首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Speciation can be initiated by adaptive divergence between populations in ecologically different habitats, but how sexually based reproductive barriers contribute to this process is less well understood. We here test for sexual isolation between ecotypes of threespine stickleback fish residing in adjacent lake and stream habitats in the Lake Constance basin, Central Europe. Mating trials exposing females to pairings of territorial lake and stream males in outdoor mesocosms allowing for natural reproductive behaviour reveal that mating occurs preferentially between partners of the same ecotype. Compared to random mating, this sexual barrier reduces gene flow between the ecotypes by some 36%. This relatively modest strength of sexual isolation is surprising because comparing the males between the two ecotypes shows striking differentiation in traits generally considered relevant to reproductive behaviour (body size, breeding coloration, nest size). Analysing size differences among the individuals in the mating trials further indicates that assortative mating is not related to ecotype differences in body size. Overall, we demonstrate that sexually based reproductive isolation promotes divergence in lake–stream stickleback along with other known reproductive barriers, but we also caution against inferring strong sexual isolation from the observation of strong population divergence in sexually relevant traits.  相似文献   

2.
Ecological speciation seems to occur readily but is clearly not ubiquitous – and the relative contributions of different reproductive barriers remain unclear in most systems. We here investigate the potential importance of selection against migrants in lake/stream stickleback (Gasterosteus aculeatus) from the Misty Lake system, Canada. This system is of particular interest because one population contrast (Lake vs. Outlet stream) shows very low genetic and morphological divergence, whereas another population contrast (Lake vs. Inlet stream) shows dramatic genetic and morphological divergence apparently without strong and symmetric reproductive barriers. To test whether selection against migrants might solve this “conundrum of missing reproductive isolation”, we performed a fully factorial reciprocal transplant experiment using 225 individually marked stickleback collected from the wild. Relative fitness of the different ecotypes (Lake, Inlet, and Outlet) was assessed based on survival and mass change in experimental enclosures. We found that Inlet fish performed poorly in the lake (selection against migrants in that direction), whereas Lake fish outperformed Inlet fish in all environments (no selection against migrants in the opposite direction). As predicted from their phenotypic and genetic similarity, Outlet and Lake fish performed similarly in all environments. These results suggest that selection against migrants is asymmetric and, together with previous work, indicates that multiple reproductive barriers contribute to reproductive isolation. Similar mosaic patterns of reproductive isolation are likely in other natural systems.  相似文献   

3.
We investigated the interplay between natural selection and gene flow in the adaptive divergence of threespine stickleback (Gasterosteus aculeatus) that reside parapatrically in lakes and streams. Within the Misty Lake system (Vancouver Island, British Columbia), stickleback from the inlet stream (flowing into the lake) have fewer gill rakers and deeper bodies than stickleback from the lake--differences thought to facilitate foraging (benthic macroinvertebrates in the stream vs. zooplankton in the open water of the lake). Common-garden experiments demonstrated that these differences have a genetic basis. Reciprocal transplant enclosure experiments showed that lake and inlet stickleback grow best in their home environments (although differences were subtle and often not significant). Release-recapture experiments in the inlet showed that lake fish are less well-suited than inlet fish for life in the stream (higher mortality or emigration in lake fish). Morphological divergence in the wild and under common rearing was greater between the lake and the inlet than between the lake and the outlet. Genetic divergence (mitochondrial DNA and microsatellites) was greatest between the lake and the upper inlet (1.8 km upstream from the lake), intermediate between the lake and the lower inlet (0.9 km upstream), and least between the lake and the outlet stream (1.2 km downstream). Relative levels of gene flow estimated from genetic data showed the inverse pattern. The negative association between morphological divergence and gene flow is consistent with the expectation that gene flow can constrain adaptation. Estimated absolute levels of gene flow also implied a constraint on adaptation in the outlet but not the inlet. Our results suggest that natural selection promotes the adaptive divergence of lake and stream stickleback. but that the magnitude of divergence can be constrained by gene flow.  相似文献   

4.
1. We investigated whether Daphnia galeata × hyalina hybrids of Lake Constance and Lake Greifensee show the same pattern of life history parameters as previously reported for D. galeata × cucullata hybrids and whether such a pattern is consistent between Daphnia populations from those two lakes. 2. Hybrids in Lake Constance were intermediate in size compared with the parental species. Hybrids in Lake Greifensee were smaller than D. galeata. The intrinsic growth rate (r) of hybrids from Lake Constance was not significantly different from the faster growing parental taxon D. galeata. However, r of hybrids from Lake Greifensee was significantly lower than that of D. galeata. 3. The observed juvenile body length differences between the taxa varied with the clutch number. The first clutch juvenile lengths of the three taxa did not differ for Lake Constance. First clutch juveniles of Lake Greifensee D. galeata were smaller than hybrid first clutch juveniles. The third clutch juvenile length did not differ between taxa from Lake Greifensee, but D. galeata juveniles from Lake Constance were bigger than those of D. hyalina. 4. The life history pattern found in Lake Constance corresponds to previous findings from other studies. The hybrids in this lake combine the faster population growth of one parental species with a relatively small size. In the case of Lake Greifensee hybrids, the relatively large size of first clutch juveniles and the small size of the adults could be interpreted as dual adaptations to invertebrate and fish predation. We speculate that the lower population growth rate of the hybrids is a trade‐off for this twofold protection.  相似文献   

5.
Eco‐evolutionary responses of natural populations to spatial environmental variation strongly depend on the relative strength of environmental differences/natural selection and dispersal/gene flow. In absence of geographic barriers, as often is the case in lake ecosystems, gene flow is expected to constrain adaptive divergence between environments – favoring phenotypic plasticity or high trait variability. However, if divergent natural selection is sufficiently strong, adaptive divergence can occur in face of gene flow. The extent of divergence is most often studied between two contrasting environments, whereas potential for multimodal divergence is little explored. We investigated phenotypic (body size, defensive structures, and feeding morphology) and genetic (microsatellites) structure in threespine stickleback (Gasterosteus aculeatus) across five habitat types and two basins (North and South) within the geologically young and highly heterogeneous Lake Mývatn, North East Iceland. We found that (1) North basin stickleback were, on average, larger and had relatively longer spines than South basin stickleback, whereas (2) feeding morphology (gill raker number and gill raker gap width) differed among three of five habitat types, and (3) there was only subtle genetic differentiation across the lake. Overall, our results indicate predator and prey mediated phenotypic divergence across multiple habitats in the lake, in face of gene flow.  相似文献   

6.
Plerocercoids of the cestode Schistocephalus solidus are reported for the first time from the body cavity of anadromous threespine stickleback inhabiting Mud Lake, Alaska. Most infected stickleback harbored a single large plerocerciod (mean weight = 0.447 g, range = 0.228-0.716 g). The overall prevalence of plerocercoids across genders and 2 yr of samples was 1.4%, but prevalence was significantly greater in males than in females. Because of the large size of the plerocercoids, anadromous stickleback were probably infected as juveniles before leaving the lake, suggesting that plerocercoids can live in the body cavity of oceanic stickleback for several years.  相似文献   

7.
Parallel evolution is characterised by repeated, independent occurrences of similar phenotypes in a given habitat type, in different parts of the species distribution area. We studied body shape and body armour divergence between five marine, four lake, and ten pond populations of nine‐spined sticklebacks [Pungitius pungitius (Linnaeus, 1758)] in Fennoscandia. We hypothesized that marine and lake populations (large water bodies, diverse fish fauna) would be similar, whereas sticklebacks in isolated ponds (small water bodies, simple fish fauna) would be divergent. We found that pond fish had deeper bodies, shorter caudal peduncles, and less body armour (viz. shorter/absent pelvic spines, reduced/absent pelvic girdle, and reduced number of lateral plates) than marine fish. Lake fish were intermediate, but more similar to marine than to pond fish. Results of our common garden experiment concurred with these patterns, suggesting a genetic basis for the observed divergence. We also found large variation among populations within habitat types, indicating that environmental variables other than those related to gross habitat characteristics might also influence nine‐spined stickleback morphology. Apart from suggesting parallel evolution of morphological characteristics of nine‐spined sticklebacks in different habitats, the results also show a number of similarities to the evolution of three‐spined stickleback (Gasterosteus aculeatus Linnaeus, 1758) morphology. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 403–416.  相似文献   

8.
To what extent are patterns of biological diversification determined by natural selection? We addressed this question by exploring divergence in foraging morphology of threespine stickleback fish inhabiting lake and stream habitats within eight independent watersheds. We found that lake fish generally displayed more developed gill structures and had more streamlined bodies than did stream fish. Diet analysis revealed that these morphological differences were associated with limnetic vs. benthic foraging modes, and that the extent of morphological divergence within watersheds reflected differences in prey resources utilized by lake and stream fish. We also found that patterns of divergence were unrelated to patterns of phenotypic trait (co)variance within populations (i.e. the ‘line of least resistance’). Instead, phenotypic (co)variances were more likely to have been shaped by adaptation to lake vs. stream habitats. Our study thus implicates natural selection as a strong deterministic force driving morphological diversification in lake–stream stickleback. The strength of this inference was obtained by complementing a standard analysis of parallel divergence in means between discrete habitat categories (lake vs. stream) with quantitative estimates of selective forces and information on trait (co)variances.  相似文献   

9.
Molecular comparisons of populations diverging into ecologically different environments often reveal strong differentiation in localized genomic regions, with the remainder of the genome being weakly differentiated. This pattern of heterogeneous genomic divergence, however, is rarely connected to direct measurements of fitness differences among populations. We here do so by performing a field enclosure experiment in threespine stickleback fish residing in a lake and in three replicate adjoining streams, and displaying weak yet heterogeneous genomic divergence between these habitats. Tracking survival over 29 weeks, we consistently find that lake genotypes transplanted into the streams suffer greatly reduced viability relative to local stream genotypes and that the performance of F1 hybrid genotypes is intermediate. This observed selection against migrants and hybrids combines to a total reduction in gene flow from the lake into streams of around 80%. Overall, our study identifies a strong reproductive barrier between parapatric stickleback populations, and cautions against inferring weak fitness differences between populations exhibiting weak overall genomic differentiation.  相似文献   

10.
The postglacial adaptive radiation of the threespine stickleback fish (Gasterosteus aculeatus) has been widely used to investigate the roles of both adaptive evolution and plasticity in behavioral and morphological divergence from the ancestral condition represented by present-day oceanic stickleback. These phenotypes tend to exhibit high levels of ecotypic differentiation. Population divergence in life history has also been well studied, but in contrast to behavior and morphology, the extent and importance of plasticity has been much less well studied. In this review, we summarize what is known about life-history plasticity in female threespine stickleback, considering four traits intimately associated with reproductive output: age/size at maturation, level of reproductive effort, egg size and clutch size. We envision life-history plasticity in an iterative, ontogenetic framework, in which females may express plasticity repeatedly across each of several time frames. We contrast the results of laboratory and field studies because, for most traits, these approaches give somewhat different answers. We provide ideas on what the cues might be for observed plasticity in each trait and, when possible, we inquire about the relative costs and benefits to expressed plasticity. We end with an example of how we think plasticity may play out in stickleback life history given what we know of plasticity in the ancestor.  相似文献   

11.
The genetic structure of 10 populations (453 individuals) of stone loach (Barbatula barbatula L.), a small bottom-dwelling cyprinid fish, in the littoral zone of Lake Constance, central Europe, was investigated by analysing the mitochondrial control region sequences and five microsatellite loci. An unexpectedly high degree of genetic diversity (up to 0.36%) and old estimated age of these populations (> 150 000 years) based on mitochondrial DNA (mtDNA) was found. These findings contrast with the relatively young age of the lake, which could be colonized by fish only after the last ice age around 15 000 bp. Stone loach appears to be an old species in a young lake. Both types of molecular markers showed population genetic structure pronounced in mtDNA (overall F(ST) = 0.15) but moderate in microsatellites (F(ST) = 0.03). As predicted by its life history, philopatry, and limited capacity for dispersal, stone loach populations of Lake Constance show a clear pattern of isolation by distance. Geographic distances along the shores are the best explanation for the observed geographical distribution of genetic differentiation (r = 0.88), indicating that open water represents a barrier for the dispersal of the stone loach. The colonization of Lake Constance might have occurred initially at one location and then populations spread throughout the lake in a stepwise manner following the shoreline, and subsequently remained largely genetically isolated as suggested by the large observed differences among them.  相似文献   

12.
The burbot, Lota lota, is the only freshwater species of the codfish family and has a Holarctic distribution. Pleistocene glaciations caused significant geographical differentiation in the past, but its life history characterized by winter spawning migrations over large distances is likely to homogenize populations by contemporary gene flow. We investigated the population genetic structure of 541 burbots from Lake Constance and adjacent Rhine and Danube tributaries in Europe using the entire mitochondrial DNA (mtDNA) control region and 11 microsatellites. Microsatellites revealed considerable population divergence (F(ST) = 0.26) and evidenced recent bottlenecks in two Central European rivers. In accordance to previous evidence two main phylogeographic lineages (Atlantic and Danubian) were found co-occurring at similar frequencies in Lake Constance, where they currently undergo random mating as indicated by microsatellites. The Danubian lineage contributed only a small proportion to the lake's mtDNA diversity, and probably expanded within the lake shortly after its formation approximately 10,000-15,000 BP. The larger Atlantic haplotype diversity suggested a population expansion older than the lake itself. Levels of admixture at microsatellite loci were less obvious due to their high variability, and coalescence methods were used to estimate past admixture proportions. Our results reinforce a model of a two-step colonization of Europe by burbot from an ancestral Danubian refuge, and confirm the persistence of a secondary Atlantic refuge, as proposed to exist for other freshwater fish. We conclude that the present-day burbot population in Lake Constance bears the genetic signature of both contemporary gene flow and historical separation events.  相似文献   

13.
Ecological selection against hybrids between populations occupying different habitats might be an important component of reproductive isolation during the initial stages of speciation. The strength and directionality of this barrier to gene flow depends on the genetic architecture underlying divergence in ecologically relevant phenotypes. We here present line cross analyses of inheritance for two key foraging-related morphological traits involved in adaptive divergence between stickleback ecotypes residing parapatrically in lake and stream habitats within the Misty Lake watershed (Vancouver Island, Canada). One main finding is the striking genetic dominance of the lake phenotype for body depth. Selection associated with this phenotype against first- and later-generation hybrids should therefore be asymmetric, hindering introgression from the lake to the stream population but not vice versa. Another main finding is that divergence in gill raker number is inherited additively and should therefore contribute symmetrically to reproductive isolation. Our study suggests that traits involved in adaptation might contribute to reproductive isolation qualitatively differently, depending on their mode of inheritance.  相似文献   

14.
Parallel phenotypic evolution in similar environments has been well studied in evolutionary biology; however, comparatively little is known about the influence of determinism and historical contingency on the nature, extent and generality of this divergence. Taking advantage of a novel system containing multiple lake–stream stickleback populations, we examined the extent of ecological, morphological and genetic divergence between three‐spined stickleback present in parapatric environments. Consistent with other lake–stream studies, we found a shift towards a deeper body and shorter gill rakers in stream fish. Morphological shifts were concurrent with changes in diet, indicated by both stable isotope and stomach contents analysis. Performing a multivariate test for shared and unique components of evolutionary response to the distance gradient from the lake, we found a strong signature of parallel adaptation. Nonparallel divergence was also present, attributable mainly to differences between river locations. We additionally found evidence of genetic substructuring across five lake–stream transitions, indicating that some level of reproductive isolation occurs between populations in these habitats. Strong correlations between pairwise measures of morphological, ecological and genetic distance between lake and stream populations supports the hypothesis that divergent natural selection between habitats drives adaptive divergence and reproductive isolation. Lake–stream stickleback divergence in Lough Neagh provides evidence for the deterministic role of selection and supports the hypothesis that parallel selection in similar environments may initiate parallel speciation.  相似文献   

15.
During the early stages of adaptive radiation, populations diverge in life history traits such as egg size and growth rates, in addition to eco‐morphological and behavioral characteristics. However, there are few studies of life history divergence within ongoing adaptive radiations. Here, we studied Astatotilapia calliptera, a maternal mouthbrooding cichlid fish within the Lake Malawi haplochromine radiation. This species occupies a rich diversity of habitats, including the main body of Lake Malawi, as well as peripheral rivers and shallow lakes. We used common garden experiments to test for life history divergence among populations, focussing on clutch size, duration of incubation, egg mass, offspring size, and growth rates. In a first experiment, we found significant differences among populations in average clutch size and egg mass, and larger clutches were associated with smaller eggs. In a second experiment, we found significant differences among populations in brood size, duration of incubation, juvenile length when released, and growth rates. Larger broods were associated with smaller juveniles when released and shorter incubation times. Although juvenile growth rates differed between populations, these were not strongly related to initial size on release. Overall, differences in life history characters among populations were not predicted by major habitat classifications (Lake Malawi or peripheral habitats) or population genetic divergence (microsatellite‐based FST). We suggest that the observed patterns are consistent with local selective forces driving the observed patterns of trait divergence. The results provide strong evidence of evolutionary divergence and covariance of life history traits among populations within a radiating cichlid species, highlighting opportunities for further work to identify the processes driving the observed divergence.  相似文献   

16.
Variation in age and size of mature nine-spined sticklebacks (Pungitius pungitius) within and among 16 Fennoscandian populations were assessed using skeletochronology. The average age of individuals in a given population varied from 1.7 to 4.7 years. Fish from pond populations were on average older than those from lake and marine populations, and females tended to be older than males. Reproduction in marine and lake populations commenced typically at an age of two years, whereas that in ponds at an age of three years. The maximum life span of the fish varied from 3 to 7 years. Mean body size within and among populations increased with increasing age, but the habitat and population differences in body size persisted even after accounting for variation in population age (and sex) structure. Hence, the population differences in mean body size are not explainable by age differences alone. As such, much of the pronounced intraspecific variation in population age structure can be attributed to delayed maturation and extended longevity of the pond fish. The results are contrasted and discussed in the context of similar data from the three-spined stickleback (Gasterosteus aculeatus) occupying the same geographic area.  相似文献   

17.
Migration among populations is widely thought to undermine adaptive divergence, assuming gene flow arises from random movement of individuals. If individuals instead differ in dispersal behavior, phenotype‐dependent dispersal can reduce the effective rate of gene flow or even facilitate divergence. For example, parapatric populations of lake and stream stickleback tend to actively avoid dispersing into the adjoining habitat. However, the behavioral basis of this nonrandom dispersal was previously unknown. Here, we show that lake and stream stickleback exhibit divergent rheotactic responses (behavioral response to currents). During the breeding season, wild‐caught inlet stream stickleback were better than lake fish at maintaining position in currents, faced upstream more, and spent more time in low‐current areas. As a result, stream fish expended significantly less energy in currents than did lake fish. These divergent rheotactic responses likely contribute to divergent habitat use by lake and stream stickleback. Although rheotactic differences were absent in nonbreeding fish, divergent behavior of breeding‐season fish may suffice for assortative mating by breeding location. The resulting reproductive isolation between lake and stream fish may explain the fine‐scale evolutionary differentiation in parapatric stickleback populations.  相似文献   

18.
Although rapid phenotypic evolution during range expansion associated with colonization of contrasting habitats has been documented in several taxa, the evolutionary mechanisms that underlie such phenotypic divergence have less often been investigated. A strong candidate for rapid ecotype formation within an invaded range is the three‐spine stickleback in the Lake Geneva region of central Europe. Since its introduction only about 140 years ago, it has undergone a significant expansion of its range and its niche, now forming phenotypically differentiated parapatric ecotypes that occupy either the pelagic zone of the large lake or small inlet streams, respectively. By comparing museum collections from different times with contemporary population samples, we here reconstruct the evolution of parapatric phenotypic divergence through time. Using genetic data from modern samples, we infer the underlying invasion history. We find that parapatric habitat‐dependent phenotypic divergence between the lake and stream was already present in the first half of the twentieth century, but the magnitude of differentiation increased through time, particularly in antipredator defence traits. This suggests that divergent selection between the habitats occurred and was stable through much of the time since colonization. Recently, increased phenotypic differentiation in antipredator defence traits likely results from habitat‐dependent selection on alleles that arrived through introgression from a distantly related lineage from outside the Lake Geneva region. This illustrates how hybridization can quickly promote phenotypic divergence in a system where adaptation from standing genetic variation was constrained.  相似文献   

19.
Different environments should select for different aspects of organismal performance, which should lead to correlated divergence in morphological traits that influence performance. The result should be genetic divergence in aspects of performance, morphology and associations ('maps') between morphology and performance. Testing this hypothesis requires quantifying performance and morphology in multiple populations after controlling for environmental differences, but this is rarely attempted. We used a common-garden experiment to examine morphology and several aspects of swimming performance within and between the lake and inlet populations of threespine stickleback (Gasterosteus aculeatus) from the Misty system, Vancouver Island, Canada. Controlling for body size, lake stickleback had shallower bodies, larger caudal fins and smaller pelvic girdles. With or without morphological covariates, lake stickleback showed greater performance in both sustained and burst swimming. In contrast, inlet stickleback showed greater manoeuverability than did lake stickleback in some analyses. Morphology-performance relationships were decoupled when considering variation within vs. between populations. Moreover, morphology-performance mapping differed between the two populations. Based on these observations, we advance a hypothesis for why populations adapting to different environments should show adaptive genetic divergence in morphology-performance mapping.  相似文献   

20.
Phylogenetic diversity among filamentous sulfur-oxidizing bacteria of the genus Thioploca inhabiting freshwater/brackish environments was analyzed in detail. The 16S rRNA gene sequence of Thioploca found in a freshwater lake in Japan, Lake Okotanpe, was identical to that of Thioploca from Lake Ogawara, a brackish lake. The samples of the two lakes could be differentiated by the sequences of their 23S rRNA genes and 16S–23S rRNA internal transcribed spacer (ITS) regions. The 23S rRNA-based phylogenetic relationships between Thioploca samples from four lakes (Lake Okotanpe, Lake Ogawara, Lake Biwa, and Lake Constance) were similar to those based on the 16S rRNA gene sequences. In addition, multiple types of the ITS sequences were obtained from Thioploca inhabiting Lake Okotanpe and Lake Constance. Variations within respective Thioploca populations were also observed in the analysis of the soxB gene, involved in sulfur oxidation. As major members of the sheath-associated microbial community, bacteria of the phylum Chloroflexi were consistently detected in the samples from different lakes. Fluorescence in situ hybridization revealed that they were filamentous and abundantly distributed within the sheaths of Thioploca.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号