首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
AimThe lack of potent innate immune responses during HCV infection might lead to a delay in initiating adaptive immune responses. Kupffer cells (KCs) and liver-infiltrating monocytes/macrophages (CD68+ cells) are essential to establish effective anti-HCV responses. They express co-stimulatory molecules, CD80 and CD86. CD86 upregulation induces activator responses that are then potentially regulated by CD80. The relative levels of expression of CD80, CD86 and the inhibitory molecule, PD-L1, on CD68+ cells modulate T cell activation. A few studies have explored CD80 and PD-L1 expression on KCs and infiltrating monocytes/macrophages in HCV-infected livers, and none investigated CD86 expression in these cells. These studies have identified these cells based on morphology only. We investigated the stimulatory/inhibitory profile of CD68+ cells in HCV-infected livers based on the balance of CD80, CD86 and PD-L1 expression.MethodsCD80, CD86 and PD-L1 expression by CD68+ cells in the lobular and portal areas of the liver of chronic HCV-infected (n = 16) and control (n = 14) individuals was investigated using double staining immunohistochemistry.ResultsThe count of CD68+ KCs in the lobular areas of the HCV-infected livers was lower than that in the control (p = 0.041). The frequencies of CD68+CD80+ cells and CD68+PD-L1+ cells in both lobular and total areas of the liver were higher in HCV-infected patients compared with those in the control group (p = 0.001, 0.031 and 0.007 respectively). Moreover, in the lobular areas of the HCV-infected livers, the frequency of CD68+CD80+ cells was higher than that of CD68+CD86+ and CD68+PD-L1+ cells. In addition, the frequencies of CD68+CD80+ and CD68+CD86+ cells were higher in the lobular areas than the portal areas.ConclusionsOur results show that CD68+ cells have an inhibitory profile in the HCV-infected livers. This might help explain the delayed T cell response and viral persistence during HCV infection.  相似文献   

7.
8.
9.
10.
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies with limited treatment options. To guide the design of more effective immunotherapy strategies, mass cytometry was employed to characterize the cellular composition of the PDAC-infiltrating immune cells. The expression of 33 protein markers was examined at the single-cell level in more than two million immune cells from four types of clinical samples, including PDAC tumors, normal pancreatic tissues, chronic pancreatitis tissues, and peripheral blood. Based on the analyses, we identified 23 distinct T-cell phenotypes, with some cell clusters exhibiting aberrant frequencies in the tumors. Programmed cell death protein 1 (PD-1) was extensively expressed in CD4+ and CD8+ T cells and coexpressed with both stimulatory and inhibitory immune markers. In addition, we observed elevated levels of functional markers, such as CD137L and CD69, in PDAC-infiltrating immune cells. Moreover, the combination of PD-1 and CD8 was used to stratify PDAC tumors from The Cancer Genome Atlas database into three immune subtypes, with S1 (PD-1+CD8+) exhibiting the best prognosis. Further analysis suggested distinct molecular mechanisms for immune exclusion in different subtypes. Taken together, the single-cell protein expression data depicted a detailed cell atlas of the PDAC-infiltrating immune cells and revealed clinically relevant information regarding useful cell phenotypes and targets for immunotherapy development.  相似文献   

11.
12.
13.
14.
定量分析诱导山羊体细胞重编程过程中端粒酶的表达变化   总被引:1,自引:0,他引:1  
动物体细胞重编程为诱导多能干细胞(iPS)是目前干细胞生物学研究的热点。文中重点对山羊体细胞重编程过程中端粒酶(TERT)基因的相对表达量进行了检测,探讨了山羊重编程细胞的形成与端粒酶基因表达的关系。从关中奶山羊胎儿皮肤分离得到的胎儿成纤维细胞(GEF),其增殖能力较强,核型正常(60条XY),通过转录因子在体外诱导得到山羊重编程细胞。利用Real-timeRT-PCR方法首先对关中奶山羊胎儿各种组织的TERT表达进行了检测,结果表明睾丸组织中TERT的表达显著高于上皮组织(P0.01),在山羊胎儿的其他组织中TERT也有不同程度的表达。对原代重编程细胞和4株不完全重编程细胞株的TERT表达检测结果发现,碱性磷酸酶(AP)阳性的重编程细胞端粒酶表达量要显著高于AP阴性的重编程细胞(P0.01)。这一结果揭示,激活端粒酶活性并使其保持较高的表达水平对体细胞的重编程至关重要。  相似文献   

15.
16.
17.
18.
CD44, a cell adhesion protein, involves in various process in cancer such as cell survival and metastasis. Most researches on CD44 in cancer focus on cancer cells. Recently, it is found that CD44 expression is high in fibroblasts of tumour microenvironment. However, its role in communication between fibroblasts and breast cancer cells is seldom known. In this study, CD44‐positive (CD44+Fbs) and CD44‐negative carcinoma‐associated fibroblasts (CD44?Fbs) were isolated and cocultured with breast cancer cells for analysis of cell survival and drug resistance. We found that CD44+Fbs promoted breast cancer cell survival and paclitaxel resistance and inhibited paclitaxel‐induced apoptosis. Our further research for the molecular mechanism showed that IGF2BP3 bound to CD44 mRNA and enhanced CD44 expression, which increased IGF2 levels of fibroblasts and then stimulated breast cancer cell proliferation and drug resistance. IGF2 was found to activate Hedgehog signal pathway in breast cancer cells. In conclusion, the results illustrated that in CD44+Fbs, binding of IGF2BP3 and CD44 promotes IGF2 expression and then accelerates breast cancer cell proliferation, survival and induced chemotherapy resistance likely by activating Hedgehog signal pathways.  相似文献   

19.
Current strategies to monitor reprogramming into induced pluripotent stem cells (iPSCs) are limited in that they rely on the recognition of advanced stage biomarkers or they involve the transduction of genetically-modified cells. These limitations are particularly problematic in high-throughput screenings where cell availability, low cost and a rapid experimental protocol are critical issues. Herein we report the application of a pluripotent stem cell fluorescent probe (i.e. CDy1) as a reporter for the rapid screening of chemicals in reprogramming iPSCs. CDy1 stains early-stage iPSCs at 7dpi as well as matured iPSCs; hence it can partially overcome the slow kinetics of the reprogramming process. As a proof of concept, we employed a CDy1-based screening in 384 well-plates to examine the effect of newly synthesized hydroxamic acid derivatives in reprogramming mouse fibroblasts transduced with Oct4, Sox2 and Klf-4 without c-Myc. One compound (1-26) was identified as a reprogramming enhancer by 2.5-fold and we confirmed that 1-26 behaves as a histone deacetylase (HDAC) inhibitor. The successful identification of novel small molecules enhancing the generation of iPSCs by means of a rapid and simple protocol demonstrates the suitability of this CDy1-based screening platform for the large scale and high-throughput evaluation of iPSC modulators.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号