首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hypoxia during exercise augments blood flow in active muscles to maintain the delivery of O(2) at normoxic levels. However, the impact of hyperoxia on skeletal muscle blood flow during exercise is not completely understood. Therefore, we tested the hypothesis that the hyperemic response to forearm exercise during hyperbaric hyperoxia would be blunted compared with exercise during normoxia. Seven subjects (6 men/1 woman; 25 ± 1 yr) performed forearm exercise (20% of maximum) under normoxic and hyperoxic conditions. Forearm blood flow (FBF; in ml/min) was measured using Doppler ultrasound. Forearm vascular conductance (FVC; in ml·min(-1)·100 mmHg(-1)) was calculated from FBF and blood pressure (in mmHg; brachial arterial catheter). Studies were performed in a hyperbaric chamber with the subjects supine at 1 atmospheres absolute (ATA) (sea level) while breathing normoxic gas [21% O(2), 1 ATA; inspired Po(2) (Pi(O(2))) ≈ 150 mmHg] and at 2.82 ATA while breathing hyperbaric normoxic (7.4% O(2), 2.82 ATA, Pi(O(2)) ≈ 150 mmHg) and hyperoxic (100% O(2), 2.82 ATA, Pi(O(2)) ≈ 2,100 mmHg) gas. Resting FBF and FVC were less during hyperbaric hyperoxia compared with hyperbaric normoxia (P < 0.05). The change in FBF and FVC (Δ from rest) during exercise under normoxia (204 ± 29 ml/min and 229 ± 37 ml·min(-1)·100 mmHg(-1), respectively) and hyperbaric normoxia (203 ± 28 ml/min and 217 ± 35 ml·min(-1)·100 mmHg(-1), respectively) did not differ (P = 0.66-0.99). However, the ΔFBF (166 ± 21 ml/min) and ΔFVC (163 ± 23 ml·min(-1)·100 mmHg(-1)) during hyperbaric hyperoxia were substantially attenuated compared with other conditions (P < 0.01). Our data suggest that exercise hyperemia in skeletal muscle is highly dependent on oxygen availability during hyperoxia.  相似文献   

2.
We assessed the effects of naloxone, an opioid antagonist, on exercise capacity in 13 men and 5 women (mean age = 30.1 yr, range = 21-35 yr) during a 25 W/min incremental cycle ergometer test to exhaustion on different days during familiarization trial and then after 30 mg (iv bolus) of naloxone or placebo (Pl) in a double-blind, crossover design. Minute ventilation (Ve), O(2) consumption (Vo(2)), CO(2) production, and heart rate (HR) were monitored. Perceived exertion rating (0-10 scale) and venous samples for lactate were obtained each minute. Lactate and ventilatory thresholds were derived from lactate and gas-exchange data. Blood pressure was obtained before exercise, 5 min postinfusion, at maximum exercise, and 5 min postexercise. There were no control-Pl differences. The naloxone trial demonstrated decreased exercise time (96% Pl; P < 0.01), total cumulative work (96% Pl; P < 0.002), peak Vo(2) (94% Pl; P < 0.02), and HR (96% Pl; P < 0.01). Other variables were unchanged. HR and Ve were the same at the final common workload, but perceived exertion was higher (8.1 +/- 0.5 vs. 7.1 +/- 0.5) after naloxone than Pl (P < 0.01). The threshold for effort perception amplification occurred at approximately 60 +/- 4% of Pl peak Vo(2). Thus we conclude that peak work capacity was limited by perceived exertion, which can be attenuated by endogenous opioids rather than by physiological limits.  相似文献   

3.
The mechanism for slow pulmonary O(2) uptake (Vo(2)) kinetics in patients with chronic heart failure (CHF) is unclear but may be due to limitations in the intramuscular control of O(2) utilization or O(2) delivery. Recent evidence of a transient overshoot in microvascular deoxygenation supports the latter. Prior (or warm-up) exercise can increase O(2) delivery in healthy individuals. We therefore aimed to determine whether prior exercise could increase muscle oxygenation and speed Vo(2) kinetics during exercise in CHF. Fifteen men with CHF (New York Heart Association I-III) due to left ventricular systolic dysfunction performed two 6-min moderate-intensity exercise transitions (bouts 1 and 2, separated by 6 min of rest) from rest to 90% of lactate threshold on a cycle ergometer. Vo(2) was measured using a turbine and a mass spectrometer, and muscle tissue oxygenation index (TOI) was determined by near-infrared spectroscopy. Prior exercise increased resting TOI by 5.3 ± 2.4% (P = 0.001), attenuated the deoxygenation overshoot (-3.9 ± 3.6 vs. -2.0 ± 1.4%, P = 0.011), and speeded the Vo(2) time constant (τVo(2); 49 ± 19 vs. 41 ± 16 s, P = 0.003). Resting TOI was correlated to τVo(2) before (R(2) = 0.51, P = 0.014) and after (R(2) = 0.36, P = 0.051) warm-up exercise. However, the mean response time of TOI was speeded between bouts in half of the patients (26 ± 8 vs. 20 ± 8 s) and slowed in the remainder (32 ± 11 vs. 44 ± 16 s), the latter group having worse New York Heart Association scores (P = 0.042) and slower Vo(2) kinetics (P = 0.001). These data indicate that prior moderate-intensity exercise improves muscle oxygenation and speeds Vo(2) kinetics in CHF. The most severely limited patients, however, appear to have an intramuscular pathology that limits Vo(2) kinetics during moderate exercise.  相似文献   

4.
This study tested the hypothesis that the extent of the decrement in (.)Vo(2max) and the respiratory response seen during maximal exercise in moderate hypobaric hypoxia (H; simulated 2,500 m) is affected by the hypoxia ventilatory and hypercapnia ventilatory responses (HVR and HCVR, respectively). Twenty men (5 untrained subjects, 7 long distance runners, 8 middle distance runners) performed incremental exhaustive running tests in H and normobaric normoxia (N) condition. During the running test, (.)Vo(2), pulmonary ventilation (Ve) and arterial oxyhemoglobin saturation (Sa(O(2))) were measured, and in two ventilatory response tests performed during N, a rebreathing method was used to evaluate HVR and HCVR. Mean HVR and HCVR were 0.36 +/- 0.04 and 2.11 +/- 0.2 l.min(-1).mmHg(-1), respectively. HVR correlated significantly with the percent decrements in (.)Vo(2max) (%d(.)Vo(2max)), Sa(O(2)) [%dSa(O(2)) = (N-H).N(-1).100], and (.)Ve/(.)Vo(2) seen during H condition. By contrast, HCVR did not correlate with any of the variables tested. The increment in maximal Ve between H and N significantly correlated with %d(.)Vo(2max). Our findings suggest that O(2) chemosensitivity plays a significant role in determining the level of exercise hyperventilation during moderate hypoxia; thus, a higher O(2) chemosensitivity was associated with a smaller drop in (.)Vo(2max) and Sa(O(2)) under those conditions.  相似文献   

5.
We tested the hypothesis that, in humans, hyperthermic hyperpnea elicited in resting subjects differs from that elicited during submaximal, moderate-intensity exercise. In the rest trial, hot-water legs-only immersion and a water-perfused suit were used to increase esophageal temperature (T(es)) in 19 healthy male subjects; in the exercise trial, T(es) was increased by prolonged submaximal cycling [50% peak O(2) uptake (Vo(2))] in the heat (35 degrees C). Minute ventilation (Ve), ventilatory equivalent for Vo(2) (Ve/Vo(2)) and CO(2) output (Ve/Vco(2)), tidal volume (Vt), and respiratory frequency (f) were plotted as functions of T(es). In the exercise trial, Ve increased linearly with increases (from 37.0 to 38.7 degrees C) in T(es) in all subjects; in the rest trial, 14 of the 19 subjects showed a T(es) threshold for hyperpnea (37.8 +/- 0.5 degrees C). Above the threshold for hyperpnea, the slope of the regression line relating Ve and T(es) was significantly greater for the rest than the exercise trial. Moreover, the slopes of the regression lines relating Ve/Vo(2), Ve/Vco(2), and T(es) were significantly greater for the rest than the exercise trial. The increase in Ve reflected increases in Vt and f in the rest trial, but only f in the exercise trial, after an initial increase in ventilation due to Vt. Finally, the slope of the regression line relating T(es) and Vt or f was significantly greater for the rest than the exercise trial. These findings indicate that hyperthermic hyperpnea does indeed differ, depending on whether one is at rest or exercising at submaximal, moderate intensity.  相似文献   

6.
Peripheral chemoreflex inhibition with hyperoxia decreases sympathetic nerve traffic to muscle circulation [muscle sympathetic nerve activity (MSNA)]. Hyperoxia also decreases lactate production during exercise. However, hyperoxia markedly increases the activation of sensory endings in skeletal muscle in animal studies. We tested the hypothesis that hyperoxia increases the MSNA and mean blood pressure (MBP) responses to isometric exercise. The effects of breathing 21% and 100% oxygen at rest and during isometric handgrip at 30% of maximal voluntary contraction on MSNA, heart rate (HR), MBP, blood lactate (BL), and arterial O2 saturation (SaO2) were determined in 12 healthy men. The isometric handgrips were followed by 3 min of postexercise circulatory arrest (PE-CA) to allow metaboreflex activation in the absence of other reflex mechanisms. Hyperoxia lowered resting MSNA, HR, MBP, and BL but increased Sa(O2) compared with normoxia (all P < 0.05). MSNA and MBP increased more when exercise was performed in hyperoxia than in normoxia (MSNA: hyperoxic exercise, 255 +/- 100% vs. normoxic exercise, 211 +/- 80%, P = 0.04; and MBP: hyperoxic exercise, 33 +/- 9 mmHg vs. normoxic exercise, 26 +/- 10 mmHg, P = 0.03). During PE-CA, MSNA and MBP remained elevated (both P < 0.05) and to a larger extent during hyperoxia than normoxia (P < 0.05). Hyperoxia enhances the sympathetic and blood pressure (BP) reactivity to metaboreflex activation. This is due to an increase in metaboreflex sensitivity by hyperoxia that overrules the sympathoinhibitory and BP lowering effects of chemoreflex inhibition. This occurs despite a reduced lactic acid production.  相似文献   

7.
Endothelial dysfunction and underperfusion of exercising muscle contribute to exercise intolerance, hyperventilation, and breathlessness in atrial fibrillation (AF). Cardioversion (CV) improves endothelial function and exercise performance. We examined whether CV is equally beneficial in diabetes and hypertension, diseases that cause endothelial dysfunction and are often associated with AF. Cardiopulmonary exercise and pulmonary and endothelial (brachial artery flow-mediated dilation) function were tested before and after CV in patients with AF alone (n = 18, group 1) or AF with hypertension (n = 19, group 2) or diabetes (n = 19, group 3). Compared with group 1, peak exercise workload, O2 consumption (Vo2), O2 pulse, aerobic efficiency (Delta Vo2/Delta WR), and ratio of brachial diameter changes to flow changes (Delta D/Delta F) were reduced in group 2 and, to a greater extent, in group 3; exercise ventilation efficiency (Ve/Vco2 slope) and dead space-to-tidal volume ratio (Vd/Vt) were similar among groups. CV had less effect on peak workload (+7% vs. +18%), peak Vo2 (+12% vs. +17%), O2 pulse (+33% vs. +50%), Delta Vo2/Delta WR (+7% vs. +12%), Ve/Vco2 slope (-6% vs. -12%), Delta D/Delta F (+7% vs. +10%), and breathlessness (Borg scale) in group 2 than in group 1 and was ineffective in group 3. The antioxidant vitamin C, tested in eight additional patients in each cohort, improved flow-mediated dilation in groups 1 and 2 before, but not after, CV and was ineffective in group 3, suggesting that the oxidative injury is least in lone AF, greater in hypertension with AF, and greater still in diabetes with AF. Comorbidities that impair endothelial activity worsen endothelial dysfunction and exercise intolerance in AF. The advantages of CV appear to be inversely related to the extent of the underlying oxidative injury.  相似文献   

8.
Recent evidence suggests that heavy exercise may lower the percentage of O2 bound to hemoglobin (%SaO2) by greater than or equal to 5% below resting values in some highly trained endurance athletes. We tested the hypothesis that pulmonary gas exchange limitations may restrict VO2max in highly trained athletes who exhibit exercise-induced hypoxemia. Twenty healthy male volunteers were divided into two groups according to their physical fitness status and the demonstration of exercise-induced reductions in %SaO2 less than or equal to 92%: 1) trained (T), mean VO2max = 56.5 ml.kg-1.min-1 (n = 13) and 2) highly trained (HT) with maximal exercise %SaO2 less than or equal to 92%, mean VO2max = 70.1 ml.kg-1.min-1 (n = 7). Subjects performed two incremental cycle ergometer exercise tests to determine VO2max at sea level under normoxic (21% O2) and mild hyperoxic conditions (26% O2). Mean %SaO2 during maximal exercise was significantly higher (P less than 0.05) during hyperoxia compared with normoxia in both the T group (94.1 vs. 96.1%) and the HT group (90.6 vs. 95.9%). Mean VO2max was significantly elevated (P less than 0.05) during hyperoxia compared with normoxia in the HT group (74.7 vs. 70.1 ml.kg-1.min-1). In contrast, in the T group, no mean difference (P less than 0.05) existed between treatments in VO2max (56.5 vs. 57.1 ml.kg-1.min-1). These data suggest that pulmonary gas exchange may contribute significantly to the limitation of VO2max in highly trained athletes who exhibit exercise-induced reductions in %SaO2 at sea level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The prevalence of activity-related breathlessness increases with age, particularly in women, but the specific underlying mechanisms have not been studied. This novel cross-sectional study was undertaken to examine the effects of age and sex, and their interaction, on the perceptual and ventilatory responses to incremental treadmill exercise in 73 healthy participants (age range 40-80 yr old) with normal pulmonary function. Age-related changes at a standardized oxygen uptake (Vo(2)) during exercise included significant increases in breathlessness ratings (Borg scale), ventilation (Ve), ventilatory equivalent for carbon dioxide, and the ratio of tidal volume (Vt) to dynamic inspiratory capacity (IC) (all P < 0.05). These changes were quantitatively similar in women (n = 39) and in men (n = 34). For the group as a whole, exertional breathlessness ratings increased as resting static inspiratory muscle strength diminished (P = 0.05), as exercise ventilation increased relative to capacity (P = 0.013) and as the Vt/IC ratio increased (P = 0.003) during exercise. Older women (60-80 yr old, n = 23) reported greater (P < 0.05) intensity of exertional breathlessness at a standardized Vo(2) and Ve than age-matched men (n = 16), despite similar age-related changes in ventilatory demand and dynamic ventilatory mechanics. These increases in breathlessness ratings in older women disappeared when sex differences in baseline maximal ventilatory capacity were accounted for. In conclusion, although increased exertional breathlessness with advancing age is multifactorial, contributory factors included higher ventilatory requirements during exercise, progressive inspiratory muscle weakness, and restrictive mechanical constraints on Vt expansion related to reduced IC. The sensory consequences of this age-related respiratory impairment were more pronounced in women, who, by nature, have relatively reduced maximal ventilatory reserve.  相似文献   

10.
To better understand the mechanisms contributing to improved exercise capacity with cardiac resynchronization therapy (CRT), we studied the effects of 6 mo of CRT on pulmonary O(2) uptake (Vo(2)) kinetics, exercise left ventricular (LV) function, and peak Vo(2) in 12 subjects (age: 56 ± 15 yr, peak Vo(2): 12.9 ± 3.2 ml·kg(-1)·min(-1), ejection fraction: 18 ± 3%) with heart failure. We hypothesized that CRT would speed Vo(2) kinetics due to an increase in stroke volume secondary to a reduction in LV end-systolic volume (ESV) and that the increase in peak Vo(2) would be related to an increase in cardiac output reserve. We found that Vo(2) kinetics were faster during the transition to moderate-intensity exercise after CRT (pre-CRT: 69 ± 21 s vs. post-CRT: 54 ± 17 s, P < 0.05). During moderate-intensity exercise, LV ESV reserve (exercise - resting) increased 9 ± 7 ml (vs. a 3 ± 9-ml decrease pre-CRT, P < 0.05), and steady-state stroke volume increased (pre-CRT: 42 ± 8 ml vs. post-CRT: 61 ± 12 ml, P < 0.05). LV end-diastolic volume did not change from rest to steady-state exercise post-CRT (P > 0.05). CRT improved heart rate, measured as a lower resting and steady-state exercise heart rate and as faster heart rate kinetics after CRT (pre-CRT: 89 ± 12 s vs. post-CRT: 69 ± 21 s, P < 0.05). For peak exercise, cardiac output reserve increased significantly post-CRT and was 22% higher at peak exercise post-CRT (both P < 0.05). The increase in cardiac output was due to both a significant increase in peak and reserve stroke volume and to a nonsignificant increase in heart rate reserve. Similar patterns in LV volumes as moderate-intensity exercise were observed at peak exercise. Cardiac output reserve was related to peak Vo(2) (r = 0.48, P < 0.05). These findings demonstrate the chronic CRT-mediated cardiac factors that contribute, in part, to the speeding in Vo(2) kinetics and increase in peak Vo(2) in clinically stable heart failure patients.  相似文献   

11.
Exertional dyspnea limits exercise in some mitochondrial myopathy (MM) patients, but the clinical features of this syndrome are poorly defined, and its underlying mechanism is unknown. We evaluated ventilation and arterial blood gases during cycle exercise and recovery in five MM patients with exertional dyspnea and genetically defined mitochondrial defects, and in four control subjects (C). Patient ventilation was normal at rest. During exercise, MM patients had low Vo(2peak) (28 ± 9% of predicted) and exaggerated systemic O(2) delivery relative to O(2) utilization (i.e., a hyperkinetic circulation). High perceived breathing effort in patients was associated with exaggerated ventilation relative to metabolic rate with high VE/VO(2peak), (MM = 104 ± 18; C = 42 ± 8, P ≤ 0.001), and Ve/VCO(2peak)(,) (MM = 54 ± 9; C = 34 ± 7, P ≤ 0.01); a steeper slope of increase in ΔVE/ΔVCO(2) (MM = 50.0 ± 6.9; C = 32.2 ± 6.6, P ≤ 0.01); and elevated peak respiratory exchange ratio (RER), (MM = 1.95 ± 0.31, C = 1.25 ± 0.03, P ≤ 0.01). Arterial lactate was higher in MM patients, and evidence for ventilatory compensation to metabolic acidosis included lower Pa(CO(2)) and standard bicarbonate. However, during 5 min of recovery, despite a further fall in arterial pH and lactate elevation, ventilation in MM rapidly normalized. These data indicate that exertional dyspnea in MM is attributable to mitochondrial defects that severely impair muscle oxidative phosphorylation and result in a hyperkinetic circulation in exercise. Exaggerated exercise ventilation is indicated by markedly elevated VE/VO(2), VE/VCO(2), and RER. While lactic acidosis likely contributes to exercise hyperventilation, the fact that ventilation normalizes during recovery from exercise despite increasing metabolic acidosis strongly indicates that additional, exercise-specific mechanisms are responsible for this distinctive pattern of exercise ventilation.  相似文献   

12.
In two groups of young healthy subjects who performed arm training (N = 5) and leg training (N = 5), respectively, the respiratory adaptation to submaximal exercise with trained and nontrained muscle groups was compared by measurement of the ventilatory equivalent (Ve/Vo2, pH, and blood gases (Pco2, Po2, and So2) in arterial blood and in venous blood from exercising extremities. After training Ve/Vo2 was significantly reduced during exercise with trained muscles, but unchanged during exercise with nontrained muscles. The reduction in Ve/Vo2 was closely related to a less pronounced increase in heart rate and in arterial lactate content, but showed no quantitative correlation to changes in arterial adaptations in trained muscles are mainly responsible for the reduction in Ve/Vo2. After training during exercise with trained as well as nontrained muscles a shift to the right of the blood oxygen dissociation curve occurred as extremities was lower while corresponding Po2 was higher.  相似文献   

13.
The purpose of this study was to determine the effect of acute increases in pulmonary vascular pressures, caused by the application of lower-body positive pressure (LBPP), on exercise alveolar-to-arterial PO2 difference (A-aDO2), anatomical intrapulmonary (IP) shunt recruitment, and ventilation. Eight healthy men performed graded upright cycling to 90% maximal oxygen uptake under normal conditions and with 52 Torr (1 psi) of LBPP. Pulmonary arterial (PAP) and pulmonary artery wedge pressures (PAWP) were measured with a Swan-Ganz catheter. Arterial blood samples were obtained from a radial artery catheter, cardiac output was calculated by the direct Fick method, and anatomical IP shunt was determined by administering agitated saline during continuous two-dimensional echocardiography. LBPP increased both PAP and PAWP while upright at rest, and at all points during exercise (mean increase in PAP and PAWP 3.7 and 4.0 mmHg, respectively, P<0.05). There were no differences in exercise oxygen uptake or cardiac output between control and LBPP. Despite the increased PAP and PAWP with LBPP, A-aDO2 was not affected. In the upright resting position, there was no evidence of shunt in the control condition, whereas LBPP caused shunt in one subject. At the lowest exercise workload (75 W), shunt occurred in three subjects during control and in four subjects with LBPP. LBPP did not affect IP shunt recruitment during subsequent higher workloads. Minute ventilation and arterial PcO2 were not consistently affected by LBPP. Therefore, small acute increases in pulmonary vascular pressures do not widen exercise A-aDO2 or consistently affect IP shunt recruitment or ventilation.  相似文献   

14.
Six trained males [mean maximal O2 uptake (VO2max) = 66 ml X kg-1 X min-1] performed 30 min of cycling (mean = 76.8% VO2max) during normoxia (21.35 +/- 0.16% O2) and hyperoxia (61.34 +/- 1.0% O2). Values for VO2, CO2 output (VCO2), minute ventilation (VE), respiratory exchange ratio (RER), venous lactate, glycerol, free fatty acids, glucose, and alanine were obtained before, during, and after the exercise bout to investigate the possibility that a substrate shift is responsible for the previously observed enhanced performance and decreased RER during exercise with hyperoxia. VO2, free fatty acids, glucose, and alanine values were not significantly different in hyperoxia compared with normoxia. VCO2, RER, VE, and glycerol and lactate levels were all lower during hyperoxia. These results are interpreted to support the possibility of a substrate shift during hyperoxia.  相似文献   

15.
We investigated the effects of sustained embryonic hypoxia on the neonatal ventilatory chemosensitivity. White Leghorn chicken eggs were incubated at 38 degrees C either in 21% O(2) throughout incubation (normoxia, Nx) or in 15% O(2) from embryonic day 5 (hypoxia, Hx), hatching time included. Hx embryos hatched approximately 11 h later than Nx, with similar body weights. Measurements of gaseous metabolism (oxygen consumption, Vo(2)) and pulmonary ventilation (Ve) were conducted either within the first 8 h (early) or later hours (late) of the first posthatching day. In resting conditions, Hx had similar Vo(2) and body temperature (Tb) and slightly higher Ve and ventilatory equivalent (Ve/Vo(2)) than Nx. Ventilatory chemosensitivity was evaluated from the degree of hyperpnea (increase in Ve) and of hyperventilation (increase in Ve/Vo(2)) during acute hypoxia (15 and 10% O(2), 20 min each) and acute hypercapnia (2 and 4% CO(2), 20 min each). The chemosensitivity differed between the early and late hours, and at either time the responses to hypoxia and hypercapnia were less in Hx than in Nx because of a lower increase in Ve and a lower hypoxic hypometabolism. In a second group of Nx and Hx hatchlings, the Ve response to 10% O(2) was tested in the same hatchlings at the early and late hours. The results confirmed the lower hypoxic chemosensitivity of Hx. We conclude that hypoxic incubation affected the development of respiratory control, resulting in a blunted ventilatory chemosensitivity.  相似文献   

16.
There are reports of abnormal pulmonary oxygen uptake (Vo(2)) and deoxygenated hemoglobin ([HHb]) kinetics in individuals with Type 2 diabetes (T2D) below 50 yr of age with disease durations of <5 yr. We examined the Vo(2) and muscle [HHb] kinetics in 12 older T2D patients with extended disease durations (age: 65 ± 5 years; disease duration 9.3 ± 3.8 years) and 12 healthy age-matched control participants (CON; age: 62 ± 6 years). Maximal oxygen uptake (Vo(2max)) was determined via a ramp incremental cycle test and Vo(2) and [HHb] kinetics were determined during subsequent submaximal step exercise. The Vo(2max) was significantly reduced (P < 0.05) in individuals with T2D compared with CON (1.98 ± 0.43 vs. 2.72 ± 0.40 l/min, respectively) but, surprisingly, Vo(2) kinetics was not different in T2D compared with CON (phase II time constant: 43 ± 17 vs. 41 ± 12 s, respectively). The Δ[HHb]/ΔVo(2) was significantly higher in T2D compared with CON (235 ± 99 vs. 135 ± 33 AU·l(-1)·min(-1); P < 0.05). Despite a lower Vo(2max), Vo(2) kinetics is not different in older T2D compared with healthy age-matched control participants. The elevated Δ[HHb]/ΔVo(2) in T2D individuals possibly indicates a compromised muscle blood flow that mandates a greater O(2) extraction during exercise. Longer disease duration may result in adaptations in the O(2) extraction capabilities of individuals with T2D, thereby mitigating the expected age-related slowing of Vo(2) kinetics.  相似文献   

17.
Subjects with greater aerobic fitness demonstrate better diastolic compliance at rest, but whether fitness modulates exercise cardiac compliance and cardiac filling pressures remains to be determined. On the basis of maximal oxygen consumption (VO2max), healthy male subjects were categorized into either low (LO: VO2max=43+/-6 ml.kg-1.min-1; n=3) or high (HI: VO2max=60+/-3 ml.kg-1.min-1; n=5) aerobic power. Subjects performed incremental cycle exercise to 90% Vo(2max). Right atrial (RAP) and pulmonary artery wedge (PAWP) pressures were measured, and left ventricular (LV) transmural filling pressure (TMFP=PAWP-RAP) was calculated. Cardiac output (CO) and stroke volume (SV) were determined by direct Fick, and LV end-diastolic volume (EDV) was estimated from echocardiographic fractional area change and Fick SV. There were no between-group differences for any measure at rest. At a submaximal workload of 150 W, PAWP and TMFP were higher (P<0.05) in LO compared with HI (12 vs. 8 mmHg, and 9 vs. 4 mmHg, respectively). At peak exercise, CO, SV, and EDV were lower in LO (P<0.05). RAP was not different at peak exercise, but PAWP (23 vs. 15 mmHg) and TMFP (12 vs. 6 mmHg) were higher in LO (P<0.05). Compared with less fit subjects, subjects with greater aerobic fitness demonstrated lower LV filling pressures during exercise, whereas SV and EDV were either similar (submaximal exercise) or higher (peak exercise), suggesting superior diastolic function and compliance.  相似文献   

18.
We investigated whether a core temperature threshold for hyperthermic hyperventilation is seen during prolonged submaximal exercise in the heat when core temperature before the exercise is reduced and whether the evoked hyperventilatory response is affected by altering the initial core temperature. Ten male subjects performed three exercise trials at 50% of peak oxygen uptake in the heat (37°C and 50% relative humidity) after altering their initial esophageal temperature (T(es)). Initial T(es) was manipulated by immersion for 25 min in water at 18°C (Precooling), 35°C (Control), or 40°C (Preheating). T(es) after the water immersion was significantly higher in the Preheating trial (37.5 ± 0.3°C) and lower in the Precooling trial (36.1 ± 0.3°C) than in the Control trial (36.9 ± 0.3°C). In the Precooling trial, minute ventilation (Ve) showed little change until T(es) reached 37.1 ± 0.4°C. Above this core temperature threshold, Ve increased linearly in proportion to increasing T(es). In the Control trial, Ve increased as T(es) increased from 37.0°C to 38.6°C after the onset of exercise. In the Preheating trial, Ve increased from the initially elevated levels of T(es) (from 37.6 to 38.6°C) and Ve. The sensitivity of Ve to increasing T(es) above the threshold for hyperventilation (the slope of the T(es)-Ve relation) did not significantly vary across trials (Precooling trial = 10.6 ± 5.9, Control trial = 8.7 ± 5.1, and Preheating trial = 9.2 ± 6.9 L·min(-1)·°C(-1)). These results suggest that during prolonged submaximal exercise at a constant workload in humans, there is a clear core temperature threshold for hyperthermic hyperventilation and that the evoked hyperventilatory response is unaffected by altering initial core temperature.  相似文献   

19.
To test the hypothesis that the decrease in plasma pH contributes to the hyperventilation observed in humans in response to exercise at high workloads, five healthy male subjects performed a ramp exercise [maximal workload: 352 W (SD 35)] in a control situation and when arterialized plasma pH was maintained at the resting level (pH clamp) by intravenous infusion of sodium bicarbonate [129 mmol (SD 23), beginning at 59% maximal workload (SD 5)]. Bicarbonate infusion did not modify O(2) consumption (Vo(2)) but significantly (P < 0.05) increased arterial Pco(2), plasma bicarbonate concentration, and respiratory exchange ratio (P < 0.05). At the three highest workloads, pulmonary ventilation (Ve) and Ve/Vo(2) were approximately 5-10% lower (P < 0.05) when bicarbonate was infused than in the control situation, and hyperventilation was reduced by 15-30%. These data suggest that the decrease in plasma pH is one of the factors that contribute to the hyperventilation observed at high workloads.  相似文献   

20.
The prevalence of a patent foramen ovale (PFO) is ~30%, and this source of right-to-left shunt could result in greater pulmonary gas exchange impairment at rest and during exercise. The aim of this work was to determine if individuals with an asymptomatic PFO (PFO+) have greater pulmonary gas exchange inefficiency at rest and during exercise than subjects without a PFO (PFO-). Separated by 1 h of rest, 8 PFO+ and 8 PFO- subjects performed two incremental cycle ergometer exercise tests to voluntary exhaustion while breathing either room air or hypoxic gas [fraction of inspired O(2) (FI(O(2))) = 0.12]. Using echocardiography, we detected small, intermittent boluses of saline contrast bubbles entering directly into the left atrium within 3 heart beats at rest and during both exercise conditions in PFO+. These findings suggest a qualitatively small intracardiac shunt at rest and during exercise in PFO+. The alveolar-to-arterial oxygen difference (AaDo(2)) was significantly (P < 0.05) different between PFO+ and PFO- in normoxia (5.9 ± 5.1 vs. 0.5 ± 3.5 mmHg) and hypoxia (10.1 ± 5.9 vs. 4.1 ± 3.1 mmHg) at rest, but not during exercise. However, arterial oxygen saturation was significantly different between PFO+ and PFO- at peak exercise in normoxia (94.3 ± 0.9 vs. 95.8 ± 1.0%) as a result of a significant difference in esophageal temperature (38.4 ± 0.3 vs. 38.0 ± 0.3°C). An asymptomatic PFO contributes to pulmonary gas exchange inefficiency at rest but not during exercise in healthy humans and therefore does not explain intersubject variability in the AaDO(2) at maximal exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号