首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stroke remains a major health problem worldwide, and is the leading cause of serious long-term disability. Recent findings now suggest that strategies to enhance angiogenesis after focal cerebral ischemia may provide unique opportunities to improve clinical outcomes during stroke recovery. In this mini-review, we survey emerging mechanisms and potential targets for angiogenic therapies in brain after stroke. Multiple elements may be involved, including growth factors, adhesion molecules and progenitor cells. Furthermore, cross talk between angiogenesis and neurogenesis may also provide additional substrates for plasticity and remodeling in the recovering brain. A better understanding of the molecular interplay between all these complex pathways may lead to novel therapeutic avenues for tackling this difficult disease.Key words: angiogenic therapy, stroke, neuroprotection, neurogenesis, angiogenesis, neurovascular unit, cerebral ischemia, stroke recovery  相似文献   

2.
3.
A residual blood supply to the ischaemic brain is a crucial determinant for tissue survival. Early changes in the vascular network and subsequent angiogenesis may be mediated by short-lived molecules like nitric oxide (NO) or growth factors such as transforming growth factor-beta1 (TGF-beta1). Although TGF-beta1 can inhibit NO production, this interaction has not been studied after ischaemia in humans. Serum samples were taken from patients at 24 h and 6 months and cerebrospinal fluid (CSF) samples at 24 h and 1 week later for possible correlation between the two factors. Tissue expression of TGF-beta1 and of the inducible isoform of NO synthase (NOS2) was assessed by immunohistochemistry. CSF levels of NO2-/NO3- as well as total (active + latent) TGF-beta1 were higher in stroke patients as compared to controls 24 h after the stroke. Both NO2-/NO3- and TGF-beta1 were lower 6 months after the stroke compared to 24 h. Levels of NO2-/NO3- correlated with levels of TGF-beta1 within the time points (P = 0.041, Kendall correlation coefficient). There was a strong staining for NOS2 in brain tissue sections in neurones, reactive astrocytes, infiltrating white blood cells, and endothelial cells of larger microvessels. TGF-beta1 expression was mainly limited to neurones and reactive astrocytes. These findings suggest that the interaction between TGF-beta1 and NOS2 might be important for angiogenesis after cerebral ischaemia and may indicate that TGF-beta1 is upregulated as a negative feedback response to elevated levels of NO.  相似文献   

4.
In recent years, studies have shown that the secretome of bone marrow mesenchymal stromal cells (BMSCs) contains many growth factors, cytokines, and antioxidants, which may provide novel approaches to treat ischemic diseases. Furthermore, the secretome may be modulated by hypoxic preconditioning. We hypothesized that conditioned medium (CM) derived from BMSCs plays a crucial role in reducing tissue damage and improving neurological recovery after ischemic stroke and that hypoxic preconditioning of BMSCs robustly improves these activities. Rats were subjected to ischemic stroke by middle cerebral artery occlusion and then intravenously administered hypoxic CM, normoxic CM, or Dulbecco modified Eagle medium (DMEM, control). Cytokine antibody arrays and label-free quantitative proteomics analysis were used to compare the differences between hypoxic CM and normoxic CM. Injection of normoxic CM significantly reduced the infarct area and improved neurological recovery after stroke compared with administering DMEM. These outcomes may be associated with the attenuation of apoptosis and promotion of angiogenesis. Hypoxic preconditioning significantly enhanced these therapeutic effects. Fourteen proteins were significantly increased in hypoxic CM compared with normoxic CM as measured by cytokine arrays. The label-free quantitative proteomics analysis revealed 163 proteins that were differentially expressed between the two groups, including 107 upregulated proteins and 56 downregulated proteins. Collectively, our results demonstrate that hypoxic CM protected brain tissue from ischemic injury and promoted functional recovery after stroke in rats and that hypoxic CM may be the basis of a potential therapy for stroke patients.  相似文献   

5.
6.
7.
Angiogenesis is positively correlated with the survival rate of stroke patients. Therefore, studying factors that initiate and promote angiogenesis after ischemic stroke is crucial for finding novel and effective treatment targets that improve the prognosis of stroke. X-box binding protein l splicing (XBP1s) plays a positive regulatory role in cell proliferation and angiogenesis. However, the role and mechanism of XBP1s on the proliferation of brain microvascular endothelial cells (BMECs) and angiogenesis after cerebral ischemia remains unclear. In the current study, we investigated the role XBP1s plays in BMEC proliferation and angiogenesis following cerebral ischemia. In this study, the roles of XBP1s on cell survival, apoptosis, cycle migration, and angiogenesis were determined in oxygen-glucose deprivation (OGD) treated BMECs. The expression of XBP1s in BMECs, which were exposed to OGD at 0, 2, 4, and 6 hr, increased in a time-dependent manner. The overexpression of XBP1s promoted cell survival, cell cycle, migration, and angiogenesis of BMECs, and inhibited the apoptosis in OGD-treated BMECs. In addition, the overexpression of XBP1s promoted the expression of cyclin D1, matrix metalloproteinase (MMP-2), and MMP-9, but inhibited cleaved Caspase-3 and cleaved Caspase-9 expression in OGD-treated BMECs. The overexpression of XBP1s also promoted the expression of hypoxia-inducible factor 1-alpha, vascular endothelial growth factor, phosphatidylinositol-4,5-bisphosphate 3-kinase, p-AKT, p-mTOR, p-GSK3β, and p-extracellular signal-regulated kinase1/2 in OGD-treated BMECs. The effect of XBP1s silencing was opposite to that of XBP1s overexpression. In conclusion, using an in vitro OGD model, we demonstrated that XBP1s may be a promising target for ischemic stroke therapy to maintain BMECs survival and induce angiogenesis.  相似文献   

8.
The compensatory angiogenesis that occurs after cerebral ischemia increases blood flow to the injured area and limits extension of the ischemic penumbra. In this way, it improves the local blood supply. Fostering compensatory angiogenesis is an effective treatment for ischemic cerebrovascular disease. However, angiogenesis in the adult organism is a complex, multi-step process, and the mechanisms underlying the regulation of angiogenesis are not well understood. Although Notch signaling reportedly regulates the vascularization process that occurs in ischemic tissues, little is known about the role of Notch signaling in the regulation of ischemia-induced angiogenesis after ischemic stroke. Recent research has indicated that miR-210, a hypoxia-induced microRNA, plays a crucial role in regulating the biological processes that occur in blood vessel endothelial cells under hypoxic conditions. This study was undertaken to investigate the role of miR-210 in regulating angiogenesis in response to brain ischemia injury and the role of the Notch pathway in the body’s response. We found miR-210 to be significantly up-regulated in adult rat ischemic brain cortexes in which the expression of Notch1 signaling molecules was also increased. Hypoxic models of human umbilical vein endothelial cells (HUVE-12) were used to assess changes in miR-210 and Notch1 expression in endothelial cells. Results were consistent with in vivo findings. To determine the molecular mechanisms behind these phenomena, we transfected HUVE-12 cells with miR-210 recombinant lentiviral vectors. We found that miR-210 overexpression caused up-regulation of Notch1 signaling molecules and induced endothelial cells to migrate and form capillary-like structures on Matrigel. These data suggest that miR-210 is involved in the regulation of angiogenesis in response to ischemic injury to the brain. Up-regulation of miR-210 can activate the Notch signaling pathway, which may contribute to angiogenesis after cerebral ischemia.  相似文献   

9.
Li Y  Lu ZY  Ogle M  Wei L 《Neurochemical research》2007,32(12):2132-2141
Recombinant human erythropoietin (rhEPO), a neurovascular protective agent, therapeutically supports angiogenesis after stroke by enhancing endogenous up-regulation of vascular endothelial growth factor (VEGF). Increased VEGF expression has been characterized to negatively impact the integrity of the blood brain barrier (BBB), causing brain edema and secondary injury. The present study investigated the rhEPO-induced BBB protection after stroke and how it might be achieved by affecting VEGF pathway. rhEPO treatment (5,000 U/kg, i.p., 30 min before stroke and once a day for three days after stroke) reduced Evans blue leakage and brain edema after ischemia. The expression of the BBB integrity markers, occludin, α-catenin and β-catenin, in the brain was preserved in animals received rhEPO. rhEPO up-regulated VEGF expression; however, the expression of VEGF receptor-2 (fetal liver kinase receptor, Flk-1) was significantly reduced in rhEPO-treated animals three days after stroke. We propose that, disregarding increased VEGF levels, rhEPO protects against ischemia-induced BBB damage at least partly by down-regulating Flk-1 expression and the response to VEGF signaling in the acute phase after stroke.  相似文献   

10.
Neuronal loss is a common component of a variety of neurodegenerative disorders (including Alzheimer''s, Parkinson''s, and Huntington''s disease) and brain traumas (stroke, epilepsy, and traumatic brain injury). One brain region that commonly exhibits neuronal loss in several neurodegenerative disorders is the hippocampus, an area of the brain critical for the formation and retrieval of memories. Long-lasting and sometimes unrecoverable deficits caused by neuronal loss present a unique challenge for clinicians and for researchers who attempt to model these traumas in animals. Can these deficits be recovered, and if so, is the brain capable of regeneration following neuronal loss? To address this significant question, we utilized the innovative CaM/Tet-DTA mouse model that selectively induces neuronal ablation. We found that we are able to inflict a consistent and significant lesion to the hippocampus, resulting in hippocampally-dependent behavioral deficits and a long-lasting upregulation in neurogenesis, suggesting that this process might be a critical part of hippocampal recovery. In addition, we provide novel evidence of angiogenic and vasculature changes following hippocampal neuronal loss in CaM/Tet-DTA mice. We posit that angiogenesis may be an important factor that promotes neurogenic upregulation following hippocampal neuronal loss, and both factors, angiogenesis and neurogenesis, can contribute to the adaptive response of the brain for behavioral recovery.  相似文献   

11.

Background

Identifying the ischemic penumbra in acute stroke subjects is important for the clinical decision making process. The aim of this study was to use resting-state functional magnetic resonance singal (fMRI) to investigate the change in the amplitude of low-frequency fluctuations (ALFF) of these subjects in three different subsections of acute stroke regions: the infarct core tissue, the penumbra tissue, and the normal brain tissue. Another aim of this study was to test the feasilbility of consistently detecting the penumbra region of the brain through ALFF analysis.

Methods

Sixteen subjects with first-ever acute ischemic stroke were scanned within 27 hours of the onset of stroke using magnetic resonance imaging. The core of infarct regions and penumbra regions were determined by diffusion and perfusion-weighted imaging respectively. The ALFF were measured from resting-state blood oxygen level dependent (BOLD) fMRI scans. The averaged relative ALFF value of each regions were correlated with the time after the onset of stroke.

Results

Relative ALFF values were significantly different in the infarct core tissue, penumbra tissue and normal brain tissue. The locations of lesions in the ALFF maps did not match perfectly with diffusion and perfusion-weighted imagings; however, these maps provide a contrast that can be used to differentiate between penumbra brain tissue and normal brain tissue. Significant correlations between time after stroke onset and the relative ALFF values were present in the penumbra tissue but not in the infarct core and normal brain tissue.

Conclusion

Preliminary results from this study suggest that the ALFF reflects the underlying neurovascular activity and has a great potential to estimate the brain tissue viability after ischemia. Results also show that the ALFF may contribute to acute stroke imaging for thrombolytic or neuroprotective therapies.  相似文献   

12.
Growth factors are currently evaluated as therapeutics in stroke and neurodegeneration. Besides direct neurotrophic effects, they promote proliferation, survival, and differentiation of both transplanted and endogenous neural precursor cells (NPCs). In the current study, we investigated whether NPCs expressing Vascular Endothelial Growth Factor VEGF-A165 are a useful vehicle for growth factor delivery after transplantation into the caudate putamen of the rat brain. We found an increased survival of adenovirally transfected NPCs after 11 days, but not after 24 hours or 4 days. Additional brain immunohistochemistry revealed increased expression of the endothelial cell marker PECAM-1 (CD31) after 24 hours, 4 day, and 11 days after transplantation. In conclusion, we show that the graft itself is a useful vehicle for growth factor delivery, promoting the survival of NPCs. Moreover, transplantation of VEGF-expressing NPCs supports angiogenesis in the brain, which may contribute to potential brain repair.  相似文献   

13.
Vascular growth factors in cerebral ischemia   总被引:16,自引:0,他引:16  
During the past decade, there has been a surge of interest in growth factors (GFs) that act selectively on vascular endothelium and perivascular cells. Studies employing mutant mice or the administration of recombinant proteins have suggested that these factors not only mediate the proliferation of endothelial cells, but also regulate vascular differentiation, regression, and permeability. During and after cerebral ischemia, brain vasculature becomes leaky and unstable, and the normally impermeable blood-brain barrier breaks down. Several days after the ischemic insult, endothelial cells begin to proliferate, and angiogenesis occurs. Expression studies have shown that key vascular GFs are regulated, during these processes, in a complex and coordinated manner. The distinct pattern of regulation exhibited by each vascular GF suggests a unique role for each factor during the initial vascular destabilization and subsequent angiogenesis that occurs after cerebral ischemia. Data from studies in other biological systems support these suggested roles. Thus, manipulation of vascular GFs may prove to be an effective means of stabilizing or enriching brain vasculature after ischemia, and ameliorating the detrimental effects of blood-brain barrier breakdown and vessel regression after stroke.  相似文献   

14.
In this study, we tested the hypothesis that the Angiopoietin 1 (Ang1)/Tie2 pathway mediates simvastatin-induced vascular integrity and migration of neuroblasts after stroke. Rats were subjected to 2 hrs of middle cerebral artery occlusion (MCAo) and treated, starting 1 day after stroke with or without simvastatin (1 mg/kg, daily) for 7 days. Simvastatin treatment significantly decreased blood–brain barrier (BBB) leakage and concomitantly, increased Ang1, Tie2 and Occludin expression in the ischaemic border (IBZ) compared to the MCAo control group. Simvastatin also significantly increased doublecortin (DCX, a marker of migrating neuroblasts) expression in the IBZ compared to control MCAo rats. DCX was highly expressed around vessels. To further investigate the signalling pathway of simvastatin-induced vascular stabilization and angiogenesis, rat brain microvascular endothelial cell (RBMEC) culture was employed. The data show that simvastatin treatment of RBMEC increased Ang1 and Tie2 gene and protein expression and promoted phosphorylated-Tie2 activity. Simvastatin significantly increased endothelial capillary tube formation, an index of angiogenesis, compared to non-treated control. Inhibition of Ang1 or knockdown of Tie2 gene expression in endothelial cells significantly attenuated simvastatin-induced capillary tube formation. In addition, simvastatin significantly increased subventricular zone (SVZ) explant cell migration compared to non-treatment control. Inhibition of Ang1 significantly attenuated simvastatin-induced SVZ cell migration. Simvastatin treatment of stroke increases Ang1/Tie2 expression and thereby reduces BBB leakage and promotes vascular stabilization. Ang1/Tie2 expression induced by simvastatin treatment promotes neuroblast micro-vascular coupling after stroke.  相似文献   

15.
The blood-brain barrier contributes to brain homeostasis by controlling the access of nutrients and toxic substances to the central nervous system (CNS). The acquired brain endothelial cells phenotype results from their sustained interactions with their microenvironment. The endothelial component is involved in the development and progression of most CNS diseases such as brain tumors, Alzheimer’s disease, or stroke, for which efficient treatments remain to be discovered. The endothelium constitutes an attractive therapeutical target, particularly in the case of brain tumors, because of the high level of angiogenesis associated with this disease. Drug development based on targeting differential protein expression in the vasculature associated with normal tissues or with disease states holds great potential. This article highlights some of the growing body of evidence showing molecular differences between the vascular bed phenotype of normal and pathological endothelium, with a particular focus on brain tumor endothelium targets, which may play crucial roles in the development of brain cancers. Finally, an overview is presented of the emerging therapies for brain tumors that take the endothelial component into consideration. Equal first authors  相似文献   

16.

Objective

The nature of changes in brain activation related to good recovery of arm function after stroke is still unclear. While the notion that this is a reflection of neuronal plasticity has gained much support, confounding by compensatory strategies cannot be ruled out. We address this issue by comparing brain activity in recovered patients 6 months after stroke with healthy controls.

Methods

We included 20 patients with upper limb paresis due to ischemic stroke and 15 controls. We measured brain activation during a finger flexion-extension task with functional MRI, and the relationship between brain activation and hand function. Patients exhibited various levels of recovery, but all were able to perform the task.

Results

Comparison between patients and controls with voxel-wise whole-brain analysis failed to reveal significant differences in brain activation. Equally, a region of interest analysis constrained to the motor network to optimize statistical power, failed to yield any differences. Finally, no significant relationship between brain activation and hand function was found in patients. Patients and controls performed scanner task equally well.

Conclusion

Brain activation and behavioral performance during finger flexion-extensions in (moderately) well recovered patients seems normal. The absence of significant differences in brain activity even in patients with a residual impairment may suggest that infarcts do not necessarily induce reorganization of motor function. While brain activity could be abnormal with higher task demands, this may also introduce performance confounds. It is thus still uncertain to what extent capacity for true neuronal repair after stroke exists.  相似文献   

17.
Diabetes causes vascular injury and carries a high risk of ischaemic stroke. Human amniotic fluid stem cells ( hAFSCs) can enhance cerebral vascular remodelling and have the potential to improve neurological function after stroke in diabetic rats. Five groups of female rats were examined: (1) normal control, (2) type 1 diabetic (T1DM) rats induced by streptozotocin injection (DM), (3) non-DM rats receiving 60-minute middle cerebral artery occlusion (MCAO), (4) T1DM rats receiving 60-minute MCAO (DM + MCAO) and (5) T1DM rats receiving 60-minute MCAO and injection with 5 × 106 hAFSCs at 3 h after MCAO (DM + MCAO + hAFSCs). Neurological function was examined before, and at 1, 7, 14, 21 and 28 days, and cerebral infarction volume and haemorrhage, cerebral vascular density, angiogenesis and inflammatory were examined at 7 and 28 days after MCAO. hAFSCs treatment caused a significant improvement of neurological dysfunction, infarction volume, blood-brain barrier leakage, cerebral arterial density, vascular density and angiogenesis and a reduction of brain haemorrhage and inflammation compared with non-treatment. Our results showed that the effect of hAFSCs treatment against focal cerebral ischaemia may act through the recovery of vascular remodelling and angiogenesis and the reduction of inflammation in ischaemic brain.  相似文献   

18.
Expression and transport activity of Sodium-dependent Vitamin C Transporter 2 (SVCT2) was shown in various tissues and organs. Vitamin C was shown to be cerebroprotective in several animal models of stroke. Data on expression, localization and transport activity of SVCT2 after cerebral ischemia, however, has been scarce so far. Thus, we studied the expression of SVCT2 after middle cerebral artery occlusion (MCAO) in mice by immunohistochemistry. We found an upregulation of SVCT2 after stroke. Co-stainings with Occludin, Von-Willebrand Factor and CD34 demonstrated localization of SVCT2 in brain capillary endothelial cells in the ischemic area after stroke. Time-course analyses of SVCT2 expression by immunohistochemistry and western blots showed upregulation in the subacute phase of 2-5 days. Radioactive uptake assays using (14)C-labelled ascorbic acid showed a significant increase of ascorbic acid uptake into the brain after stroke. Taken together, these results provide evidence for the expression and transport activity of SVCT2 in brain capillary endothelial cells after transient ischemia in mice. These results may lead to the development of novel neuroprotective strategies in stroke therapy.  相似文献   

19.
Stroke represents an attractive target for stem cell therapy. Although different types of cells have been employed in animal models, a direct comparison between cell sources has not been performed. The aim of our study was to assess the effect of human multipotent adult progenitor cells (hMAPCs) and human mesenchymal stem cells (hMSCs) on endogenous neurogenesis, angiogenesis and inflammation following stroke. BALB/Ca-RAG 2(-/-) γC(-/-) mice subjected to FeCl(3) thrombosis mediated stroke were intracranially injected with 2×10(5) hMAPCs or hMSCs 2 days after stroke and followed for up to 28 days. We could not detect long-term engraftment of either cell population. However, in comparison with PBS-treated animals, hMSC and hMAPC grafted animals demonstrated significantly decreased loss of brain tissue. This was associated with increased angiogenesis, diminished inflammation and a glial-scar inhibitory effect. Moreover, enhanced proliferation of cells in the subventricular zone (SVZ) and survival of newly generated neuroblasts was observed. Interestingly, these neuroprotective effects were more pronounced in the group of animals treated with hMAPCs in comparison with hMSCs. Our results establish cell therapy with hMAPCs and hMSCs as a promising strategy for the treatment of stroke.  相似文献   

20.
Ischemic stroke triggers endogenous angiogenic mechanisms, which correlates with longer survival in patients. As such, promoting angiogenesis appears to be a promising approach. Experimental studies investigated mostly the potent angiogenic factor vascular endothelial growth factor isoform-A (VEGF-A). However, VEGF-A increases the risk of destabilizing the brain microvasculature, thus hindering the translation of its usage in clinics. An attractive alternative VEGF isoform-B (VEGF-B) was recently reported to act as a survival factor rather than a potent angiogenic factor. In this study, we investigated the therapeutic potential of VEGF-B in ischemic stroke using different in vivo and in vitro approaches. We showed that the delayed intranasal administration of VEGF-B reduced neuronal damage and inflammation. Unexpectedly, VEGF-B stimulated the formation of stable brain microvasculature within the injured region by promoting the interaction between endothelial cells and pericytes. Our data indicate that the effects of VEGF-B were mediated via its specific receptor VEGF receptor-1 (VEGFR-1) that is predominately expressed in brain pericytes. Importantly, VEGF-B promoted the survival of pericytes, and not brain endothelial cells, by inducing expression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) and the main protein involved in energy homeostasis AMP-activated protein kinase α (AMPKα). Moreover, we showed that VEGF-B stimulated the pericytic release of factors stimulating a “reparative angiogenesis” that does not compromise microvasculature stability. Our study unraveled hitherto unknown role of VEGF-B/VEGFR-1 signaling in regulating the function of pericytes. Furthermore, our findings suggest that brain microvasculature stabilization via VEGF-B constitutes a safe therapeutic approach for ischemic stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号