首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mono-ADP-ribosylation is a post-translational modification of cellular proteins that has been implicated in the regulation of signal transduction, muscle cell differentiation, protein trafficking, and secretion. In several cell systems we have observed that the major substrate of endogenous mono-ADP-ribosylation is a 36-kDa protein. This ADP-ribosylated protein was both recognized in Western blotting experiments and selectively immunoprecipitated by a G protein beta subunit-specific polyclonal antibody, indicating that this protein is the G protein beta subunit. The ADP-ribosylation of the beta subunit was due to a plasma membrane-associated enzyme, was sensitive to treatment with hydroxylamine, and was inhibited by meta-iodobenzylguanidine, indicating that the involved enzyme is an arginine-specific mono-ADP-ribosyltransferase. By mutational analysis, the target arginine was located in position 129. The ADP-ribosylated beta subunit was also deribosylated by a cytosolic hydrolase. This ADP-ribosylation/deribosylation cycle might be an in vivo modulator of the interaction of betagamma with specific effectors. Indeed, we found that the ADP-ribosylated betagamma subunit is unable to inhibit calmodulin-stimulated type 1 adenylyl cyclase in cell membranes and that the endogenous ADP-ribosylation of the beta subunit occurs in intact Chinese hamster ovary cells, where the NAD(+) pool was labeled with [(3)H]adenine. These results show that the ADP-ribosylation of the betagamma subunit could represent a novel cellular mechanism in the regulation of G protein-mediated signal transduction.  相似文献   

2.
In mammals, the receptor of the neuropeptide gonadotropin-releasing hormone (GnRHR) is unique among the G protein-coupled receptor (GPCR) family because it lacks the carboxyl-terminal tail involved in GPCR desensitization. Therefore, mechanisms involved in the regulation of GnRHR signaling are currently poorly known. Here, using immunoprecipitation and GST pull-down experiments, we demonstrated that SET interacts with GnRHR and targets the first and third intracellular loops. We delineated, by site-directed mutagenesis, SET binding sites to the basic amino acids 66KRKK69 and 246RK247, located next to sequences required for receptor signaling. The impact of SET on GnRHR signaling was assessed by decreasing endogenous expression of SET with siRNA in gonadotrope cells. Using cAMP and calcium biosensors in gonadotrope living cells, we showed that SET knockdown specifically decreases GnRHR-mediated mobilization of intracellular cAMP, whereas it increases its intracellular calcium signaling. This suggests that SET influences signal transfer between GnRHR and G proteins to enhance GnRHR signaling to cAMP. Accordingly, complexing endogenous SET by introduction of the first intracellular loop of GnRHR in αT3-1 cells significantly reduced GnRHR activation of the cAMP pathway. Furthermore, decreasing SET expression prevented cAMP-mediated GnRH stimulation of Gnrhr promoter activity, highlighting a role of SET in gonadotropin-releasing hormone regulation of gene expression. In conclusion, we identified SET as the first direct interacting partner of mammalian GnRHR and showed that SET contributes to a switch of GnRHR signaling toward the cAMP pathway.  相似文献   

3.
L A Witters  J M McDermott 《Biochemistry》1986,25(22):7216-7220
Because of certain similarities between acetyl-CoA carboxylase (ACC) and tubulin, and the recent demonstration of the ADP-ribosylation of tubulin by cholera toxin, we have investigated a potential role for ADP-ribosylation in the regulation of ACC activity. Incubation of purified rat liver ACC with cholera toxin in the presence of millimolar concentrations of [adenylate-32P]NAD results in a time-dependent incorporation of ADP-ribose into ACC of greater than 2 mol/mol of enzyme subunit, accompanied by a marked inactivation of enzyme activity. This effect is not mimicked by pertussis toxin, ADP-ribose, or ribose 5-phosphate. Incubation of labeled ACC with snake venom phosphodiesterase and alkaline hydrolysis release 32P-products tentatively identified by high-performance liquid chromatography as 5'-[32P]AMP and [32P]ADP-ribose, respectively. These data are consistent with a mono-ADP-ribosylation of ACC catalyzed by cholera toxin. Phosphodiesterase treatment of inactivated ACC partially restores enzyme activity. The effects of ADP-ribosylation of ACC are expressed both as a decrease in the enzyme Vmax and as an increase in the apparent Ka for citrate. These results suggest that ACC might be a substrate for endogenous ADP-ribosyltransferases and that this covalent modification could be an important regulatory mechanism for the modulation of fatty acid synthesis in vivo.  相似文献   

4.
Transducin is the retinal rod outer segment (ROS)-specific G protein coupling the photoexcited rhodopsin to cyclic GMP-phosphodiesterase. The alpha subunit of transducin is known to be ADP-ribosylated by bacterial toxins. We investigated the possibility that transducin is modified in vitro by an endogenous ADP-ribosyltransferase activity. By using either ROS, cytosolic extract of ROS or purified transducin in the presence of [alpha-32P]nicotinamide adenine dinucleotide (NAD+), the alpha and beta subunits of transducin were found to be radiolabeled. The labeling was decreased by snake venom phosphodiesterase I (PDE I). The modification was shown to be mono ADP-ribosylation by analyses on thin layer chromatography of the PDE I-hydrolyzed products which revealed only 5'AMP residues. In addition we report that sodium nitroprusside activates the ADP-ribosylation of transducin.  相似文献   

5.
The mammalian steroid hormone progesterone actuates a signalling pathway in the zygomycete Rhizopus nigricans which includes heterotrimeric G proteins. To investigate the possibility that the Gβ subunit of these proteins is involved in the signalling, a cDNA library from R. nigricans exposed to progesterone was prepared and a sequence coding for a Gβ subunit was searched for. Using degenerate primers, two sequences, RnGPB1 and RnGPB2, were identified that exhibited a high degree of identity with those for Gβ from other filamentous fungi, but not from yeast. The presence of more than one Gβ subunit is very rare among the fungi, and it has been to date reported only for Rhizopus oryzae. We have shown that progesterone increases the expression of RnGPB1, but has no influence on the expression of RnGPB2. Therefore, our studies imply the involvement of Gβ subunit 1 in the response of R. nigricans to progesterone. Moreover, the Gβ subunit is subjected to endogenous ADP-ribosylation in the presence of NAD, which could be important in some, as yet unknown, cell process. Article from a special issue on steroids and microorganisms.  相似文献   

6.
The small GTP-binding protein ADP-ribosylation factor 6 (Arf6) is involved in plasma membrane/endosomes trafficking. However, precisely how the activation of Arf6 regulates vesicular transport is still unclear. Here, we show that, in vitro, recombinant Arf6GTP recruits purified clathrin-adaptor complex AP-2 (but not AP-1) onto phospholipid liposomes in the absence of phosphoinositides. We also show that phosphoinositides and Arf6 tightly cooperate to translocate AP-2 to the membrane. In vivo, Arf6GTP (but not Arf6GDP) was found associated to AP-2. The expression of the GTP-locked mutant of Arf6 leads to the plasma membrane redistribution of AP-2 in Arf6GTP-enriched areas. Finally, we demonstrated that the expression of the GTP-locked mutant of Arf6 inhibits transferrin receptor internalization without affecting its recycling. Altogether, our results demonstrated that Arf6GTP interacts specifically with AP-2 and promotes its membrane recruitment. These findings strongly suggest that Arf6 plays a major role in clathrin-mediated endocytosis by directly controlling the assembly of the AP-2/clathrin coat.  相似文献   

7.
ADP-ribosylation has been coupled to intracellular events associated with smooth muscle cell vasoreactivity, cytoskeletal integrity and free radical damage. Additionally, there is evidence that ADP-ribosylation is required for smooth muscle cell proliferation. Our investigation employed selective inhibitors to establish that mono-ADP-ribosylation and not poly(ADP-ribosyl)ation was necessary for the stimulation of DNA synthesis by mitogens. Mitogen treatment increased concomitantly the activity of both soluble and particulate mono-ADP-ribosyltransferase, as well as the number of modified proteins. Inclusion of meta-iodobenzylguanidine (MIBG), a selective decoy substrate of arginine-dependent mono-ADP-ribosylation, prevented the modification of these proteins. MIBG also blocked the stimulation of DNA and RNA synthesis, prevented smooth muscle cell migration and suppressed the induction of c-fos and c-myc gene expression. An examination of relevant signal transduction pathways showed that MIBG did not interfere with MAP kinase and phosphatidylinositol 3-kinase stimulation; however, it did inhibit phosphorylation of the Rho effector, PRK1/2. This novel observation suggests that mono-ADP-ribosylation participates in a Rho- dependent signalling pathway that is required for immediate early gene expression.  相似文献   

8.
In addition to its classic glycolytic role, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been implicated in many activities unrelated to glycolysis, such as membrane fusion, binding to host proteins and signal transduction. GAPDH can be the target of several modifications that allow incorporation to membranes and possible regulation of its activity; among these modifications is mono-ADP-ribosylation. This post-translational modification is important for the regulation of many cellular processes and is the mechanism of action of several bacterial toxins. In a previous study, we observed the extracellular ADP-ribosylation of a 37-kDa ameba protein. We report here that GAPDH and cysteine synthase A are the main ADP-ribosylated proteins in Entamoeba histolytica extracellular medium, GAPDH is secreted from ameba at 37 degrees C in a time-dependent manner, and its enzymatic activity is not inhibited by ADP-ribosylation. Extracellular GAPDH from ameba may play an important role in the survival of this human pathogen or in interaction with host molecules, as occurs in other organisms.  相似文献   

9.
Sodium nitroprusside is a vasodilator and an inhibitor of platelet activation. It is thought that these effects are mediated by the spontaneous release of nitric oxide and stimulation of cytosolic guanylate cyclase. We have found that sodium nitroprusside (5-200 microM) greatly increased a cytosolic ADP-ribosyltransferase that ADP-ribosylates a soluble 39-kDa protein. This activity causes the mono-ADP-ribosylation of the 39-kDa protein, since digestion with snake venom phosphodiesterase releases 5'-AMP. This enzyme is present in platelets, brain, heart, intestine, liver, and lung. The effect of sodium nitroprusside is not related to stimulation of soluble guanylate cyclase and the production of cyclic GMP because cyclic GMP, dibutyryl cyclic GMP, and 8-bromo-cyclic GMP are ineffective. 3-Morpholinosydnonimine (commonly known as SIN-1) (20-1000 micrograms/ml), another compound that acts through the spontaneous formation of nitric oxide as does sodium nitroprusside, also stimulates ADP-ribosylation of the 39-kDa protein. Hemoglobin, which binds nitric oxide, inhibits sodium nitroprusside's activation of the cytosolic ADP-ribosyltransferase. These studies demonstrate a novel action of nitric oxide related to the activation of an endogenous ADP-ribosyltransferase. The physiological role of this ADP-ribosylation needs further exploration.  相似文献   

10.
Abstract: The present study examines the possible involvement of nitric oxide (NO)-stimulated endogenous ADP-ribosylation in long-term potentiation (LTP). LTP was induced in hippocampal slices by stimulation of Schaffer collateral inputs to the CA1 pyramidal neurons. Basal and sodium nitroprusside (SNP), which generates NO, stimulation of endogenous ADP-ribosylation was then studied in CA1 subfields isolated from the slices. Control slices received no treatment or were tetanized in the presence of aminophosphonovaleric acid, an NMDA receptor antagonist that blocks the development of LTP. SNP-stimulated ADP-ribosylation of endogenous proteins was reduced by 40–70% in LTP slices relative to control slices. LTP was also associated with a small but significant reduction in basal ADP-ribosylation activity. The results demonstrate that the induction of LTP is associated with regulation of endogenous ADP-ribosylation and suggest a role for this type of covalent modification in some aspect of LTP.  相似文献   

11.
Somatostatin (SS) is a peptide hormone that inhibits insulin secretion in beta-cells by activating its G(i/o)-coupled receptors. Our previous work indicated that a betagamma-dimer of G(i/o) coupled to SS receptors can activate phospholipase D1 (PLD1) (Cheng, H., Grodnitzky, J. A., Yibchok-anun, S., Ding, J., and Hsu, W. H. (2005) Mol. Pharmacol. 67, 2162-2172). The aim of the present study was to elucidate the mechanisms underlying SS-induced PLD activation. We demonstrated the presence of ADP-ribosylation factor Arf1 and Arf6 in clonal beta-cells, HIT-T15. We also determined that the activation of PLD1 was mediated through Arf6. Overexpression of dominant-negative (dn) Arf6 mutant, Arf6(T27N), and suppression of mRNA levels using siRNA, both abolished SS-induced PLD activation, while overexpression of wild type Arf6 further enhanced this PLD activation. In contrast, overexpression of dn-Arf1 mutant Arf1(T31N) or dn-Arf5 mutant Arf5(T31N) failed to reduce SS-induced PLD activation. These findings suggested that Arf6, but not Arf1 or Arf5, mediates the effect of SS. We further determined the involvement of the Arf6 guanine nucleotide exchange factor (GEF) EFA6A, a GEF previously thought to be found predominantly in the brain, in the activation of PLD1 in HIT-T15 cells. Using Northern and Western blot analyses, both mRNA and protein of EFA6A were found in these cells. Overexpression of dn-EFA6A mutant, EFA6A(E242K), and suppression of mRNA levels using siRNA, both abolished SS-induced PLD activation, whereas overexpression of dn-EFA6B mutant, EFA6B(E651K), failed to reduce SS-induced PLD activation. In addition, overexpression of dn-ARNO mutant, ARNO(E156K), another GEF of Arf6, had no effect on SS-induced activation of PLD. Taken together, these results suggest that SS signals through EFA6A to activate Arf6-PLD cascade.  相似文献   

12.
Nitrogen fixation in some diazotrophic bacteria is regulated by mono-ADP-ribosylation of dinitrogenase reductase (NifH) that occurs in response to addition of ammonium to the extracellular medium. This process is mediated by dinitrogenase reductase ADP-ribosyltransferase (DraT) and reversed by dinitrogenase reductase glycohydrolase (DraG), but the means by which the activities of these enzymes are regulated are unknown. We have investigated the role of the P(II) proteins (GlnB and GlnZ), the ammonia channel protein AmtB and the cellular localization of DraG in the regulation of the NifH-modification process in Azospirillum brasilense. GlnB, GlnZ and DraG were all membrane-associated after an ammonium shock, and both this membrane sequestration and ADP-ribosylation of NifH were defective in an amtB mutant. We now propose a model in which membrane association of DraG after an ammonium shock creates a physical separation from its cytoplasmic substrate NifH thereby inhibiting ADP-ribosyl-removal. Our observations identify a novel role for an ammonia channel (Amt) protein in the regulation of bacterial nitrogen metabolism by mediating membrane sequestration of a protein other than a P(II) family member. They also suggest a model for control of ADP-ribosylation that is likely to be applicable to all diazotrophs that exhibit such post-translational regulation of nitrogenase.  相似文献   

13.
Previously, we have identified the association of G protein β subunit (Gβ) with mitotic spindles in various mammalian cells. Since microtubules are the main component of mitotic spindles, here we have isolated bovine brain microtubules and purified Gβ subunit to identify the close association of Gβ subunit with purified brain microtubules and have shown the direct incorporation of Gβ subunit into the microtubules both in vitro and in vivo. It was found that: (1) microtubular fraction isolated from bovine brain contained Gβ subunit, (2) coimmunoprecipitation demonstrated that Gβ subunit could be coprecipitated with tubulin, (3) addition of purified Gβ subunit into cytosolic extract for microtubule assembly caused direct incorporation of Gβ subunit into assembled microtubules and increased the association of microtubule-associated proteins with microtubules, and (4) incubation of exogenous Gβ subunit with detergent-permeabilized cells resulted in direct incorporation of Gβ subunit into microtubule fibers and depolymerized tubulin molecules. We conclude that G protein β subunit is closely associated with microtubules and may play an important role in the regulation of microtubule formation in addition to its regulatory role in cellular signal transduction. J. Cell. Biochem. 70:553–562, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
Activation of classical G protein-coupled receptors (GPCRs) like the mammalian gonadotropin-releasing hormone receptor (GnRHR) typically stimulates heterotrimeric G protein molecules that subsequently activate downstream effectors. Receptor activation of heterotrimeric G protein pathways primarily controls intermediary cell metabolism by elevation or diminution of soluble cytoplasmic second messenger molecules. We have demonstrated here that stimulation of the GnRHR also results in a dramatic change in both cell adhesion and superstructural morphology. Gonadotropin-releasing hormone (GnRH) receptor activation rapidly increases the capacity of HEK293 cells expressing the GnRHR to remain matrix-adherent in the face of fluid insults. Coinciding with this profound elevation in matrix adherence, we demonstrated a GnRH-induced alteration in both cell morphology and the de novo generation of polymerized actin structures. GnRH induction of cytoskeletal remodeling was correlated with significant increases in the tyrosine phosphorylation status of a series of cytoskeletal associated proteins, e.g. focal adhesion kinase (FAK), c-Src, and microtubule-associated protein kinase (MAPK or ERK1/2). The activation of the distal downstream effector ERK1/2 was demonstrated to be sensitive to the disrupters of cytoskeletal rearrangement, cytochalasin D and latrunculin B. In addition to the sensitivity of ERKs to cytoskeletal integrity, GnRH-induced FAK and c-Src kinase activation were sensitive to these agents and the fibronectin-integrin antagonistic RGDS peptide. Activation of ERK was dependent on its protein-protein assembly with FAK and c-Src at focal adhesion complexes. Induction of the cell remodeling event leading to this signaling complex assembly occurred primarily via GnRHR activation of the monomeric G protein Rac but not RhoA. These findings demonstrated a clear divergence of GnRHR signaling via the Rac monomeric G protein focal adhesion signaling complex assembly and cytoskeletal remodeling independent of the classical heterotrimeric G protein-controlled phospholipase C-beta pathway.  相似文献   

15.
ADP-ribosylation factor (Arf) 6 activity is crucially involved in the regulation of E-cadherin–based cell–cell adhesions. Erythropoietin-producing hepatocellular carcinoma (Eph)-family receptors recognize ligands, namely, ephrins, anchored to the membrane of apposing cells, and they mediate cell–cell contact-dependent events. Here, we found that Arf6 activity is down-regulated in Madin-Darby canine kidney cells, which is dependent on cell density and calcium ion concentration, and we provide evidence of a novel signaling pathway by which ligand-activated EphA2 suppresses Arf6 activity. This EphA2-mediated suppression of Arf6 activity was linked to the induction of cell compaction and polarization, but it was independent of the down-regulation of extracellular signal-regulated kinase 1/2 kinase activity. We show that G protein-coupled receptor kinase-interacting protein (Git) 1 and noncatalytic region of tyrosine kinase (Nck) 1 are involved in this pathway, in which ligand-activated EphA2, via its phosphorylated Tyr594, binds to the Src homology 2 domain of Nck1, and then via its Src homology 3 domain binds to the synaptic localizing domain of Git1 to suppress Arf6 activity. We propose a positive feedback loop in which E-cadherin–based cell–cell contacts enhance EphA-ephrinA signaling, which in turn down-regulates Arf6 activity to enhance E-cadherin–based cell–cell contacts as well as the apical-basal polarization of epithelial cells.  相似文献   

16.
Ca(2+) homeostasis plays a critical role in a variety of cellular processes. We showed previously that stimulation of the prostate-specific G protein-coupled receptor (PSGR) enhances cytosolic Ca(2+) and inhibits proliferation of prostate cells. Here, we analyzed the signaling mechanisms underlying the PSGR-mediated Ca(2+) increase. Using complementary molecular, biochemical, electrophysiological, and live-cell imaging techniques, we found that endogenous Ca(2+)-selective transient receptor potential vanilloid type 6 (TRPV6) channels are critically involved in the PSGR-induced Ca(2+) signal. Biophysical characterization of the current activated by PSGR stimulation revealed characteristic properties of TRPV6. The molecular identity of the involved channel was confirmed using RNA interference targeting TrpV6. TRPV6-mediated Ca(2+) influx depended on Src kinase activity. Src kinase activation occurred independently of G protein activation, presumably by direct interaction with PSGR. Taken together, we report that endogenous TRPV6 channels are activated downstream of a G protein-coupled receptor and present the first physiological characterization of these channels in situ.  相似文献   

17.
Arf regulates interaction of GGA with mannose-6-phosphate receptor   总被引:1,自引:0,他引:1  
The role of ADP-ribosylation factor (Arf) in Golgi associated, γ-adaptin homologous, Arf-interacting protein (GGA)-mediated membrane traffic was examined. GGA is a clathrin adaptor protein that binds Arf through its GAT domain and the mannose-6-phosphate receptor through its VHS domain. The GAT and VHS domains interacted such that Arf and mannose-6-phosphate receptor binding to GGA were mutually exclusive. In vivo , GGA bound membranes through either Arf or mannose-6-phosphate receptor. However, mannose-6-phosphate receptor excluded Arf from GGA-containing structures outside of the Golgi. These data are inconsistent with predictions based on the model for Arf's role in COPI veside coat function. We propose that Arf recruits GGA to a membrane and then, different from the current model, 'hands-off' GGA to mannose-6-phosphate receptor. GGA and mannose-6-phosphate receptor are then incorporated into a transport intermediate that excludes Arf .  相似文献   

18.
Our previous study revealed a mono-ADP-ribosyltransferase mediated in vitro mono-ADP-ribosylation of IC3 peptide, a peptide with sequence corresponded to third intracellular loop of glucagon like-peptide-1 (GLP-1) receptor. Furthermore, Arg348 was shown to be modified amino acid residue although its mutation did not eliminate mono-ADP-ribosylation completely. In order to further study the signaling mechanisms of GLP-1 receptor, we took on lease a possibility that an alternative site of enzymatic modification exist so mono-ADP-ribosylation of Cys341 was hypothesized. The results confirmed both Arg348 and Cys341 as a site of mono-ADP-ribosylation where Arg348 is modified predominantly. Sum of mono-ADP-ribosylation rate of both single IC3 mutants coincided with IC3 rate. What is in vivo role of Cys341 mono-ADP-ribosylation is entirely speculative but our study represents an important step toward a complete understanding of signaling via GLP-1 receptor.  相似文献   

19.
Kidney proximal tubule epithelial cells have an extensive apical endocytotic apparatus that is critical for the reabsorption and degradation of proteins that traverse the glomerular filtration barrier and that is also involved in the extensive recycling of functionally important apical plasma membrane transporters. We show here that an Arf-nucleotide exchange factor, ARNO (ADP-ribosylation factor nucleotide site opener) as well as Arf6 and Arf1 small GTPases are located in the kidney proximal tubule receptor-mediated endocytosis pathway, and that ARNO and Arf6 recruitment from cytosol to endosomes is pH-dependent. In proximal tubules in situ, ARNO and Arf6 partially co-localized with the V-ATPase in apical endosomes in proximal tubules. Arf1 was localized both at the apical pole of proximal tubule epithelial cells, but also in the Golgi. By Western blot analysis ARNO, Arf6, and Arf1 were detected both in purified endosomes and in proximal tubule cytosol. A translocation assay showed that ATP-driven endosomal acidification triggered the recruitment of ARNO and Arf6 from proximal tubule cytosol to endosomal membranes. The translocation of both ARNO and Arf6 was reversed by V-type ATPase inhibitors and by uncouplers of endosomal intralumenal pH, and was correlated with the magnitude of intra-endosomal acidification. Our data suggest that V-type ATPase-dependent acidification stimulates the selective recruitment of ARNO and Arf6 to proximal tubule early endosomes. This mechanism may play an important role in the pH-dependent regulation of receptor-mediated endocytosis in proximal tubules in situ.  相似文献   

20.
Gonadotropin-releasing hormone (GnRH) acts at gonadotropes to direct the synthesis of the gonadotropins, follicle-stimulating hormone (FSH), and luteinizing hormone (LH). The frequency of GnRH pulses determines the pattern of gonadotropin synthesis. Several hypotheses for how the gonadotrope decodes GnRH frequency to regulate gonadotropin subunit genes differentially have been proposed. However, key regulators and underlying mechanisms remain uncertain. We investigated the role of individual G proteins by perturbations using siRNA or bacterial toxins. In LβT2 gonadotrope cells, FSHβ gene induction depended predominantly on Gα(q/11), whereas LHβ expression depended on Gα(s). Specifically reducing Gα(s) signaling also disinhibited FSHβ expression, suggesting the presence of a Gα(s)-dependent signal that suppressed FSH biosynthesis. The presence of secreted factors influencing FSHβ expression levels was tested by studying the effects of conditioned media from Gα(s) knockdown and cholera toxin-treated cells on FSHβ expression. These studies and related Transwell culture experiments implicate Gα(s)-dependent secreted factors in regulating both FSHβ and LHβ gene expression. siRNA studies identify inhibinα as a Gα(s)-dependent GnRH-induced autocrine regulatory factor that contributes to feedback suppression of FSHβ expression. These results uncover differential regulation of the gonadotropin genes by Gα(q/11) and by Gα(s) and implicate autocrine and gonadotrope-gonadotrope paracrine regulatory loops in the differential induction of gonadotropin genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号