes to form amphisomes. Since blocking clathrin-mediated endocytosis does not completely abrogate autophagosome formation, we believe that other endocytic pathways may have a similar role. Depending on the cell type or the physiological conditions, the contributions from the different endocytic pathways may vary accordingly. It will be interesting to know if the endocytic pathway continuously delivers membrane for early steps in autophagy as the preautophagic structures grow and mature to form autophagosomes, deriving membrane from other sources.  相似文献   

10.
After ingestion by macrophages, Legionella pneumophila enter spacious vacuoles that are quickly enveloped by endoplasmic reticulum (ER), then slowly transferred to lysosomes. Here we demonstrate that the macrophage autophagy machinery recognizes the pathogen phagosome as cargo for lysosome delivery. The autophagy conjugation enzyme Atg7 immediately translocated to phagosomes harbouring virulent Legionella. Subsequently, Atg8, a second autophagy enzyme, and monodansyl-cadaverine (MDC), a dye that accumulates in acidic autophagosomes, decorated the pathogen vacuoles. The autophagy machinery responded to 10-30 kDa species released into culture supernatants by Type IV secretion-competent Legionella, as judged by the macrophages' processing of Atg8 and formation of vacuoles that sequentially acquired Atg7, Atg8 and MDC. When compared with autophagosomes stimulated by rapamycin, Legionella vacuoles acquired Atg7, Atg8 and MDC more slowly, and Atg8 processing was also delayed. Moreover, compared with autophagosomes of Legionella-permissive naip5 mutant A/J macrophages, those of resistant C57BL/6 J macrophages matured quickly, preventing efficient Legionella replication. Accordingly, we discuss a model in which macrophages elevate autophagy as a barrier to infection, a decision influenced by regulatory interactions between Naip proteins and caspases.  相似文献   

11.
Calcium can play an important role in the regulation of autophagy. We previously reported that exogenously introduced calcium in the form of calcium phosphate precipitates (CPP) induces autophagy. Here we showed that CPP-induced autophagy required the classical autophagic machinery, including the autophagosome initiating molecules FIP200 and Beclin 1, as well as molecules involved in the autophagosome membrane extension, Atg4, Atg5 and Atg3. On the other hand, Atg9 seemed to place a restriction on CPP-induced autophagy. Loss of Atg9 led to enhanced LC3 punctation and enhanced p62 degradation. CPP-induced autophagy was independent of mTOR and reactive oxygen species. It also did not affect MAP kinase activation and ER stress. DFCP1 is an ER-resident molecule that binds to phosphatidylinositol 3-phosphate. CPP activated DFCP1 punctation in a class III phosphatidylinositol-3-kinase and calcium dependent manner, and caused the association of DFCP1 puncta with the autophagosomes. Consistently, ER membranes, but not Golgi or mitochondrial membranes, colocalized with CPP-induced LC3 positive autophagosomes. These data suggest that CPP-induced autophagosome formation involves the interaction with the ER membrane.  相似文献   

12.
Autophagy is an evolutionally conserved process for the bulk degradation of cytoplasmic proteins and organelles. Recent observations indicate that autophagy is induced in response to cellular insults that result in the accumulation of misfolded proteins in the lumen of the endoplasmic reticulum (ER). However, the signaling mechanisms that activate autophagy under these conditions are not understood. Here, we report that ER stress-induced autophagy requires the activation of protein kinase C (PKC), a member of the novel-type PKC family. Induction of ER stress by treatment with either thapsigargin or tunicamycin activated autophagy in immortalized hepatocytes as monitored by the conversion LC3-I to LC3-II, clustering of LC3 into dot-like cytoplasmic structures, and electron microscopic detection of autophagosomes. Pharmacological inhibition of PKC or small interfering RNA-mediated knockdown of PKC prevented the autophagic response to ER stress. Treatment with ER stressors induced PKC phosphorylation within the activation loop and localization of phospho-PKC to LC3-containing dot structures in the cytoplasm. However, signaling through the known unfolded protein response sensors was not required for PKC activation. PKC activation and stress-induced autophagy were blocked by chelation of intracellular Ca(2+) with BAPTA-AM. PKC was not activated or required for autophagy in response to amino acid starvation. These observations indicate that Ca(2+)-dependent PKC activation is specifically required for autophagy in response to ER stress but not in response to amino acid starvation.  相似文献   

13.
FYCO1 (FYVE and coiled-coil domain containing 1) functions as an autophagy adaptor in directly linking autophagosomes with the microtubule-based kinesin motor, and plays an essential role in the microtubule plus end-directed transport of autophagic vesicles. The specific association of FYCO1 with autophagosomes is mediated by its interaction with Atg8-family proteins decorated on the outer surface of autophagosome. However, the mechanistic basis governing the interaction between FYCO1 and Atg8-family proteins is largely unknown. Here, using biochemical and structural analyses, we demonstrated that FYCO1 contains a unique LC3-interacting region (LIR), which discriminately binds to mammalian Atg8 orthologs and preferentially binds to the MAP1LC3A and MAP1LC3B. In addition to uncovering the detailed molecular mechanism underlying the FYCO1 LIR and MAP1LC3A interaction, the determined FYCO1-LIR-MAP1LC3A complex structure also reveals a unique LIR binding mode for Atg8-family proteins, and demonstrates, first, the functional relevance of adjacent sequences C-terminal to the LIR core motif for binding to Atg8-family proteins. Taken together, our findings not only provide new mechanistic insight into FYCO1-mediated transport of autophagosomes, but also expand our understanding of the interaction modes between LIR motifs and Atg8-family proteins in general.  相似文献   

14.
Chen D  Fan W  Lu Y  Ding X  Chen S  Zhong Q 《Molecular cell》2012,45(5):629-641
Autophagy is a major catabolic pathway in eukaryotes associated with a broad spectrum of human diseases. In autophagy, autophagosomes carrying cellular cargoes fuse with lysosomes for degradation. However, the molecular mechanism underlying autophagosome maturation is largely unknown. Here we report that TECPR1 binds to the Atg12-Atg5 conjugate and phosphatidylinositol 3-phosphate (PtdIns[3]P) to promote autophagosome-lysosome fusion. TECPR1 and Atg16 form mutually exclusive complexes with the Atg12-Atg5 conjugate, and TECPR1 binds PtdIns(3)P upon association with the Atg12-Atg5 conjugate. Strikingly, TECPR1 localizes to and recruits Atg5 to autolysosome membrane. Consequently, elimination of TECPR1 leads to accumulation of autophagosomes and blocks autophagic degradation of LC3-II and p62. Finally, autophagosome maturation marked by GFP-mRFP-LC3 is defective in TECPR1-deficient cells. Thus, we propose that the concerted interactions among TECPR1, Atg12-Atg5, and PtdIns(3)P provide the fusion specificity between autophagosomes and lysosomes and that the assembly of this complex initiates the autophagosome maturation process.  相似文献   

15.
Wei W  Gai Z  Ai H  Wu W  Yang Y  Peng J  Hong H  Li Y  Liu K 《PloS one》2012,7(5):e37457
Autophagy plays a central role in regulating important cellular functions such as cell survival during starvation and control of infectious pathogens. On the other hand, many pathogens have evolved mechanisms of inhibition of autophagy such as blockage of the formation of autophagosomes or the fusion of autophagosomes with lysosomes. Baculoviruses are important insect pathogens for pest control, and autophagy activity increases significantly during insect metamorphosis. However, it is not clear whether baculovirus infection has effects on the increased autophagy. In the present study, we investigated the effects of the Autographa californica nucleopolyhedrovirus (AcMNPV) infection on autophagy in SL-HP cell line from Spodoptera litura induced under amino acid deprivation. The results revealed that AcMNPV infection did not inhibit autophagy but triggered apoptosis under starvation pressure. In the early stage of infection under starvation, mitochondrial dysfunction was detected, suggesting the organelles might be involved in cell apoptosis. The semi-quantitative PCR assay revealed that the expression of both p35 and ie-1 genes of AcMNPV had no significant difference between the starved and unstarved SL-HP cells. The western blot analysis showed that no cleavage of endogenous Atg6 occurred during the process of apoptosis in SL-HP cells. These data demonstrated that some permissive insect cells may defend baculovirus infection via apoptosis under starvation and apoptosis is independent of the cleavage of Atg6 in SL-HP cells.  相似文献   

16.
Atg9 is a transmembrane protein essential for autophagy which cycles between the Golgi network, late endosomes and LC3-positive autophagosomes in mammalian cells during starvation through a mechanism that is dependent on ULK1 and requires the activity of the class III phosphatidylinositol-3-kinase (PI3KC3). In this study, we demonstrate that the N-BAR-containing protein, Bif-1, is required for Atg9 trafficking and the fission of Golgi membranes during the induction of autophagy. Upon starvation, Atg9-positive membranes undergo continuous tubulation and fragmentation to produce cytoplasmic punctate structures that are positive for Rab5, Atg16L and LC3. Loss of Bif-1 or inhibition of the PI3KC3 complex II suppresses starvation-induced fission of Golgi membranes and peripheral cytoplasmic redistribution of Atg9. Moreover, Bif-1 mutants, which lack the functional regions of the N-BAR domain that are responsible for membrane binding and/or bending activity, fail to restore the fission of Golgi membranes as well as the formation of Atg9 foci and autophagosomes in Bif-1-deficient cells starved of nutrients. Taken together, these findings suggest that Bif-1 acts as a critical regulator of Atg9 puncta formation presumably by mediating Golgi fission for autophagosome biogenesis during starvation.  相似文献   

17.
Moreau K  Ravikumar B  Renna M  Puri C  Rubinsztein DC 《Cell》2011,146(2):303-317
Autophagy is a catabolic process in which lysosomes degrade intracytoplasmic contents transported in double-membraned autophagosomes. Autophagosomes are formed by the elongation and fusion of phagophores, which can be derived from preautophagosomal structures coming from the plasma membrane and other sites like the endoplasmic reticulum and mitochondria. The mechanisms by which preautophagosomal structures elongate their membranes and mature toward fully formed autophagosomes still remain unknown. Here, we show that the maturation of the early Atg16L1 precursors requires homotypic fusion, which is essential for subsequent autophagosome formation. Atg16L1 precursor homotypic fusion depends on the SNARE protein VAMP7 together with partner SNAREs. Atg16L1 precursor homotypic fusion is a critical event in the early phases of autophagy that couples membrane acquisition and autophagosome biogenesis, as this step regulates the size of the vesicles, which in turn appears to influence their subsequent maturation into LC3-positive autophagosomes.  相似文献   

18.
YJ Choi  YJ Park  JY Park  HO Jeong  DH Kim  YM Ha  JM Kim  YM Song  HS Heo  BP Yu  P Chun  HR Moon  HY Chung 《PloS one》2012,7(8):e43418
Autophagy is a major degradative process responsible for the disposal of cytoplasmic proteins and dysfunctional organelles via the lysosomal pathway. During the autophagic process, cells form double-membraned vesicles called autophagosomes that sequester disposable materials in the cytoplasm and finally fuse with lysosomes. In the present study, we investigated the inhibition of autophagy by a synthesized compound, MHY1485, in a culture system by using Ac2F rat hepatocytes. Autophagic flux was measured to evaluate the autophagic activity. Autophagosomes were visualized in Ac2F cells transfected with AdGFP-LC3 by live-cell confocal microscopy. In addition, activity of mTOR, a major regulatory protein of autophagy, was assessed by western blot and docking simulation using AutoDock 4.2. In the result, treatment with MHY1485 suppressed the basal autophagic flux, and this inhibitory effect was clearly confirmed in cells under starvation, a strong physiological inducer of autophagy. The levels of p62 and beclin-1 did not show significant change after treatment with MHY1485. Decreased co-localization of autophagosomes and lysosomes in confocal microscopic images revealed the inhibitory effect of MHY1485 on lysosomal fusion during starvation-induced autophagy. These effects of MHY1485 led to the accumulation of LC3II and enlargement of the autophagosomes in a dose- and time- dependent manner. Furthermore, MHY1485 induced mTOR activation and correspondingly showed a higher docking score than PP242, a well-known ATP-competitive mTOR inhibitor, in docking simulation. In conclusion, MHY1485 has an inhibitory effect on the autophagic process by inhibition of fusion between autophagosomes and lysosomes leading to the accumulation of LC3II protein and enlarged autophagosomes. MHY1485 also induces mTOR activity, providing a possibility for another regulatory mechanism of autophagy by the MHY compound. The significance of this study is the finding of a novel inhibitor of autophagy with an mTOR activating effect.  相似文献   

19.
冠状病毒(Coronavirus, CoV)3C样蛋白酶(3CLpro)在冠状病毒复制过程中起重要作用,是一种重要的潜在抗病毒药物候选靶标。细胞自噬是宿主重要抗病毒防御机制之一,但目前冠状病毒诱导细胞自噬及其机制还不很清楚。本研究以人类新发高致病性冠状病毒 --中东呼吸综合征冠状病毒(MERS CoV)为研究对象,探讨人类冠状病毒感染与细胞自噬的关系。通过免疫荧光法检测发现,MERS 3CLpro引起细胞内eGFP-LC3B绿色荧光点状聚集,同时MERS 3CLpro诱导自噬标志蛋白微管相关蛋白1-轻链3基 (LC3-II)表达增多,表明MERS 3CLpro可激活细胞自噬。进一步研究发现,MERS 3CLpro诱导细胞自噬体形成而阻断或抑制自噬溶酶体形成,即MERS 3CLpro诱导不完全细胞自噬效应,而且MERS 3CLpro诱导细胞自噬具有时间依赖性且不依赖于其蛋白酶催化活性。此外发现SARS CoV和NL63 CoV等其它人类冠状病毒3CLpro也具有诱导细胞自噬效应,表明3CLpro诱导细胞自噬可能是人类冠状病毒所具有的一种普遍生物学特性。本研究首次发现冠状病毒蛋白酶3CLpro能诱导宿主细胞自噬,是一种新型冠状病毒来源的宿主细胞自噬诱导蛋白,这一发现拓展了对人类冠状病毒蛋白酶功能的新认识,为研究冠状病毒与宿主抗病毒天然免疫以及以病毒蛋白酶为靶标的抗病毒药物研究提供了理论基础。  相似文献   

20.
It has been widely assumed that Atg8 family LC3/GABARAP proteins are essential for the formation of autophagosomes during macroautophagy/autophagy, and the sequestration of cargo during selective autophagy. However, there is little direct evidence on the functional contribution of these proteins to autophagosome biogenesis in mammalian cells. To dissect the functions of LC3/GABARAPs during starvation-induced autophagy and PINK1-PARK2/Parkin-dependent mitophagy, we used CRISPR/Cas9 gene editing to generate knockouts of the LC3 and GABARAP subfamilies, and all 6 Atg8 family proteins in HeLa cells. Unexpectedly, the absence of all LC3/GABARAPs did not prevent the formation of sealed autophagosomes, or selective engulfment of mitochondria during PINK1-PARK2-dependent mitophagy. Despite not being essential for autophagosome formation, the loss of LC3/GABARAPs affected both autophagosome size, and the efficiency at which they are formed. However, the critical autophagy defect in cells lacking LC3/GABARAPs was failure to drive autophagosome-lysosome fusion. Relative to the LC3 subfamily, GABARAPs were found to play a prominent role in autophagosome-lysosome fusion and recruitment of the adaptor protein PLEKHM1. Our work clarifies the essential contribution of Atg8 family proteins to autophagy in promoting autolysosome formation, and reveals the GABARAP subfamily as a key driver of starvation-induced autophagy and PINK1-PARK2-dependent mitophagy. Since LC3/GABARAPs are not essential for mitochondrial cargo sequestration, we propose an additional mechanism of selective autophagy. The model highlights the importance of ubiquitin signals and autophagy receptors for PINK-PARK2-mediated selectivity rather than Atg8 family-LIR-mediated interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号