首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Severe hypoxia can lead to injury and mortality in vertebrate or invertebrate organisms. Our research is focused on understanding the molecular mechanisms that lead to injury or adaptation to hypoxic stress using Drosophila as a model system. In this study, we employed the UAS-Gal4 system to dissect the protective role of Hsp70 in specific tissues in vivo under severe hypoxia. In contrast to overexpression in tissues such as muscles, heart, and brain, we found that overexpression of Hsp70 in hemocytes of flies provides a remarkable survival benefit to flies exposed to severe hypoxia for days. Furthermore, these flies were tolerant not only to severe hypoxia but also to other stresses such as oxidant stress (e.g., paraquat feeding or hyperoxia). Interestingly we observed that the better survival with Hsp70 overexpression in hemocytes under hypoxia or oxidant stress is causally linked to reactive oxygen species (ROS) reduction in whole flies. We also show that hemocytes are a major source of ROS generation, leading to injury during hypoxia, and their elimination results in a better survival under hypoxia. Hence, our study identified a protective role for Hsp70 in Drosophila hemocytes, which is linked to ROS reduction in the whole flies and thus helps in their remarkable survival during oxidant or hypoxic stress.  相似文献   

2.
Although oxidative stress is deleterious to mammals, the mechanisms underlying oxidant susceptibility or tolerance remain to be elucidated. In this study, through a long-term laboratory selection over many generations, we generated a Drosophila melanogaster strain that can live and reproduce in very high O2 environments (90% O2), a lethal condition to naïve flies. We demonstrated that tolerance to hyperoxia was heritable in these flies and that these hyperoxia-selected flies exhibited phenotypic differences from naïve flies, such as a larger body size and increased weight by 20%. Gene expression profiling revealed that 227 genes were significantly altered in expression and two third of these genes were down-regulated. Using a mutant screen strategy, we studied the role of some altered genes (up- or down-regulated in the microarrays) by testing the survival of available corresponding P-element or UAS construct lines under hyperoxic conditions. We report that down-regulation of several candidate genes including Tropomyosin 1, Glycerol 3 phosphate dehydrogenase, CG33129, and UGP as well as up-regulation of Diptericin and Attacin conferred tolerance to severe hyperoxia. In conclusion, we identified several genes that were not only altered in hyperoxia-selected flies but we also prove that these play an important role in hyperoxia survival. Thus our study provides a molecular basis for understanding the mechanisms of hyperoxia tolerance.  相似文献   

3.
4.
Exposure of newborn mice to high inspired oxygen elicits a distinct phenotype of compromised alveolar and vascular development, although lethality during long-term exposure is lower in newborns compared to adults. As the effects of hyperoxia are mediated by excessive reactive oxygen species (ROS) generation, we hypothesized that newborn mice may exhibit enhanced expression of antioxidant defenses or attenuated ROS generation compared with adults. We measured subcellular oxidant responses to acute hyperoxia in lung slices and alveolar epithelial cells at varying time points during postnatal murine lung development. Oxidant stress was assessed using RoGFP, a ratiometric protein thiol redox sensor, targeted to the cytosol or the mitochondrial matrix. In contrast to newborn resistance to oxygen-induced mortality, cells of lung slices from younger mice demonstrated exaggerated mitochondrial matrix oxidant stress compared to adults, whereas oxidant stress responses in the cytosol were absent. Cell death in lung slices from newborn mice exposed to 48 h of hyperoxia was also greater than for adults. Consistent with these findings, expression of antioxidant enzymes in newborn lungs was lower than in adults, and induction of antioxidant levels and activity during 24 h of in vivo exposure was absent. However, expression of the reactive oxygen species-generating enzyme NADPH oxidase 1 was increased with hyperoxic exposure in the young but not the adult lung. Collectively, these results suggest that the greater lethality in adult animals may be more likely attributed to processes such as inflammation than to differences in antioxidant defenses. Therapies for neonatal and adult oxidative lung injury should therefore consider and address developmental differences in oxidative stress responses.  相似文献   

5.
Redox balance plays an important role in the maintenance of cell growth and survival. Disturbance of this equilibrium can alter normal cellular processes. Excessive reactive oxygen species (ROS) are often found in cancer cells. However, cancer cells have an efficient antioxidant system to counteract the increased generation of ROS. This high antioxidant capacity also favors resistance to drugs and radiation. Here, we show that isoliquiritigenin (ISL), a natural antioxidant, effectively decreased ROS in HepG2 cells in a time-dependant manner at 0.5, 1, and 2 h of treatment. The decreased ROS caused redox imbalance and reductive stress. To adapt to this state, nuclear factor erythroid-2-related factor 2, which regulates the antioxidant enzyme system, was significantly decreased. Antioxidant enzymes reached their lowest level at 6 h after ISL treatment. Endogenous ROS were still being generated so after 6 h of ISL treatment, ROS were clearly higher than before ISL treatment, causing redox imbalance in the HepG2 cells which changed from reductive to oxidative stress. At this stage, cells were irradiated with X-rays. The excess ROS induced serious oxidative stress, resulting in radiosensitization. Therefore, we concluded that ISL induced oxidative stress by disturbing the redox status and ultimately enhancing the radiosensitivity of HepG2 cells.  相似文献   

6.
Reactive oxidant species (ROS), products of normal metabolism, cause oxidant injury if they accumulate in pathological amounts. Lysozyme (LZ) contains an 18-amino acid domain that binds agents such as advanced glycation end products (AGE) that generate ROS. We examined whether endogenous LZ affected physiological, or baseline, antioxidant balance and provided protection against both acute and chronic oxidant injury, using paraquat and H2O2 as agents of acute injury and AGE for chronic injury. Hen egg LZ-Tg mice had threefold higher serum LZ levels and decreased baseline AGE levels in serum and liver. These findings were linked to an enhanced baseline systemic GSH-to-GSSG ratio. Baseline levels of stress response genes p66(Shc) and c-Jun were also lower in liver tissue of LZ-Tg mice. Survival from severe oxidant injury induced by paraquat was twofold greater in LZ-Tg mice. In addition, LZ-Tg mice were resistant to chronic exogenous oxidant stress (OS) induced by AGE administration. Preincubation of hepatocytes (Hep G2) with LZ suppressed redox balance at baseline, as well as OS after added paraquat, AGE, or H2O2. LZ also ameliorated paraquat-enhanced cell apoptosis in a dose-dependent manner and suppressed AGE-induced p66(Shc) expression and c-Jun phosphorylation in Hep G2 cells. Thus LZ provides protection against acute and chronic oxidant injury by mechanisms involving suppression of ROS generation and of OS response genes.  相似文献   

7.
Cellular and organellar redox states, which are characterized by the balance between oxidant and antioxidant pool sizes, play signaling roles in the regulation of gene expression and protein function in a wide variety of plant physiological processes including stress acclimation. Reactive oxygen species (ROS) and ascorbic acid (AsA) are the most abundant oxidants and antioxidants, respectively, in plant cells; therefore, the metabolism of these redox compounds must be strictly and spatiotemporally controlled. In this review, we provided an overview of our previous studies as well as recent advances in (1) the molecular mechanisms and regulation of AsA biosynthesis, (2) the molecular and genetic properties of ascorbate peroxidases, and (3) stress acclimation via ROS-derived oxidative/redox signaling pathways, and discussed future perspectives in this field.  相似文献   

8.
Previous studies have shown that high glucose increases reactive oxygen species (ROS) in endothelial cells that contributes to vascular dysfunction and atherosclerosis. Accumulation of ROS is due to dysregulated redox balance between ROS-producing systems and antioxidant systems. Previous research from our laboratory has shown that high glucose decreases the principal cellular reductant, NADPH by impairing the activity of glucose 6-phosphate dehydrogenase (G6PD). We and others also have shown that the high glucose-induced decrease in G6PD activity is mediated, at least in part, by cAMP-dependent protein kinase A (PKA). As both the major antioxidant enzymes and NADPH oxidase, a major source of ROS, use NADPH as substrate, we explored whether G6PD activity was a critical mediator of redox balance. We found that overexpression of G6PD by pAD-G6PD infection restored redox balance. Moreover inhibition of PKA decreased ROS accumulation and increased redox enzymes, while not altering the protein expression level of redox enzymes. Interestingly, high glucose stimulated an increase in NADPH oxidase (NOX) and colocalization of G6PD with NOX, which was inhibited by the PKA inhibitor. Lastly, inhibition of PKA ameliorated high glucose mediated increase in cell death and inhibition of cell growth. These studies illustrate that increasing G6PD activity restores redox balance in endothelial cells exposed to high glucose, which is a potentially important therapeutic target to protect ECs from the deleterious effects of high glucose.  相似文献   

9.
Reactive oxygen species, antioxidants, and the mammalian thioredoxin system.   总被引:31,自引:0,他引:31  
Reactive oxygen species (ROS) are known mediators of intracellular signaling cascades. Excessive production of ROS may, however, lead to oxidative stress, loss of cell function, and ultimately apoptosis or necrosis. A balance between oxidant and antioxidant intracellular systems is hence vital for cell function, regulation, and adaptation to diverse growth conditions. Thioredoxin reductase (TrxR) in conjunction with thioredoxin (Trx) is a ubiquitous oxidoreductase system with antioxidant and redox regulatory roles. In mammals, extracellular forms of Trx also have cytokine-like effects. Mammalian TrxR has a highly reactive active site selenocysteine residue resulting in a profound reductive capacity, reducing several substrates in addition to Trx. Due to the reactivity of TrxR, the enzyme is inhibited by many clinically used electrophilic compounds including nitrosoureas, aurothioglucose, platinum compounds, and retinoic acid derivatives. The properties of TrxR in combination with the functions of Trx position this system at the core of cellular thiol redox control and antioxidant defense. In this review, we focus on the reactions of the Trx system with ROS molecules and different cellular antioxidant enzymes. We summarize the TrxR-catalyzed regeneration of several antioxidant compounds, including ascorbic acid (vitamin C), selenium-containing substances, lipoic acid, and ubiquinone (Q10). We also discuss the general cellular effects of TrxR inhibition. Dinitrohalobenzenes constitute a unique class of immunostimulatory TrxR inhibitors and we consider the immunomodulatory effects of dinitrohalobenzene compounds in view of their reactions with the Trx system.  相似文献   

10.
11.
Heat shock protein (Hsp) 70 has been reported to protect various cells and tissues from ischemic damage. However, the molecular mechanisms of the protection are incompletely understood. Ischemia induces significant alterations in cellular redox status that plays a critical role in cell survival/death pathways. We investigated the effects of Hsp70 overexpression on cellular redox status in Madin-Darby canine kidney (MDCK) cells under both hypoxic and ischemic conditions with 3 different approaches: reactive oxygen species (ROS) measurement by a fluorescence probe, redox environment evaluation by a hydroxylamine spin probe, and redox status assessment by the glutathione/glutathione disulfide (GSH/GSSG) ratio. Results from each of these approaches showed that the redox status in Hsp70 cells was more reducing than that in control cells under either hypoxic or oxygen and glucose deprivation (OGD) conditions. In order to determine the mechanisms that mediated the alterations in redox state in Hsp70 cells, we measured the activities of glutathione peroxidase (GPx) and glutathione reductase (GR), two GSH-related antioxidant enzymes. We found that OGD exposure increased GPx and GR activities 47% and 55% from their basal levels (no stress) in Hsp70 cells, compared to only 18% and 0% increase in control cells, respectively. These data, for the first time, indicate that Hsp70 modulates the activities of GPx and GR that regulate cellular redox status in response to ischemic stress, which may be important in Hsp70's cytoprotective effects.  相似文献   

12.
Abiotic stresses, such as drought, can increase the production of reactive oxygen species (ROS) in plants. An increase in ROS levels can provoke a partial or severe oxidation of cellular components inducing redox status changes, so continuous control of ROS and therefore of their metabolism is decisive under stress conditions. The present work focuses on the contribution of one pro-oxidant, hydrogen peroxide (H2O2) and one antioxidant, ascorbate (AA) and its redox status, in the control of plant responses to drought-oxidative stress in resistant plants growing in field conditions. After a general introduction to the concept of drought and oxidative stress and its relationship, we describe the role of H2O2 in drought stress responses, emphasizing the importance of studies in H2O2 subcellular localization, needed for a better understanding of its role in plant responses to stress. Although more studies are needed in the study of changes of redox status in plants subjected to stress, the AA pools and its redox status can be indicative of its involvement as a part of cellular mechanisms by which the plant respond to drought-induced oxidative stress. The mechanism of resistance and/or tolerance to drought-oxidative stress is complex, especially when studies are carried out in plants growing in field conditions, where an interaction of stresses occurs. This study sheds light on the mechanisms of plant responses to water-oxidative stress in plants growing in the field.  相似文献   

13.
In previous works, we have established a correlation between antioxidant system response and tolerance to drought, osmotic stress and photooxidative stress of different wheat cultivars with contrasting drought tolerance. In the present work, a protocol to obtain and transform wheat protoplasts was established. Transgenic protoplasts with Manganese Superoxide Dismutase (Mn-SOD) (E.C.: 1.15.1.1) and Glutathione Reductase (GR) (E.C.: 1.6.4.2) overexpression in chloroplasts were obtained, and their responses to photooxidative stress were characterized. Protoplasts with Mn-SOD or GR overexpression, showed different responses and tolerance to photooxidative stress. Protoplasts with Mn-SOD overexpression showed lower levels of oxidative damage, higher level of endogenous hydrogen peroxide and a great induction of total SOD and GR activities during photooxidative treatments. In protoplasts with GR overexpression the oxidative damage provoked by the photooxidative treatment was similar to control protoplasts, the GSH content and GSH/GSH + GSSG ratio were higher than control and Mn-SOD transformed protoplast, and total SOD and GR activities were not induced. Our results suggest that the differential responses and tolerance to photooxidative stress given by Mn-SOD or GR overexpression, also depend on the effects of these enzyme activities over the cellular redox state balance, which modulate the responses to photooxidative stress.  相似文献   

14.
It is important to regulate the oxygen concentration and scavenge oxygen radicals throughout the life of animals. In mammalian embryos, proper oxygen concentration gradually increases in utero and excessive oxygen is rather toxic during early embryonic development. Reactive oxygen species (ROS) are generated as by-products in the respiratory system and increased under inflammatory conditions. In the pathogenesis of a variety of adult human diseases such as cancer and cardiovascular disorders, ROS cause an enhancement of tissue injuries. ROS promote not only the development of atherosclerosis but also tissue injury during the reperfusion process. The thioredoxin (TRX) system is one of the most important mechanisms for regulating the redox balance. TRX is a small redox active protein distributed ubiquitously in various mammalian tissues and cells. TRX acts as not only an antioxidant but also an anti-inflammatory and an antiapoptotic protein. TRX is induced by oxidative stress and released from cells in response to oxidative stress. In various human diseases, the serum/plasma level of TRX is a well-recognized biomarker of oxidative stress. Here we discuss the roles of TRX on oxygen stress and redox regulation from different perspectives, in embryogenesis and in adult diseases focusing on cardiac disorders.  相似文献   

15.
Current studies are focusing on the anti-cancerous properties of natural bioactive compounds, primarily those included in the human diet. These compounds have the potential to alter the redox balance that can hinder cancer cell's growth. In cancer cells, an abnormal rate of ROS production is balanced with higher antioxidant activities, which if not maintained, results in cancer cells being prone to cell death due to oxidative stress. Here, we have analyzed the effects of Chrysin and Capsaicin on the HeLa cells viability and cellular redox signaling. Both these compounds stimulate cellular and mitochondrial ROS overproduction that perturbs the cellular redox state and results in mitochondrial membrane potential loss. Apart from this, these compounds induce cell cycle arrest and induce premature senescence, along with the overexpression of p21, p53, and p16 protein at lower concentration treatment of Chrysin or Capsaicin. Moreover, at higher concentration treatment with these compounds, pro-apoptotic activity was observed with the high level of Bax and cleaved caspase-3 along with suppression of the Bcl-2 protein levels. In-Silico analysis with STITCH v5 also confirms the direct interaction of Chrysin and Capsaicin with target protein p53. This suggests that Chrysin and Capsaicin trigger an increase in mitochondrial ROS, and p53 interaction leading to premature senescence and apoptosis in concentration dependent manner and have therapeutic potential for cancer treatment.  相似文献   

16.
17.
Reactive oxygen species (ROS) are generated during mitochondrial oxidative metabolism as well as in cellular response to xenobiotics, cytokines, and bacterial invasion. Oxidative stress refers to the imbalance due to excess ROS or oxidants over the capability of the cell to mount an effective antioxidant response. Oxidative stress results in macromolecular damage and is implicated in various disease states such as atherosclerosis, diabetes, cancer, neurodegeneration, and aging. Paradoxically, accumulating evidence indicates that ROS also serve as critical signaling molecules in cell proliferation and survival. While there is a large body of research demonstrating the general effect of oxidative stress on signaling pathways, less is known about the initial and direct regulation of signaling molecules by ROS, or what we term the "oxidative interface." Cellular ROS sensing and metabolism are tightly regulated by a variety of proteins involved in the redox (reduction/oxidation) mechanism. This review focuses on the molecular mechanisms through which ROS directly interact with critical signaling molecules to initiate signaling in a broad variety of cellular processes, such as proliferation and survival (MAP kinases, PI3 kinase, PTEN, and protein tyrosine phosphatases), ROS homeostasis and antioxidant gene regulation (thioredoxin, peroxiredoxin, Ref-1, and Nrf-2), mitochondrial oxidative stress, apoptosis, and aging (p66Shc), iron homeostasis through iron-sulfur cluster proteins (IRE-IRP), and ATM-regulated DNA damage response.  相似文献   

18.
《Free radical research》2013,47(8):555-568
Abstract

Ischemia/reperfusion (I/R) injury associated with hepatic resections and liver transplantation remains a serious complication in clinical practice, despite several attempts to solve the problem. The redox balance, which is pivotal for normal function and integrity of tissues, is dysregulated during I/R, leading to an accumulation of reactive oxygen species (ROS). Formation of ROS and oxidant stress are the disease mechanisms most commonly invoked in hepatic I/R injury. The present review examines published results regarding possible sources of ROS and their effects in the context of I/R injury. We also review the effect of oxidative stress on marginal livers, which are more vulnerable to I/R-induced oxidative stress. Strategies to improve the viability of marginal livers could reduce the risk of dysfunction after surgery and increase the number of organs suitable for transplantation. The review also considers the therapeutic strategies developed in recent years to reduce the oxidative stress induced by hepatic I/R, and we seek to explain why some of them have not been applied clinically. New antioxidant strategies that have yielded promising results for hepatic I/R injury are discussed.  相似文献   

19.
Hyperoxia is a popular model of oxidative stress. However, hyperoxic gas mixtures are routinely used for chemical denervation of peripheral O2 receptors in in vivo studies of respiratory control. The underlying assumption whenever using hyperoxia is that there are no direct effects of molecular O2 and reactive O2 species (ROS) on brain stem function. In addition, control superfusates used routinely for in vitro studies of neurons in brain slices are, in fact, hyperoxic. Again, the assumption is that there are no direct effects of O2 and ROS on neuronal activity. Research contradicts this assumption by demonstrating that O2 has central effects on the brain stem respiratory centers and several effects on neurons in respiratory control areas; these need to be considered whenever hyperoxia is used. This mini-review summarizes the long-recognized, but seldom acknowledged, paradox of respiratory control known as hyperoxic hyperventilation. Several proposed mechanisms are discussed, including the recent hypothesis that hyperoxic hyperventilation is initiated by increased production of ROS during hyperoxia, which directly stimulates central CO2 chemoreceptors in the solitary complex. Hyperoxic hyperventilation may provide clues into the fundamental role of redox signaling and ROS in central control of breathing; moreover, oxidative stress may play a role in respiratory control dysfunction. The practical implications of brain stem O2 and ROS sensitivity are also considered relative to the present uses of hyperoxia in respiratory control research in humans, animals, and brain stem tissues. Recommendations for future research are also proposed.  相似文献   

20.
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated throughout the human body. Enzymatic and nonenzymatic antioxidants detoxify ROS and RNS and minimize damage to biomolecules. An imbalance between the production of ROS and RNS and antioxidant capacity leads to a state of "oxidative stress" that contributes to the pathogenesis of a number of human diseases by damaging lipids, protein, and DNA. In general, lung diseases are related to inflammatory processes that generate increased ROS and RNS. The susceptibility of the lung to oxidative injury depends largely on its ability to upregulate protective ROS and RNS scavenging systems. Unfortunately, the primary intracellular antioxidants are expressed at low levels in the human lung and are not acutely induced when exposed to oxidative stresses such as cigarette smoke and hyperoxia. However, the response of extracellular antioxidant enzymes, the critical primary defense against exogenous oxidative stress, increases rapidly and in proportion to oxidative stress. In this paper, we review how antioxidants in the lung respond to oxidative stress in several lung diseases and focus on the mechanisms that upregulate extracellular glutathione peroxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号