首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The type III polyketide synthases from fungi produce a variety of secondary metabolites including pyrones, resorcinols, and resorcylic acids. We previously reported that CsyB from Aspergillus oryzae forms α-pyrone csypyrone B compounds when expressed in A. oryzae. Feeding experiments of labeled acetates indicated that a fatty acyl starter is involved in the reaction catalyzed by CsyB. Here we report the in vivo and in vitro reconstitution analysis of CsyB. When CsyB was expressed in Escherichia coli, we observed the production of 3-acetyl-4-hydroxy-α-pyrones with saturated or unsaturated straight aliphatic chains of C9–C17 in length at the 6 position. Subsequent in vitro analysis using recombinant CsyB revealed that CsyB could accept butyryl-CoA as a starter substrate and malonyl-CoA and acetoacetyl-CoA as extender substrates to form 3-acetyl-4-hydroxy-6-propyl-α-pyrone. CsyB also afforded dehydroacetic acid from two molecules of acetoacetyl-CoA. Furthermore, synthetic N-acetylcysteamine thioester of β-ketohexanoic acid was converted to 3-butanoyl-4-hydroxy-6-propyl-α-pyrone by CsyB. These results therefore confirmed that CsyB catalyzed the synthesis of β-ketoacyl-CoA from the reaction of the starter fatty acyl CoA thioesters with malonyl-CoA as the extender through decarboxylative condensation and further coupling with acetoacetyl-CoA to form 3-acetyl-4-hydroxy-6-alkyl-α-pyrone. CsyB is the first type III polyketide synthase that synthesizes 3-acetyl-4-hydroxy-6-alkyl-α-pyrone by catalyzed the coupling of two β-ketoacyl-CoAs.  相似文献   

2.
Curcuminoids, major components of the spice turmeric, are used as a traditional Asian medicine and a food additive. Curcumin, a representative curcuminoid, has received a great deal of attention because of its anti-inflammatory, anticarcinogenic, and antitumor activities. Here we report a novel type III polyketide synthase named curcuminoid synthase from Oryza sativa, which synthesizes bisdemethoxycurcumin via a unique mechanism from two 4-coumaroyl-CoAs and one malonyl-CoA. The reaction begins with the thioesterification of the thiol moiety of Cys-174 by a starter molecule, 4-coumaroyl-CoA. Decarboxylative condensation of the first extender substrate, malonyl-CoA, onto the thioester of 4-coumarate results in the formation of a diketide-CoA intermediate. Subsequent hydrolysis of the intermediate yields a beta-keto acid, which in turn acts as the second extender substrate. The beta-keto acid is then joined to the Cys-174-bound 4-coumarate by decarboxylative condensation to form bisdemethoxycurcumin. This reaction violates the traditional head-to-tail model of polyketide assembly; the growing diketide intermediate is hydrolyzed to a beta-keto acid that subsequently serves as the second extender to form curcuminoids. Curcuminoid synthase appears to be capable of the synthesis of not only diarylheptanoids but also gingerol analogues, because it synthesized cinnamoyl(hexanoyl)methane, a putative intermediate of gingerol, from cinnamoyl-CoA and 3-oxo-octanoic acid.  相似文献   

3.
Oxytetracycline (OTC) is a broad-spectrum antibiotic that acts by inhibiting protein synthesis in bacteria. It is an important member of the bacterial aromatic polyketide family, which is a structurally diverse class of natural products. OTC is synthesized by a type II polyketide synthase that generates the poly-β-ketone backbone through successive decarboxylative condensation of malonyl-CoA extender units, followed by modifications by cyclases, oxygenases, transferases, and additional tailoring enzymes. Genetic and biochemical studies have illuminated most of the steps involved in the biosynthesis of OTC, which is detailed here as a representative case study in type II polyketide biosynthesis.  相似文献   

4.
Biosynthesis of the enediyne natural product dynemicin in Micromonospora chersina is initiated by DynE8, a highly reducing iterative type I polyketide synthase that assembles polyketide intermediates from the acetate units derived solely from malonyl-CoA. To understand the substrate specificity and the evolutionary relationship between the acyltransferase (AT) domains of DynE8, fatty acid synthase, and modular polyketide synthases, we overexpressed a 44-kDa fragment of DynE8 (hereafter named ATDYN10) encompassing its entire AT domain and the adjacent linker domain. The crystal structure at 1.4 Å resolution unveils a α/β hydrolase and a ferredoxin-like subdomain with the Ser-His catalytic dyad located in the cleft between the two subdomains. The linker domain also adopts a α/β fold abutting the AT catalytic domain. Co-crystallization with malonyl-CoA yielded a malonyl-enzyme covalent complex that most likely represents the acyl-enzyme intermediate. The structure explains the preference for malonyl-CoA with a conserved arginine orienting the carboxylate group of malonate and several nonpolar residues that preclude α-alkyl malonyl-CoA binding. Co-crystallization with acetyl-CoA revealed two noncovalently bound acetates generated by the enzymatic hydrolysis of acetyl-CoA that acts as an inhibitor for DynE8. This suggests that the AT domain can upload the acyl groups from either malonyl-CoA or acetyl-CoA onto the catalytic Ser651 residue. However, although the malonyl group can be transferred to the acyl carrier protein domain, transfer of the acetyl group to the acyl carrier protein domain is suppressed. Local structural differences may account for the different stability of the acyl-enzyme intermediates.  相似文献   

5.
Cytochrome P450SPα (CYP152B1) isolated from Sphingomonas paucimobilis is the first P450 to be classified as a H2O2-dependent P450. P450SPα hydroxylates fatty acids with high α-regioselectivity. Herein we report the crystal structure of P450SPα with palmitic acid as a substrate at a resolution of 1.65 Å. The structure revealed that the Cα of the bound palmitic acid in one of the alternative conformations is 4.5 Å from the heme iron. This conformation explains the highly selective α-hydroxylation of fatty acid observed in P450SPα. Mutations at the active site and the F–G loop of P450SPα did not impair its regioselectivity. The crystal structures of mutants (L78F and F288G) revealed that the location of the bound palmitic acid was essentially the same as that in the WT, although amino acids at the active site were replaced with the corresponding amino acids of cytochrome P450BSβ (CYP152A1), which shows β-regioselectivity. This implies that the high regioselectivity of P450SPα is caused by the orientation of the hydrophobic channel, which is more perpendicular to the heme plane than that of P450BSβ.  相似文献   

6.
Streptomyces griseus contains the srs operon, which is required for phenolic lipid biosynthesis. The operon consists of srsA, srsB, and srsC, which encode a type III polyketide synthase, an O-methyltransferase, and a flavoprotein hydroxylase, respectively. We previously reported that the recombinant SrsA protein synthesized 3-(13'-methyltetradecyl)-4-methylresorcinol, using iso-C(16) fatty acyl-coenzyme A (CoA) as a starter substrate and malonyl-CoA and methylmalonyl-CoA as extender substrates. An in vitro SrsA reaction using [(13)C(3)]malonyl-CoA confirmed that the order of extender substrate condensation was methylmalonyl-CoA, followed by two extensions with malonyl-CoA. Furthermore, SrsA was revealed to produce an alkylresorcylic acid as its direct product rather than an alkylresorcinol. The functional SrsB protein was produced in the membrane fraction in Streptomyces lividans and used for the in vitro SrsB reaction. When the SrsA reaction was coupled, SrsB produced alkylresorcinol methyl ether in the presence of S-adenosyl-l-methionine (SAM). SrsB was incapable of catalyzing the O-methylation of alkylresorcinol, indicating that alkylresorcylic acid was the substrate of SrsB and that SrsB catalyzed the conversion of alkylresorcylic acid to alkylresorcinol methyl ether, namely, by both the O-methylation of the hydroxyl group (C-6) and the decarboxylation of the neighboring carboxyl group (C-1). O-methylated alkylresorcylic acid was not detected in the in vitro SrsAB reaction, although it was presumably stable, indicating that O-methylation did not precede decarboxylation. We therefore postulated that O-methylation was coupled with decarboxylation and proposed that SrsB catalyzed the feasible SAM-dependent decarboxylative methylation of alkylresorcylic acid. To the best of our knowledge, this is the first report of a methyltransferase that catalyzes decarboxylative methylation.  相似文献   

7.
Benzalacetone synthase (BAS) and chalcone synthase (CHS) are plant-specific type III polyketide synthases (PKSs) that share approximately 70% amino acid sequence identity. BAS catalyzes a one-step decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce a diketide benzalacetone, whereas CHS performs sequential condensations with three malonyl-CoA to generate a tetraketide chalcone. A homology model suggested that BAS has the same overall fold as CHS with cavity volume almost as large as that of CHS. One of the most characteristic features is that Rheum palmatum BAS lacks active site Phe-215; the residues 214LF conserved in type III PKSs are uniquely replaced by IL. Our observation that the BAS I214L/L215F mutant exhibited chalcone-forming activity in a pH-dependent manner supported a hypothesis that the absence of Phe-215 in BAS accounts for the interruption of the polyketide chain elongation at the diketide stage. On the other hand, Phe-215 mutants of Scutellaria baicalensis CHS (L214I/F215L, F215W, F215Y, F215S, F215A, F215H, and F215C) afforded increased levels of truncated products; however, none of them generated benzalacetone. These results confirmed the critical role of Phe-215 in the polyketide formation reactions and provided structural basis for understanding the structure-function relationship of the plant type III PKSs.  相似文献   

8.
The β-hydroxyacid dehydrogenases form a large family of ubiquitous enzymes that catalyze oxidation of various β-hydroxy acid substrates to corresponding semialdehydes. Several known enzymes include β-hydroxyisobutyrate dehydrogenase, 6-phosphogluconate dehydrogenase, 2-(hydroxymethyl)glutarate dehydrogenase, and phenylserine dehydrogenase, but the vast majority of β-hydroxyacid dehydrogenases remain uncharacterized. Here, we demonstrate that the predicted β-hydroxyisobutyrate dehydrogenase PA0743 from Pseudomonas aeruginosa catalyzes an NAD+-dependent oxidation of l-serine and methyl-l-serine but exhibits low activity against β-hydroxyisobutyrate. Two crystal structures of PA0743 were solved at 2.2–2.3-Å resolution and revealed an N-terminal Rossmann fold domain connected by a long α-helix to the C-terminal all-α domain. The PA0743 apostructure showed the presence of additional density modeled as HEPES bound in the interdomain cleft close to the predicted catalytic Lys-171, revealing the molecular details of the PA0743 substrate-binding site. The structure of the PA0743-NAD+ complex demonstrated that the opposite side of the enzyme active site accommodates the cofactor, which is also bound near Lys-171. Site-directed mutagenesis of PA0743 emphasized the critical role of four amino acid residues in catalysis including the primary catalytic residue Lys-171. Our results provide further insight into the molecular mechanisms of substrate selectivity and activity of β-hydroxyacid dehydrogenases.  相似文献   

9.
产姜黄素大肠杆菌工程菌的构建   总被引:1,自引:0,他引:1  
姜黄素是姜科植物的特征性成分,具有重要的药理活性.文中利用姜黄素生物合成关键酶β-酮酰辅酶A合酶(Diketide-CoA synthase,DCS)基因和姜黄素合酶(Curcumin synthase,CURS)基因构建非天然融合基因DCS::CURS,并将其与4-香豆酰辅酶A连接酶(4-coumarate coen...  相似文献   

10.
Abietadiene synthase from Abies grandis (AgAS) is a model system for diterpene synthase activity, catalyzing class I (ionization-initiated) and class II (protonation-initiated) cyclization reactions. Reported here is the crystal structure of AgAS at 2.3 Å resolution and molecular dynamics simulations of that structure with and without active site ligands. AgAS has three domains (α, β, and γ). The class I active site is within the C-terminal α domain, and the class II active site is between the N-terminal γ and β domains. The domain organization resembles that of monofunctional diterpene synthases and is consistent with proposed evolutionary origins of terpene synthases. Molecular dynamics simulations were carried out to determine the effect of substrate binding on enzymatic structure. Although such studies of the class I active site do lead to an enclosed substrate-Mg2+ complex similar to that observed in crystal structures of related plant enzymes, it does not enforce a single substrate conformation consistent with the known product stereochemistry. Simulations of the class II active site were more informative, with observation of a well ordered external loop migration. This “loop-in” conformation not only limits solvent access but also greatly increases the number of conformational states accessible to the substrate while destabilizing the nonproductive substrate conformation present in the “loop-out” conformation. Moreover, these conformational changes at the class II active site drive the substrate toward the proposed transition state. Docked substrate complexes were further assessed with regard to the effects of site-directed mutations on class I and II activities.  相似文献   

11.
Ludger Beerhues  Benye Liu 《Phytochemistry》2009,70(15-16):1719-1727
Type III polyketide synthases (PKSs) generate a diverse array of secondary metabolites by varying the starter substrate, the number of condensation reactions, and the mechanism of ring closure. Among the starter substrates used, benzoyl-CoA is a rare starter molecule. Biphenyl synthase (BIS) and benzophenone synthase (BPS) catalyze the formation of identical linear tetraketide intermediates from benzoyl-CoA and three molecules of malonyl-CoA but use alternative intramolecular cyclization reactions to form 3,5-dihydroxybiphenyl and 2,4,6-trihydroxybenzophenone, respectively. In a phylogenetic tree, BIS and BPS group together closely, indicating that they arise from a relatively recent functional diversification of a common ancestral gene. The functionally diverse PKSs, which include BIS and BPS, and the ubiquitously distributed chalcone synthases (CHSs) form separate clusters, which originate from a gene duplication event prior to the speciation of the angiosperms. BIS is the key enzyme of biphenyl metabolism. Biphenyls and the related dibenzofurans are the phytoalexins of the Maloideae. This subfamily of the Rosaceae includes a number of economically important fruit trees, such as apple and pear. When incubated with ortho-hydroxybenzoyl (salicoyl)-CoA, BIS catalyzes a single decarboxylative condensation with malonyl-CoA to form 4-hydroxycoumarin. A well-known anticoagulant derivative of this enzymatic product is dicoumarol. Elicitor-treated cell cultures of Sorbus aucuparia also formed 4-hydroxycoumarin when fed with the N-acetylcysteamine thioester of salicylic acid (salicoyl-NAC). BPS is the key enzyme of benzophenone metabolism. Polyprenylated benzophenone derivatives with bridged polycyclic skeletons are widely distributed in the Clusiaceae (Guttiferae). Xanthones are regioselectively cyclized benzophenone derivatives. BPS was converted into a functional phenylpyrone synthase (PPS) by a single amino acid substitution in the initiation/elongation cavity. The functional behavior of this Thr135Leu mutant was rationalized by homology modeling. The intermediate triketide may be redirected into a smaller pocket in the active site cavity, resulting in phenylpyrone formation by lactonization.  相似文献   

12.
3-Ketosteroid Δ4-(5α)-dehydrogenases (Δ4-(5α)-KSTDs) are enzymes that introduce a double bond between the C4 and C5 atoms of 3-keto-(5α)-steroids. Here we show that the ro05698 gene from Rhodococcus jostii RHA1 codes for a flavoprotein with Δ4-(5α)-KSTD activity. The 1.6 Å resolution crystal structure of the enzyme revealed three conserved residues (Tyr-319, Tyr-466, and Ser-468) in a pocket near the isoalloxazine ring system of the FAD co-factor. Site-directed mutagenesis of these residues confirmed that they are absolutely essential for catalytic activity. A crystal structure with bound product 4-androstene-3,17-dione showed that Ser-468 is in a position in which it can serve as the base abstracting the 4β-proton from the C4 atom of the substrate. Ser-468 is assisted by Tyr-319, which possibly is involved in shuttling the proton to the solvent. Tyr-466 is at hydrogen bonding distance to the C3 oxygen atom of the substrate and can stabilize the keto-enol intermediate occurring during the reaction. Finally, the FAD N5 atom is in a position to be able to abstract the 5α-hydrogen of the substrate as a hydride ion. These features fully explain the reaction catalyzed by Δ4-(5α)-KSTDs.  相似文献   

13.
Mitochondrial cytochrome P450 11A1 (CYP11A1 or P450 11A1) is the only known enzyme that cleaves the side chain of cholesterol, yielding pregnenolone, the precursor of all steroid hormones. Pregnenolone is formed via three sequential monooxygenation reactions that involve the progressive production of 22R-hydroxycholesterol (22HC) and 20α,22R-dihydroxycholesterol, followed by the cleavage of the C20-C22 bond. Herein, we present the 2.5-Å crystal structure of CYP11A1 in complex with the first reaction intermediate, 22HC. The active site cavity in CYP11A1 represents a long curved tube that extends from the protein surface to the heme group, the site of catalysis. 22HC occupies two-thirds of the cavity with the 22R-hydroxyl group nearest the heme, 2.56 Å from the iron. The space at the entrance to the active site is not taken up by 22HC but filled with ordered water molecules. The network formed by these water molecules allows the “soft” recognition of the 22HC 3β-hydroxyl. Such a mode of 22HC binding suggests shuttling of the sterol intermediates between the active site entrance and the heme group during the three-step reaction. Translational freedom of 22HC and torsional motion of its aliphatic tail are supported by solution studies. The CYP11A1–22HC co-complex also provides insight into the structural basis of the strict substrate specificity and high catalytic efficiency of the enzyme and highlights conserved structural motifs involved in redox partner interactions by mitochondrial P450s.  相似文献   

14.
Branching enzyme (EC 2.4.1.18; glycogen branching enzyme; GBE) catalyzes the formation of α1,6-branching points in glycogen. Until recently it was believed that all GBEs belong to glycoside hydrolase family 13 (GH13). Here we describe the cloning and expression of the Thermus thermophilus family GH57-type GBE and report its biochemical properties and crystal structure at 1.35-Å resolution. The enzyme has a central (β/α)7-fold catalytic domain A with an inserted domain B between β2 and α5 and an α-helix-rich C-terminal domain, which is shown to be essential for substrate binding and catalysis. A maltotriose was modeled in the active site of the enzyme which suggests that there is insufficient space for simultaneously binding of donor and acceptor substrates, and that the donor substrate must be cleaved before acceptor substrate can bind. The biochemical assessment showed that the GH57 GBE possesses about 4% hydrolytic activity with amylose and in vitro forms a glucan product with a novel fine structure, demonstrating that the GH57 GBE is clearly different from the GH13 GBEs characterized to date.  相似文献   

15.
Curcuminoids are pharmaceutically important compounds isolated from the herb Curcuma longa. Two additional type III polyketide synthases, named CURS2 and CURS3, that are capable of curcuminoid synthesis were identified and characterized. In vitro analysis revealed that CURS2 preferred feruloyl-CoA as a starter substrate and CURS3 preferred both feruloyl-CoA and p-coumaroyl-CoA. These results suggested that CURS2 synthesizes curcumin or demethoxycurcumin and CURS3 synthesizes curcumin, bisdemethoxycurcumin and demethoxycurcumin. The availability of the substrates and the expression levels of the three different enzymes capable of curcuminoid synthesis with different substrate specificities might influence the composition of curcuminoids in the turmeric and in different cultivars.  相似文献   

16.
Type III polyketide synthases (PKSs) show diverse cyclization specificity. We previously characterized two Azotobacter type III PKSs (ArsB and ArsC) with different cyclization specificity. ArsB and ArsC, which share a high sequence identity (71%), produce alkylresorcinols and alkylpyrones through aldol condensation and lactonization of the same polyketomethylene intermediate, respectively. Here we identified a key amino acid residue for the cyclization specificity of each enzyme by site-directed mutagenesis. Trp-281 of ArsB corresponded to Gly-284 of ArsC in the amino acid sequence alignment. The ArsB W281G mutant synthesized alkylpyrone but not alkylresorcinol. In contrast, the ArsC G284W mutant synthesized alkylresorcinol with a small amount of alkylpyrone. These results indicate that this amino acid residue (Trp-281 of ArsB or Gly-284 of ArsC) should occupy a critical position for the cyclization specificity of each enzyme. We then determined crystal structures of the wild-type and G284W ArsC proteins at resolutions of 1.76 and 1.99 Å, respectively. Comparison of these two ArsC structures indicates that the G284W substitution brings a steric wall to the active site cavity, resulting in a significant reduction of the cavity volume. We postulate that the polyketomethylene intermediate can be folded to a suitable form for aldol condensation only in such a relatively narrow cavity of ArsC G284W (and presumably ArsB). This is the first report on the alteration of cyclization specificity from lactonization to aldol condensation for a type III PKS. The ArsC G284W structure is significant as it is the first reported structure of a microbial resorcinol synthase.  相似文献   

17.
The first step of the shikimate pathway for aromatic amino acid biosynthesis is catalyzed by 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS). Thermotoga maritima DAH7PS (TmaDAH7PS) is tetrameric, with monomer units comprised of a core catalytic (β/α)8 barrel and an N-terminal domain. This enzyme is inhibited strongly by tyrosine and to a lesser extent by the presence of phenylalanine. A truncated mutant of TmaDAH7PS lacking the N-terminal domain was catalytically more active and completely insensitive to tyrosine and phenylalanine, consistent with a role for this domain in allosteric inhibition. The structure of this protein was determined to 2.0 Å. In contrast to the wild-type enzyme, this enzyme is dimeric. Wild-type TmaDAH7PS was co-crystallized with tyrosine, and the structure of this complex was determined to a resolution of 2.35 Å. Tyrosine was found to bind at the interface between two regulatory N-terminal domains, formed from diagonally located monomers of the tetramer, revealing a major reorganization of the regulatory domain with respect to the barrel relative to unliganded enzyme. This significant conformational rearrangement observed in the crystal structures was also clearly evident from small angle X-ray scattering measurements recorded in the presence and absence of tyrosine. The closed conformation adopted by the protein on tyrosine binding impedes substrate entry into the neighboring barrel, revealing an unusual tyrosine-controlled gating mechanism for allosteric control of this enzyme.  相似文献   

18.
The oxazolomycins (OZMs) are a growing family of antibiotics produced by several Streptomyces species that show diverse and important antibacterial, antitumor, and anti-human immunodeficiency virus activity. Oxazolomycin A is a peptide-polyketide hybrid compound containing a unique spiro-linked β-lactone/γ-lactam, a 5-substituted oxazole ring. The oxazolomycin biosynthetic gene cluster (ozm) was identified from Streptomyces albus JA3453 and localized to 79.5-kb DNA, consisting of 20 open reading frames that encode non-ribosomal peptide synthases, polyketide synthases (PKSs), hybrid non-ribosomal peptide synthase-PKS, trans-acyltransferases (trans-ATs), enzymes for methoxymalonyl-acyl carrier protein (ACP) synthesis, putative resistance genes, and hypothetical regulation genes. In contrast to classical type I polyketide or fatty acid biosynthases, all 10 PKS modules in the gene cluster lack cognate ATs. Instead, discrete ATs OzmM (with tandem domains OzmM-AT1 and OzmM-AT2) and OzmC were equipped to carry out all of the loading functions of both malonyl-CoA and methoxymalonyl-ACP extender units. Strikingly, only OzmM-AT2 is required for OzmM activity for OZM biosynthesis, whereas OzmM-AT1 seemed to be a cryptic AT domain. The above findings, together with previous results using isotope-labeled precursor feeding assays, are assembled for the OZM biosynthesis model to be proposed. The incorporation of both malonyl-CoA (by OzmM-AT2) and methoxymalonyl-ACP (by OzmC) extender units seemed to be unprecedented for this class of trans-AT type I PKSs, which might be fruitfully manipulated to create structurally diverse novel compounds.  相似文献   

19.
Biosynthesis of the mycobacterial cell wall relies on the activities of many enzymes, including several glycosyltransferases (GTs). The polymerizing galactofuranosyltransferase GlfT2 (Rv3808c) synthesizes the bulk of the galactan portion of the mycolyl-arabinogalactan complex, which is the largest component of the mycobacterial cell wall. We used x-ray crystallography to determine the 2.45-Å resolution crystal structure of GlfT2, revealing an unprecedented multidomain structure in which an N-terminal β-barrel domain and two primarily α-helical C-terminal domains flank a central GT-A domain. The kidney-shaped protomers assemble into a C4-symmetric homotetramer with an open central core and a surface containing exposed hydrophobic and positively charged residues likely involved with membrane binding. The structure of a 3.1-Å resolution complex of GlfT2 with UDP reveals a distinctive mode of nucleotide recognition. In addition, models for the binding of UDP-galactofuranose and acceptor substrates in combination with site-directed mutagenesis and kinetic studies suggest a mechanism that explains the unique ability of GlfT2 to generate alternating β-(1→5) and β-(1→6) glycosidic linkages using a single active site. The topology imposed by docking a tetrameric assembly onto a membrane bilayer also provides novel insights into aspects of processivity and chain length regulation in this and possibly other polymerizing GTs.  相似文献   

20.
Type III polyketide synthases (PKSs) are the condensing enzymes that catalyze the formation of a myriad of aromatic polyketides in plant, bacteria, and fungi. Here we report the cloning and characterization of a putative type III PKS from Aspergillusniger, AnPKS. This enzyme catalyzes the synthesis of alkyl pyrones from C2 to C18 starter CoA thioesters with malonyl-CoA as an extender CoA through decaboxylative condensation and cyclization. It displays broad substrate specificity toward fatty acyl-CoA starters to yield triketide and tetraketide pyrones, with benzoyl-CoA as the most preferred starter. The optimal temperature and pH of AnPKS are 50°C and 8, respectively. Under optimal conditions, the enzyme shows the highest catalytic efficiency (k(cat)/K(m)) of 7.4×10(5)s(-1)M(-1) toward benzoyl-CoA. Homology modeling and site-directed mutagenesis were used to probe the molecular basis of its substrate specificity. This study should open doors for further engineering of AnPKS as a biocatalyst for synthesis of value-added polyketides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号