首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Bacterial Hfq is a protein that plays an important role in the regulation of genes in cooperation with sRNAs. Escherichia coli Hfq (EcHfq) has two or more sites that bind RNA(s) including U-rich and/or the poly(A) tail of mRNA. However, functional and structural information about Bacillus subtilis Hfq (BsHfq) including the RNA sequences that specifically bind to it remain unknown. Here, we describe RNA aptamers including fragment (AG)3A that are recognized by BsHfq and crystal structures of the BsHfq–(AG)3A complex at 2.2 Å resolution. Mutational and structural studies revealed that the RNA fragment binds to the distal site, one of the two binding sites on Hfq, and identified amino acid residues that are critical for sequence-specific interactions between BsHfq and (AG)3A. In particular, R32 appears to interact with G bases in (AG)3A. Poly(A) also binds to the distal site of EcHfq, but the overall RNA structure and protein–RNA interaction patterns engaged in the R32 residues of BsHfq–(AG)3A differ from those of EcHfq–poly(A). These findings provide novel insight into how the Hfq homologue recognizes RNA.  相似文献   

4.
Hfq, a bacterial RNA-binding protein, was recently shown to contain the Sm1 motif, a characteristic of Sm and LSm proteins that function in RNA processing events in archaea and eukaryotes. In this report, comparative structural modeling was used to predict a three-dimensional structure of the Hfq core sequence. The predicted structure aligns with most major features of the Methanobacterium thermoautotrophicum LSm protein structure. Conserved residues in Hfq are positioned at the same structural locations responsible for subunit assembly and RNA interaction in Sm proteins. A highly conserved portion of Hfq assumes a structural fold similar to the Sm2 motif of Sm proteins. The evolution of the Hfq protein was explored by conducting a BLAST search of microbial genomes followed by phylogenetic analysis. Approximately half of the 140 complete or nearly complete genomes examined contain at least one gene coding for Hfq. The presence or absence of Hfq closely followed major bacterial clades. It is absent from high-level clades and present in the ancient Thermotogales-Aquificales clade and all proteobacteria except for those that have undergone major reduction in genome size. Residues at three positions in Hfq form signatures for the beta/gamma proteobacteria, alpha proteobacteria and low GC Gram-positive bacteria groups.  相似文献   

5.

Objective

Herpes simplex virus (HSV) reactivation has been identified as a possible risk factor for Alzheimer''s disease (AD) and plasma amyloid-beta (Aβ) levels might be considered as possible biomarkers of the risk of AD. The aim of our study was to investigate the association between anti-HSV antibodies and plasma Aβ levels.

Methods

The study sample consisted of 1222 subjects (73.9 y in mean) from the Three-City cohort. IgM and IgG anti-HSV antibodies were quantified using an ELISA kit, and plasma levels of Aβ1–40 and Aβ1–42 were measured using an xMAP-based assay technology. Cross-sectional analyses of the associations between anti-HSV antibodies and plasma Aβ levels were performed by multi-linear regression.

Results

After adjustment for study center, age, sex, education, and apolipoprotein E-e4 polymorphism, plasma Aβ1–42 and Aβ1–40 levels were specifically inversely associated with anti-HSV IgM levels (β = −20.7, P = 0.001 and β = −92.4, P = 0.007, respectively). In a sub-sample with information on CLU- and CR1-linked SNPs genotyping (n = 754), additional adjustment for CR1 or CLU markers did not modify these associations (adjustment for CR1 rs6656401, β = −25.6, P = 0.002 for Aβ1–42 and β = −132.7, P = 0.002 for Aβ1–40; adjustment for CLU rs2279590, β = −25.6, P = 0.002 for Aβ1–42 and β = −134.8, P = 0.002 for Aβ1–40). No association between the plasma Aβ1–42-to-Aβ1–40 ratio and anti-HSV IgM or IgG were evidenced.

Conclusion

High anti-HSV IgM levels, markers of HSV reactivation, are associated with lower plasma Aβ1–40 and Aβ1–42 levels, which suggest a possible involvement of the virus in the alterations of the APP processing and potentially in the pathogenesis of AD in human.  相似文献   

6.
7.
The Escherichia coli RNA chaperone Hfq is involved in riboregulation of target mRNAs by small trans-encoded non-coding (ncRNAs). Previous structural and genetic studies revealed a RNA-binding surface on either site of the Hfq-hexamer, which suggested that one hexamer can bring together two RNAs in a pairwise fashion. The Hfq proteins of different bacteria consist of an evolutionarily conserved core, whereas there is considerable variation at the C-terminus, with the γ- and β-proteobacteria possessing the longest C-terminal extension. Using different model systems, we show that a C-terminally truncated variant of Hfq (Hfq65), comprising the conserved hexameric core of Hfq, is defective in auto- and riboregulation. Although Hfq65 retained the capacity to bind ncRNAs, and, as evidenced by fluorescence resonance energy transfer assays, to induce structural changes in the ncRNA DsrA, the truncated variant was unable to accommodate two non-complementary RNA oligonucleotides, and was defective in mRNA binding. These studies indicate that the C-terminal extension of E. coli Hfq constitutes a hitherto unrecognized RNA interaction surface with specificity for mRNAs.  相似文献   

8.
Waters J 《PloS one》2010,5(12):e15709

Background

Many recent studies of the effects of amyloid-β protein (Aβ) on brain tissue from amyloid precursor protein (APP) overexpressing mice have concluded that Aβ oligomers in the extracellular space can profoundly affect synaptic structure and function. As soluble proteins, oliomers of Aβ can diffuse through brain tissue and can presumably exit acute slices, but the rate of loss of Aβ species by diffusion from brain slices and the resulting reduced concentrations of Aβ species in brain slices are unknown.

Methodology/Principal Findings

Here I combine measurements of Aβ1–42 diffusion and release from acute slices and simple numerical models to measure the concentration of Aβ1–42 in intact mice (in vivo) and in acute slices from CRND8 mice. The in vivo concentration of diffusible Aβ1–42 in CRND8 mice was 250 pM at 6 months of age and 425 pM at 12 months of age. The concentration of Aβ1–42 declined rapidly after slice preparation, reaching a steady-state concentration within one hour. 50 µm from the surface of an acute slice the steady-state concentration of Aβ was 15–30% of the concentration in intact mice. In more superficial regions of the slice, where synaptic physiology is generally studied, the remaining Aβ is less than 15%. Hence the concentration of Aβ1–42 in acute slices from CRND8 mice is less than 150 pM.

Conclusions/Significance

Aβ affects synaptic plasticity in the picomolar concentration range. Some of the effects of Aβ may therefore be lost or altered after slice preparation, as the extracellular Aβ concentration declines from the high picomolar to the low picomolar range. Hence loss of Aβ by diffusion may complicate interpretation of the effects of Aβ in experiments on acute slices from APP overexpressing mice.  相似文献   

9.
The Sm protein Hfq chaperones small non-coding RNAs (sRNAs) in bacteria, facilitating sRNA regulation of target mRNAs. Hfq acts in part by remodeling the sRNA and mRNA structures, yet the basis for this remodeling activity is not understood. To understand how Hfq remodels RNA, we used single-molecule Förster resonance energy transfer (smFRET) to monitor conformational changes in OxyS sRNA upon Hfq binding. The results show that E. coli Hfq first compacts OxyS, bringing its 5′ and 3 ends together. Next, Hfq destabilizes an internal stem-loop in OxyS, allowing the RNA to adopt a more open conformation that is stabilized by a conserved arginine on the rim of Hfq. The frequency of transitions between compact and open conformations depend on interactions with Hfqs flexible C-terminal domain (CTD), being more rapid when the CTD is deleted, and slower when OxyS is bound to Caulobacter crescentus Hfq, which has a shorter and more stable CTD than E. coli Hfq. We propose that the CTDs gate transitions between OxyS conformations that are stabilized by interaction with one or more arginines. These results suggest a general model for how basic residues and intrinsically disordered regions of RNA chaperones act together to refold RNA.  相似文献   

10.
The Sm protein Hfq binds small non-coding RNA (sRNAs) in bacteria and facilitates their base pairing with mRNA targets. Molecular beacons and a 16 nt RNA derived from the Hfq binding site in DsrA sRNA were used to investigate how Hfq accelerates base pairing between complementary strands of RNA. Stopped-flow fluorescence experiments showed that annealing became faster with Hfq concentration but was impaired by mutations in RNA binding sites on either face of the Hfq ring or by competition with excess RNA substrate. A fast bimolecular Hfq binding step (∼108 M−1s−1) observed with Cy3-Hfq was followed by a slow transition (0.5 s−1) to a stable Hfq–RNA complex that exchanges RNA ligands more slowly. Release of Hfq upon addition of complementary RNA was faster than duplex formation, suggesting that the nucleic acid strands dissociate from Hfq before base pairing is complete. A working model is presented in which rapid co-binding and release of two RNA strands from the Hfq ternary complex accelerates helix initiation 10 000 times above the Hfq-independent rate. Thus, Hfq acts to overcome barriers to helix initiation, but the net reaction flux depends on how tightly Hfq binds the reactants and products and the potential for unproductive binding interactions.  相似文献   

11.
12.
Mouse proline-rich RNA-binding protein (mPrrp) is a mouse ortholog of Xenopus Prrp, which binds to a vegetal localization element (VLE) in the 3′-untranslated region (3′-UTR) of Vg1 mRNA and is expected to be involved in the transport and/or localization of Vg1 mRNA to the vegetal cortex of oocytes. In mouse testis, mPrrp protein is abundantly expressed in the nuclei of pachytene spermatocytes and round spermatids, and shifts to the cytoplasm in elongating spermatids. To gain an insight into the function of mPrrp in male germ cells, we performed in vitro RNA selection (SELEX) to determine the RNA ligand sequence of mPrrp. This analysis revealed that many of the selected clones contained both of two conserved elements, AAAUAG and GU1–3AG. RNA-binding study on deletion mutants and secondary structure analyses of the selected RNA revealed that a two-loop structure containing the conserved elements is required for high-affinity binding to mPrrp. Furthermore, we found that the target mRNAs of Xenopus Prrp contain intact AAAUAG and GU1–3AG sequences in the 3′-UTR, suggesting that these binding sequences are shared by Prrps of Xenopus and mouse.  相似文献   

13.

Background

The RNA-binding protein Hfq is involved in stress and virulence of several pathogens, probably due to its role as mediator in small RNA (sRNA)-mRNA interactions. In this study, we investigate the function of Hfq in the Gram-positive pathogen Staphylococcus aureus, by constructing hfq null mutant derivatives.

Results

We report that unexpectedly, in S. aureus, Hfq does not seem to play a crucial role in stress response, RNAIII or spa mRNA quantity and exoprotein expression, as tested in three virulent genetic backgrounds. Moreover, a global analysis of the RN6390 hfq mutant, which tests ~ 2000 phenotypes, supports our results concerning the non-implication of Hfq in stress response, and shows that Hfq is also not involved in resistance to several chemical agents and antibiotics and does not seem to be implicated in metabolic pathways.

Conclusion

Our data suggest that although sRNA-mRNA interactions in S. aureus are decisive for gene expression regulation, they do not require the RNA-chaperone protein Hfq. These interactions possibly require an RNA-chaperone protein other than Hfq, which remains to be found.  相似文献   

14.
The persistence of a reservoir of latently infected CD4 T cells remains one of the major obstacles to cure HIV. Numerous strategies are being explored to eliminate this reservoir. To translate these efforts into clinical trials, there is a strong need for validated biomarkers that can monitor the reservoir over time in vivo. A comprehensive study was designed to evaluate and compare potential HIV-1 reservoir biomarkers. A cohort of 25 patients, treated with suppressive antiretroviral therapy was sampled at three time points, with median of 2.5 years (IQR: 2.4–2.6) between time point 1 and 2; and median of 31 days (IQR: 28–36) between time point 2 and 3. Patients were median of 6 years (IQR: 3–12) on ART, and plasma viral load (<50 copies/ml) was suppressed for median of 4 years (IQR: 2–8). Total HIV-1 DNA, unspliced (us) and multiply spliced HIV-1 RNA, and 2LTR circles were quantified by digital PCR in peripheral blood, at 3 time points. At the second time point, a viral outgrowth assay (VOA) was performed, and integrated HIV-1 DNA and relative mRNA expression levels of HIV-1 restriction factors were quantified. No significant change was found for long- and short-term dynamics of all HIV-1 markers tested in peripheral blood. Integrated HIV-1 DNA was associated with total HIV-1 DNA (p<0.001, R² = 0.85), us HIV-1 RNA (p = 0.029, R² = 0.40), and VOA (p = 0.041, R2 = 0.44). Replication-competent virus was detected in 80% of patients by the VOA and it correlated with total HIV-1 DNA (p = 0.039, R² = 0.54). The mean quantification difference between Alu-PCR and VOA was 2.88 log10, and 2.23 log10 between total HIV-1 DNA and VOA. The levels of usHIV-1 RNA were inversely correlated with mRNA levels of several HIV-1 restriction factors (TRIM5α, SAMHD1, MX2, SLFN11, pSIP1). Our study reveals important correlations between the viral outgrowth and total and integrated HIV-1 DNA measures, suggesting that the total pool of HIV-1 DNA may predict the size of the replication-competent virus in ART suppressed patients.  相似文献   

15.
16.
Transgenic expression of human amyloid β (Aβ) peptide in body wall muscle cells of Caenorhabditis elegans has been used to better understand aspects of Alzheimer disease (AD). In human aging and AD, Aβ undergoes post-translational changes including covalent modifications, truncations, and oligomerization. Amino truncated Aβ is increasingly recognized as potentially contributing to AD pathogenesis. Here we describe surface-enhanced laser desorption ionization-time of flight mass spectrometry mass spectrometry of Aβ peptide in established transgenic C. elegans lines. Surprisingly, the Aβ being expressed is not full-length 1–42 (amino acids) as expected but rather a 3–42 truncation product. In vitro analysis demonstrates that Aβ3–42 self-aggregates like Aβ1–42, but more rapidly, and forms fibrillar structures. Similarly, Aβ3–42 is also the more potent initiator of Aβ1–40 aggregation. Seeded aggregation via Aβ3–42 is further enhanced via co-incubation with the transition metal Cu(II). Although unexpected, the C. elegans model of Aβ expression can now be co-opted to study the proteotoxic effects and processing of Aβ3–42.Numerous studies support a role for aggregating Aβ3 in mediating the toxicity that underlies AD (1, 2). However, several key questions remain central to understanding how AD and Aβ pathology are related. What is the connection between Aβ aggregation and toxicity? Is there a specific toxic Aβ conformation or species? How and why does aging impact on Aβ precipitation? Significant effort to address these questions has been invested in the use of vertebrate and simple invertebrate model organisms to simulate neurodegenerative diseases through transgenic expression of human Aβ (3). From these models, several novel insights into the proteotoxicity of Aβ have been gained (47).Human Aβ (e.g. in brain, cerebrospinal fluid, or plasma) is not found as a single species but rather as diverse mixtures of various modified, truncated, and cross-linked forms (810). Specific truncations, covalent modifications, and cross-linked oligomers of Aβ have potentially important roles in determining Aβ-associated neurotoxicity. For example, N-terminal truncations of Aβ have increased abundance in AD, rapidly aggregate, and are neurotoxic (9, 11). Furthermore, the N-terminal glutamic acid residue of Aβ3–42 can be cyclized to pyroglutamate (Aβ3(pE)-42) (12), which may be particularly important in AD pathogenesis (13, 14). Aβ3(pE)-42 is a significant fraction of total Aβ in AD brain (15), accounting for more than 50% of Aβ accumulated in plaques (16). Aβ3(pE)-42 seeds Aβ aggregation (17), confers proteolytic resistance, and is neurotoxic (13). Recently, glutaminyl cyclase (QC) has been proposed to catalyze, in vivo, pyroglutamate formation of Aβ3(pE)-40/42 (14, 18). Aβ1–42 itself cannot be cyclized by QC to Aβ3(pE)-42 (19), unlike Aβ that commences with an N-terminal glutamic acid-residue (e.g.3–42 and Aβ11–42) (20). QC has broad expression in mammalian brain (21, 22), and its inhibition attenuates accumulation of Aβ3(pE)-42 into plaques and improves cognition in a transgenic mouse model of AD that overexpresses human amyloid precursor protein (14). N-terminal truncations at position 3 have been reported in senile plaques (23, 24); however, the process that generates Aβ3–42 is unknown. Currently there are no reported animal models of Aβ3–42 expression.Advances in surface-enhanced laser desorption ionization-time of flight mass spectrometry (SELDI-TOF MS) analysis now facilitate accurate identification of particular Aβ species. Using this technology, we examined well characterized C. elegans transgenic models of AD that develop amyloid aggregates (25, 26) to see whether the human Aβ they express is post-translationally modified.  相似文献   

17.
Neurodegenerative diseases such as Alzheimer (AD) and Parkinson (PD) are characterized by abnormal aggregation of misfolded β-sheet-rich proteins, including amyloid-β (Aβ)-derived peptides and tau in AD and α-synuclein in PD. Correct folding and assembly of these proteins are controlled by ubiquitously expressed molecular chaperones; however, our understanding of neuron-specific chaperones and their involvement in the pathogenesis of neurodegenerative diseases is limited. We here describe novel chaperone-like functions for the secretory protein 7B2, which is widely expressed in neuronal and endocrine tissues. In in vitro experiments, 7B2 efficiently prevented fibrillation and formation of Aβ1–42, Aβ1–40, and α-synuclein aggregates at a molar ratio of 1:10. In cell culture experiments, inclusion of recombinant 7B2, either in the medium of Neuro-2A cells or intracellularly via adenoviral 7B2 overexpression, blocked the neurocytotoxic effect of Aβ1–42 and significantly increased cell viability. Conversely, knockdown of 7B2 by RNAi increased Aβ1–42-induced cytotoxicity. In the brains of APP/PSEN1 mice, a model of AD amyloidosis, immunoreactive 7B2 co-localized with aggregation-prone proteins and their respective aggregates. Furthermore, in the hippocampus and substantia nigra of human AD- and PD-affected brains, 7B2 was highly co-localized with Aβ plaques and α-synuclein deposits, strongly suggesting physiological association. Our data provide insight into novel functions of 7B2 and establish this neural protein as an anti-aggregation chaperone associated with neurodegenerative disease.  相似文献   

18.
Rat fibrinogen was purified from rat plasma by using lysine–Sepharose chromatography, repeated precipitation with 25%-satd. (NH4)2SO4 and gel chromatography on Sepharose 6B. To minimize proteolytic activity, rats were injected intravenously with Trasylol before bleeding and the collected blood was treated with Trasylol and di-isopropyl phosphorofluoridate. A 95%-clottable preparation was obtained in 70–75% yield; it proved to be free of factor XIII and plasminogen. It showed a single band on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and on disc electrophoresis in 8m-urea. Alanine was the only detectable N-terminal amino acid. After reduction and modification of the thiol groups, the material could be separated into three distinct chains (Aα, Bβ and γ) by pore-limit polyacrylamide slab-gel electrophoresis in the presence of sodium dodecyl sulphate. The amino acid compositions of the whole fibrinogen and of the separated modified chains were determined. The molecular weights were 61000, 58000 and 51000 for Aα-, Bβ- and γ-chains respectively. Our results for the chains are in contrast with previous reports on rat fibrinogen [Bouma & Fuller (1975) J. Biol. Chem. 250, 4678–4683; Stemberger & Jilek (1976) Thromb. Res. 9, 657–660], in which no separation between Aα- and Bβ-chains was achieved on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis for 3h. Evidence is presented that this is probably due to Aα-chain degradation as a result of incomplete inhibition of proteolytic enzymes during the purification. Complete inhibition of proteolytic activities is essential in all steps of the present purification procedure.  相似文献   

19.
The Hfq protein, which shares sequence and structural homology with the Sm and Lsm proteins, binds to various RNAs, primarily recognizing AU-rich single-stranded regions. In this paper, we study the ability of the Escherichia coli Hfq protein to bind to a polyadenylated fragment of rpsO mRNA. Hfq exhibits a high specificity for a 100-nucleotide RNA harboring 18 3′-terminal A-residues. Structural analysis of the adenylated RNA–Hfq complex and gel shift assays revealed the presence of two Hfq binding sites. Hfq binds primarily to the poly(A) tail, and to a lesser extent a U-rich sequence in a single-stranded region located between two hairpin structures. The oligo(A) tail and the interhelical region are sensitive to 3′–5′ exoribonucleases and RNase E hydrolysis, respectively, in vivo. In vitro assays demonstrate that Hfq protects poly(A) tails from exonucleolytic degradation by both PNPase and RNase II. In addition, RNase E processing, which occurred close to the U-rich sequence, is impaired by the presence of Hfq. These data suggest that Hfq modulates the sensitivity of RNA to ribonucleases in the cell.  相似文献   

20.
A gene for the Hfq protein is present in the majority of sequenced bacterial genomes. Its characteristic hexameric ring-like core structure is formed by the highly conserved N-terminal regions. In contrast, the C-terminal forms an extension, which varies in length, lacks homology, and is predicted to be unstructured. In Gram-negative bacteria, Hfq facilitates the pairing of sRNAs with their mRNA target and thus affects gene expression, either positively or negatively, and modulates sRNA degradation. In Gram-positive bacteria, its role is still poorly characterized. Numerous sRNAs have been detected in many Gram-positive bacteria, but it is not yet known whether these sRNAs act in association with Hfq. Compared with all other Hfqs, the C. difficile Hfq exhibits an unusual C-terminal sequence with 75% asparagine and glutamine residues, while the N-terminal core part is more conserved. To gain insight into the functionality of the C. difficile Hfq (Cd-Hfq) protein in processes regulated by sRNAs, we have tested the ability of Cd-Hfq to fulfill the functions of the E. coli Hfq (Ec-Hfq) by examining various functions associated with Hfq in both positive and negative controls of gene expression. We found that Cd-Hfq substitutes for most but not all of the tested functions of the Ec-Hfq protein. We also investigated the role of the C-terminal part of the Hfq proteins. We found that the C-terminal part of both Ec-Hfq and Cd-Hfq is not essential but contributes to some functions of both the E. coli and C. difficile chaperons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号