首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acanthamoeba cysts are resistant to unfavorable physiological conditions and various disinfectants. Acanthamoeba cysts have 2 walls containing various sugar moieties, and in particular, one third of the inner wall is composed of cellulose. In this study, it has been shown that down-regulation of cellulose synthase by small interfering RNA (siRNA) significantly inhibits the formation of mature Acanthamoeba castellanii cysts. Calcofluor white staining and transmission electron microscopy revealed that siRNA transfected amoeba failed to form an inner wall during encystation and thus are likely to be more vulnerable. In addition, the expression of xylose isomerase, which is involved in cyst wall formation, was not altered in cellulose synthase down-regulated amoeba, indicating that cellulose synthase is a crucial factor for inner wall formation by Acanthamoeba during encystation.  相似文献   

2.
Acanthamoeba infections are difficult to treat due to often late diagnosis and the lack of effective and specific therapeutic agents. The most important reason for unsuccessful therapy seems to be the existence of a double-wall cyst stage that is highly resistant to the available treatments, causing reinfections. The major components of the Acanthamoeba cyst wall are acid-resistant proteins and cellulose. The latter has been reported to be the major component of the inner cyst wall. It has been demonstrated previously that glycogen is the main source of free glucose for the synthesis of cellulose in Acanthamoeba, partly as glycogen levels fall during the encystment process. In other lower eukaryotes (e.g., Dictyostelium discoideum), glycogen phosphorylase has been reported to be the main tool used for glycogen breakdown in order to maintain the free glucose levels during the encystment process. Therefore, it was hypothesized that the regulation of the key processes involved in the Acanthamoeba encystment may be similar to the previously reported regulation mechanisms in other lower eukaryotes. The catalytic domain of the glycogen phosphorylase was silenced using RNA interference methods, and the effect of this phenomenon was assessed by light and electron microscopy analyses, calcofluor staining, expression zymogram assays, and Northern and Western blot analyses of both small interfering RNA-treated and control cells. The present report establishes the role of glycogen phosphorylase during the encystment process of Acanthamoeba. Moreover, the obtained results demonstrate that the enzyme is required for cyst wall assembly, mainly for the formation of the cell wall inner layer.  相似文献   

3.
Autophagy-related protein 8 (Atg8) is an essential component of autophagy formation and encystment of cyst-forming parasites, and some protozoa, such as, Acanthamoeba, Entamoeba, and Dictyostelium, have been reported to possess a type of Atg8. In this study, an isoform of Atg8 was identified and characterized in Acanthamoeba castellanii (AcAtg8b). AcAtg8b protein was found to encode 132 amino acids and to be longer than AcAtg8 protein, which encoded 117 amino acids. Real-time PCR analysis showed high expression levels of AcAtg8b and AcAtg8 during encystation. Fluorescence microscopy demonstrated that AcAtg8b is involved in the formation of the autophagosomal membrane. Chemically synthesized siRNA against AcAtg8b reduced the encystation efficiency of Acanthamoeba, confirming that AcAtg8b, like AcAtg8, is an essential component of cyst formation in Acanthamoeba. Our findings suggest that Acanthamoeba has doubled the number of Atg8 gene copies to ensure the successful encystation for survival when 1 copy is lost. These 2 types of Atg8 identified in Acanthamoeba provide important information regarding autophagy formation, encystation mechanism, and survival of primitive, cyst-forming protozoan parasites.  相似文献   

4.
The life cycle of Acanthamoeba consists of two stages, trophozoite and cyst. The cyst form is resistant to almost all antibiotics. By long term cultivation, Acanthamoeba severely attenuated the encysting ability. To determine the changing of gene expression by the long term cultivation, especially focusing an encystation mediating factors, this study compared the ESTs of the fresh strain and the old strain, and trophozoite. Comparison of the KOG (euKaryotic Orthologous Groups) analysis relative to trophozoite revealed higher percentages of cyst ESTs related to G (Carbohydrate transport and metabolism), H (Coenzyme transport and metabolism), I (Lipid transport and metabolism), D (Cell cycle control, cell division, chromosome partitioning), T (signal transduction mechanisms), and O (Posttranslational modification, protein turnover, chaperones). In addition to this result, KOG analysis of fresh strain relative to old strain showed higher percentage of cyst ESTs related to metabolism category and T (signal transduction mechanisms) article. ESTs of the fresh strain revealed more various gene profiles compared to the old strain including encystation mediating factors like autophagy related proteins (Z article) and signal transduction proteins (T article). Twenty seven kinds of protein kinase C (PKC) like genes were detected in cyst or trophozoite ESTs and twenty one of them were highly expressed during encystation. The information of the expressed genes during encystation in only the fresh strain will provide new clues to understanding the encystation mechanism of encysting protozoa including Acanthamoeba.  相似文献   

5.
The reptilian parasite Entamoeba invadens is accepted as a model for the study of the Entamoeba encystation process. Here we describe the production and characterization of a mAb (B4F2), generated against a component of the E. invadens cyst wall. This mAb specifically recognizes a 48-kDa protein present in cytoplasmic vesicles of cells encysting for 24 h. In mature cysts (96 h), the antigen was detected on the cyst surface. By two-dimensional electrophoresis and mass spectrometry analysis, the B4F2 specific antigen was identified as enolase. Levels of enolase mRNA were increased in encysting cells and the B4F2 mAb was found to inhibit cyst formation. Therefore, these results strongly suggest a new role for enolase in E. invadens encystation, and the B4F2 mAb will be useful tool to study its role in the differentiation process.  相似文献   

6.
Encystation of Acanthamoeba leads to the formation of resilient cysts from vegetative trophozoites. This process is essential for parasite survival under unfavorable conditions such as starvation, low temperatures, and exposure to biocides. During encystation, a massive turnover of intracellular components occurs, and a large number of organelles and proteins are degraded by proteases. Previous studies with specific protease inhibitors have shown that cysteine and serine proteases are involved in encystation of Acanthamoeba, but little is known about the role of metalloproteases in this process. Here, we have biochemically characterized an M17 leucine aminopeptidase of Acanthamoeba castellanii (AcLAP) and analyzed its functional involvement in encystation of the parasite. Recombinant AcLAP shared biochemical properties such as optimal pH, requirement of divalent metal ions for activity, substrate specificity for Leu, and inhibition profile by aminopeptidase inhibitors and metal chelators with other characterized M17 family LAPs. AcLAP was highly expressed at a late stage of encystation and mainly localized in the cytoplasm of A. castellanii. Knockdown of AcLAP using small interfering RNA induced a decrease of LAP activity during encystation, a reduction of mature cyst formation, and the formation of abnormal cyst walls. In summary, these results indicate that AcLAP is a typical M17 family enzyme that plays an essential role during encystation of Acanthamoeba.  相似文献   

7.
During encystation of Hartmannella culbertsoni induced by taurine or epinephrine, 60-70% of the reserve glycogen is degraded. Glycogen phosphorylase is activated and glycogen synthetase is inhibited after 6-8 hr of exposure to the encystation medium. The carbon skeleton of glycogen but not that of protein is utilised in the synthesis of cyst wall cellulose. Exogenously added glucose (225 and 550 mM) blocks encystation, degradation of glycogen and synthesis of cellulose. Cyclic AMP synthesis is also very much reduced in cells exposed to glucose.  相似文献   

8.
9.
When cells of Acanthamoeba castellanii are placed in a non-nutrient medium, they differentiate into cysts which possess cellulosic walls. In the present study, the source of the glucosyl unit for cyst wall cellulose was investigated by following the encystment of trophozoites grown in the presence of 14C-labeled fatty acids (uniformly labeled palmitate or oleate) or [3-3H]glucose. Cells were fractionated at the beginning and after 30 hr of encystment using a modified Schmidt-Tannhauser procedure. In cells grown on fatty acids, 90% of the labeled material was in the lipid fractions both before and after encystment with the total amount of label/cell changing very little. Both partial and complete acid hydrolysis of the glycogen of the acidsoluble fraction and the alkali-insoluble residue of the cyst wall indicated that the glucose of both fractions was not radioactive, although Acanthamoeba is known to have a functional glyoxylate pathway.Fractionation data of cells grown on [3H]glucose indicated a sevenfold increase in radioactivity in the wall insoluble fraction and a fivefold decrease in the acid-soluble fraction with the cpm/cell of the other fractions changing very little after 30 hr of encystment. Approximately 70% of the 3H-labeled material was recovered as glucose from the 30-hr wall insoluble fraction following complete acid hydrolysis. The specific radioactivity of glucose in the cyst wall insoluble fraction was the same as that of glycogen glucose isolated from the acid soluble fraction of trophozoites. Electron microscopic autoradiography showed that the majority of nonlipid radioactivity was due to glycogen in trophozoites. Autoradiograms failed to reveal Golgi bodies or any particular region of the cell as being the specialized site of cellulose synthesis. The results of the fractionation and autoradiographic studies are consistent with the concept that glycogen is a precursor of cyst wall cellulose, and that glucosyl units of glycogen and/or other glucose derivatives are converted to cellulose without significant dilution under the experimental conditions used.  相似文献   

10.
In Corynebacterium glutamicum formation of glc-1-P (α-glucose-1-phosphate) from glc-6-P (glucose-6-phosphate) by α-Pgm (phosphoglucomutase) is supposed to be crucial for synthesis of glycogen and the cell wall precursors trehalose and rhamnose. Furthermore, Pgm is probably necessary for glycogen degradation and maltose utilization as glucan phosphorylases of both pathways form glc-1-P. We here show that C. glutamicum possesses at least two Pgm isoenzymes, the cg2800 (pgm) encoded enzyme contributing most to total Pgm activity. By inactivation of pgm we created C. glutamicum IMpgm showing only about 12% Pgm activity when compared to the parental strain. We characterized both strains during cultivation with either glucose or maltose as substrate and observed that (i) the glc-1-P content in the WT (wild-type) and the mutant remained constant independent of the carbon source used, (ii) the glycogen levels in the pgm mutant were lower during growth on glucose and higher during growth on maltose, and (iii) the morphology of the mutant was altered with maltose as a substrate. We conclude that C. glutamicum employs glycogen as carbon capacitor to perform glc-1-P homeostasis in the exponential growth phase and is therefore able to counteract limited Pgm activity for both anabolic and catabolic metabolic pathways.  相似文献   

11.
Encystation is an essential process for Acanthamoeba survival under nutrient-limiting conditions and exposure to drugs. The expression of several genes has been observed to increase or decrease during encystation. Epigenetic processes involved in regulation of gene expression have been shown to play a role in several pathogenic parasites. In the present study, we identified the protein arginine methyltransferase 5 (PRMT5), a known epigenetic regulator, in Acanthamoeba castellanii. PRMT5 of A. castellanii (AcPRMT5) contained domains found in S-adenosylmethionine-dependent methyltransferases and in PRMT5 arginine-N-methyltransferase. Expression levels of AcPRMT5 were increased during encystation of A. castellanii. The EGFP-PRMT5 fusion protein was mainly localized in the nucleus of trophozoites. A. castellanii transfected with siRNA designed against AcPRMT5 failed to form mature cysts. The findings of this study lead to a better understanding of epigenetic mechanisms behind the regulation of encystation in cyst-forming pathogenic protozoa.  相似文献   

12.
Protein S-palmitoylation, a hydrophobic post-translational modification, is performed by protein acyltransferases that have a common DHHC Cys-rich domain (DHHC proteins), and provides a regulatory switch for protein membrane association. In this work, we analyzed the presence of DHHC proteins in the protozoa parasite Giardia lamblia and the function of the reversible S-palmitoylation of proteins during parasite differentiation into cyst. Two specific events were observed: encysting cells displayed a larger amount of palmitoylated proteins, and parasites treated with palmitoylation inhibitors produced a reduced number of mature cysts. With bioinformatics tools, we found nine DHHC proteins, potential protein acyltransferases, in the Giardia proteome. These proteins displayed a conserved structure when compared to different organisms and are distributed in different monophyletic clades. Although all Giardia DHHC proteins were found to be present in trophozoites and encysting cells, these proteins showed a different intracellular localization in trophozoites and seemed to be differently involved in the encystation process when they were overexpressed. dhhc transgenic parasites showed a different pattern of cyst wall protein expression and yielded different amounts of mature cysts when they were induced to encyst. Our findings disclosed some important issues regarding the role of DHHC proteins and palmitoylation during Giardia encystation.  相似文献   

13.
The production of viable cysts by Giardia is essential for its survival in the environment and for spreading the infection via contaminated food and water. The hallmark of cyst production (also known as encystation) is the biogenesis of encystation-specific vesicles (ESVs) that transport cyst wall proteins to the plasma membrane of the trophozoite before laying down the protective cyst wall. However, the molecules that regulate ESV biogenesis and maintain cyst viability have never before been identified. Here, we report that giardial glucosylceramide transferase-1 (gGlcT1), an enzyme of sphingolipid biosynthesis, plays a key role in ESV biogenesis and maintaining cyst viability. We find that overexpression of this enzyme induced the formation of aggregated/enlarged ESVs and generated clustered cysts with reduced viability. The silencing of gGlcT1 synthesis by antisense morpholino oligonucleotide abolished ESV production and generated mostly nonviable cysts. Interestingly, when gGlcT1-overexpressed Giardia was transfected with anti-gGlcT1 morpholino, the enzyme activity, vesicle biogenesis, and cyst viability returned to normal, suggesting that the regulated expression of gGlcT1 is important for encystation and viable cyst production. Furthermore, the overexpression of gGlcT1 increased the influx of membrane lipids and fatty acids without altering the fluidity of plasma membranes, indicating that the expression of gGlcT1 activity is linked to lipid internalization and maintaining the overall lipid balance in this parasite. Taken together, our results suggest that gGlcT1 is a key player of ESV biogenesis and cyst viability and therefore could be targeted for developing new anti-giardial therapies.  相似文献   

14.
The genus Acanthamoeba can cause severe infections such as granulomatous amebic encephalitis and amebic keratitis in humans. However, little genomic information of Acanthamoeba has been reported. Here, we constructed Acanthamoeba expressed sequence tags (EST) database (Acanthamoeba EST DB) derived from our 4 kinds of Acanthamoeba cDNA library. The Acanthamoeba EST DB contains 3,897 EST generated from amebae under various conditions of long term in vitro culture, mouse brain passage, or encystation, and downloaded data of Acanthamoeba from National Center for Biotechnology Information (NCBI) and Taxonomically Broad EST Database (TBestDB). The almost reported cDNA/genomic sequences of Acanthamoeba provide stand alone BLAST system with nucleotide (BLAST NT) and amino acid (BLAST AA) sequence database. In BLAST results, each gene links for the significant information including sequence data, gene orthology annotations, relevant references, and a BlastX result. This is the first attempt for construction of Acanthamoeba database with genes expressed in diverse conditions. These data were integrated into a database (http://www.amoeba.or.kr).  相似文献   

15.
16.
The cyst wall of Entamoeba invadens (Ei), a model for the human pathogen Entamoeba histolytica, is composed of fibrils of chitin and three chitin-binding lectins called Jacob, Jessie3, and chitinase. Here we show chitin, which was detected with wheat germ agglutinin, is made in secretory vesicles prior to its deposition on the surface of encysting Ei. Jacob lectins, which have tandemly arrayed chitin-binding domains (CBDs), and chitinase, which has an N-terminal CBD, were each made early during encystation. These results are consistent with their hypothesized roles in cross-linking chitin fibrils (Jacob lectins) and remodeling the cyst wall (chitinase). Jessie3 lectins likely form the mortar or daub of the cyst wall, because 1) Jessie lectins were made late during encystation; 2) the addition to Jessie lectins to the cyst wall correlated with a marked decrease in the permeability of cysts to nucleic acid stains (DAPI) and actin-binding heptapeptide (phalloidin); and 3) recombinant Jessie lectins, expressed as a maltose-binding proteins in the periplasm of Escherichia coli, caused transformed bacteria to agglutinate in suspension and form a hard pellet that did not dissociate after centrifugation. Jessie3 appeared as linear forms and rosettes by negative staining of secreted recombinant proteins. These findings provide evidence for a “wattle and daub” model of the Entamoeba cyst wall, where the wattle or sticks (chitin fibrils likely cross-linked by Jacob lectins) is constructed prior to the addition of the mortar or daub (Jessie3 lectins).  相似文献   

17.
《Cellular signalling》2014,26(2):453-459
Amoebas survive environmental stress by differentiating into encapsulated cysts. As cysts, pathogenic amoebas resist antibiotics, which particularly counteracts treatment of vision-destroying Acanthamoeba keratitis. Limited genetic tractability of amoeba pathogens has left their encystation mechanisms unexplored. The social amoeba Dictyostelium discoideum forms spores in multicellular fruiting bodies to survive starvation, while other dictyostelids, such as Polysphondylium pallidum can additionally encyst as single cells. Sporulation is induced by cAMP acting on PKA, with the cAMP phosphodiesterase RegA critically regulating cAMP levels. We show here that RegA is deeply conserved in social and pathogenic amoebas and that deletion of the RegA gene in P. pallidum causes precocious encystation and prevents cyst germination. We heterologously expressed and characterized Acanthamoeba RegA and performed a compound screen to identify RegA inhibitors. Two effective inhibitors increased cAMP levels and triggered Acanthamoeba encystation. Our results show that RegA critically regulates Amoebozoan encystation and that components of the cAMP signalling pathway could be effective targets for therapeutic intervention with encystation.  相似文献   

18.
Acanthamoeba castellanii is a facultative pathogen that has a two-stage life cycle comprising the vegetatively growing trophozoite stage and the dormant cyst stage. Cysts are formed when the cell encounters unfavorable conditions, such as environmental stress or food deprivation. Due to their rigid double-layered wall, Acanthamoeba cysts are highly resistant to antiamoebic drugs. This is problematic as cysts can survive initially successful chemotherapeutic treatment and cause relapse of the disease. We studied the Acanthamoeba encystment process by using two-dimensional gel electrophoresis (2DE) and found that most changes in the protein content occur early in the process. Truncated actin isoforms were found to abound in the encysting cell, and the levels of translation elongation factor 2 (EF2) were sharply decreased, indicating that the rate of protein synthesis must be low at this stage. In the advanced stage of encystment, however, EF2 levels and the trophozoite proteome were partly restored. The protease inhibitors PMSF (phenylmethylsulfonyl fluoride) and E64d [(2S,3S)-trans-epoxysuccinyl-l-leucylamido-3-methylbutane ethyl ester] inhibited the onset of encystment, whereas the protein synthesis inhibitor cycloheximide was ineffective. Changes in the protein profile, similar to those of encysting cells, could be observed with trophozoite homogenates incubated at room temperature for several hours. Interestingly, these changes could be inhibited significantly by cysteine protease inhibitors but not by inhibitors against other proteases. Taken together, we conclude that the encystment process in A. castellanii is of a bipartite nature consisting of an initial phase of autolysis and protein degradation and an advanced stage of restoration accompanied by the expression of encystment-specific genes.The bacteriovorous Acanthamoeba spp. occur ubiquitously in the environment (27) and have a two-stage life cycle consisting of the replicating and feeding trophozoite stage and the dormant, double-walled, cyst stage (16). Cysts are formed in order to survive in an inhospitable environment and are able to persist in a wide variety of habitats (4, 17). Indeed, the ubiquity of Acanthamoeba is made possible by the extreme resistance of the cyst against desiccation, temperature changes, chemicals, radiation, and prolonged starvation. Also, various antiamoebic agents, such as benzalkonium chloride and propamidine isethionate, have no effect on cysts (9, 13, 29). Since acanthamoebae are facultative pathogens that can cause Acanthamoeba keratitis (AK) and granulomatous amoebic encephalitis (GAE), encystment is also of medical relevance (16). An often occurring complication in the treatment of AK is the presence of viable cysts that remain in the corneal stroma after initial successful therapy, as these can eventually excyst again and lead to recurrent infections (23).According to Weisman (31), the encystment process comprises three phases: induction, wall synthesis, and dormancy. During the induction phase, trophozoites begin to lose their amoeboid appearance and become round. The first wall that is formed gives rise to the exocyst; this wall is 0.3 to 0.5 μm thick and consists mostly of acid-insoluble proteins. The endocyst is formed after the appearance of a well-defined layer whose major component is cellulose (31). Cell wall synthesis is usually accompanied by a decrease in cytoplasmic mass of approximately 80% through a gradual dehydration of the amoeba, thereby causing retraction of the protoplast from the cell wall (2). Rather early, autolysosomes appear and remain in the cytoplasm throughout the whole encystment process. In light of these dramatic changes in the cell''s physiology, it is surprising that the encysting cell can stop and revert the process until 15 h after induction (30). Afterwards, however, cells become committed to the completion of the encystment process.At the molecular level, a number of factors involved in the encystment process have been characterized thus far. For example, cyst-specific protein 21 (Csp21) is a cyst wall protein found in group II acanthamoebae and was reported to be synthesized approximately 12 h after induction (6). The expression of the respective gene is repressed under normal growth conditions via one or more repressor elements between the TATA box and nucleotide (nt) +63 (3). Furthermore, encystment requires serine protease activity (5, 20) and autophagy proteins (22), all of which are suggested to be involved in autolytic processes, and glycogen phosphorylase, which is necessary for the breakdown of glycogen (14). The glucose-1-phosphate that is thereby liberated is subsequently used for the buildup of cellulose in the cyst wall.In the search for additional factors, there have been several successful attempts in the past years to screen encysting Acanthamoeba castellanii for genes specifically expressed during encystment at the mRNA level (19, 21) as well as at the protein level (1, 24). However, there is still a lack of information on the extent of cellular reorganization during the encystment process at the protein level. In this study, we therefore aimed to monitor the encystment process in PAT06, a new clinical isolate of A. castellanii (10), by using two-dimensional gel electrophoresis (2DE) and to analyze the developmental and molecular processes at the proteomic level.  相似文献   

19.
Acanthamoeba castellanii has a phenol oxidase activity that is believed to be a laccase. Enzyme activity was found in the outer cyst wall, in the cytoplasm of encysting amoebae and in the encystment medium. Encystment procedures were modified to promote an increase in the amount of soluble enzyme secreted during encystation. Acanthamoeba polyphenol oxidase has a pH optimum of 6.0 and a Km value of 0.21 mM with dihydroxyphenylalanine. The enzyme does not oxidize tyrosine, and it is inhibited by chloride but not by inhibitors of peroxidase. Its synthesis coincides with encystation, and known inhibitors of polyphenol oxidase prevent encystation. Polyphenol oxidase may have a role in making the cyst resistant to mechanical and chemical breakdown.  相似文献   

20.
Some unicellular organisms are able to encyst as a protective response to a harmful environment. The cyst wall usually contains chitin as its main structural constituent, but in some cases, as in Acanthamoeba, it consists of cellulose instead. Specific cytochemical differentiation between cellulose and chitin by microscopy has not been possible, due to the similarity of their constituent β-1,4-linked hexose backbones. Thus, various fluorescent brightening agents and lectins bind to both cellulose and chitin. We have used a recombinant cellulose-binding protein consisting of two cellulose-binding domains (CBDs) from Trichoderma reesei cellulases linked together in combination with monoclonal anticellulase antibodies and anti-mouse immunoglobulin fluorescein conjugate to specifically stain cellulose in the cysts of Acanthamoeba strains for fluorescence microscopy imaging. Staining was observed in ruptured cysts and frozen sections of cysts but not in intact mature cysts. No staining reaction was observed with the chitin-containing cyst walls of Giardia intestinalis, Entamoeba dispar, or Pneumocystis carinii. Thus, the recombinant CBD can be used as a marker to distinguish between cellulose and chitin. Thirteen of 25 environmental or clinical isolates of amoebae reacted in the CBD binding assay. All 13 isolates were identified as Acanthamoeba spp. Five isolates of Hartmannella and seven isolates of Naegleria tested negative in the CBD binding assay. Whether cyst wall cellulose really is a unique property of Acanthamoeba spp. among free-living amoebae, as suggested by our findings, remains to be shown in more extensive studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号