首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The natural history of hepatitis B virus (HBV) infection is probably related to host immune factors. Interferon-γ (IFN-γ) plays significant roles in immune defense. This study was undertaken to investigate the association between HBV infection and single nucleotide polymorphisms (SNPs) of IFN-γ, IFN-γ receptor (IFNGR)-1 and 2, and interferon regulatory factor (IRF)-1 genes. Between March 2002 and December 2002, 614 Korean patients were enrolled in two different groups: an HBV clearance group (n = 201), who were hepatitis B surface antigen (HBsAg) negative with antibodies to HBsAg and hepatitis B core antigen, and an HBV persistence group (n = 413), who were repeatedly HBsAg positive. We assessed polymorphisms in the IFN-γ gene at position +874, in the IFNGR-1 gene at positions −56 and +95, in the IFNGR-2 gene at the second position of codon 64 (Gln64Arg), and in the IRF-1 gene promoter (−410, −388), and the genotype distributions of the HBV clearance and persistence groups were compared. On the basis of unconditional logistic regression analysis with adjustment for age and sex, no statistically significant association with susceptibility to persistent HBV infection was observed with the IFN-γ, IFNGR-1 and 2, and IRF-1 gene polymorphisms under the codominant, dominant, and recessive models.  相似文献   

2.
The present study was undertaken to investigate the dynamic expression of hypoxia induciblefactor-1 α (HIF-1α) and transforming growth factor-β1 (TGF-β1) in hypoxia-induced pulmonary hypertensionof rats.It was found that mean pulmonary arterial pressure (mPAP) increased significantly after 7 d ofhypoxia.Pulmonary artery remodeling index and right ventricular hypertrophy became evident after 14 d ofhypoxia.HIF-1α mRNA staining was less positive in the control,hypoxia for 3 d and hypoxia for 7 d,butbegan to enhance significantly after 14 d of hypoxia,then remained stable.Expression of HIF-1 α protein inthe control was less positive,but was up-regulated in pulmonary arterial tunica intima of all hypoxic rats.TGF-β1 mRNA expression in pulmonary arterial walls was increased significantly after 14 d of hypoxia, butshowed no obvious changes after 3 or 7 d of hypoxia.In pulmonary tunica adventitia and tunica media,TGF-β1 protein staining was less positive in control rats,but was markedly enhanced after 3 d of hypoxia,reaching its peak after 7 d of hypoxia,and then weakening after 14 and 21 d of hypoxia.Western blottingshowed that HIF- 1α protein levels increased significantly after 7 d of hypoxia and then remained at a highlevel. TGF-β1 protein level was markedly enhanced after 3 d of hypoxia,reaching its peak after 7 d ofhypoxia,and then decreasing after 14 and 21 d of hypoxia.Linear correlation analysis showed that HIF-1αmRNA, TGF-β1 mRNA, TGF-β1 protein were positively correlated with mPAP,vessel morphometry andright ventricular hypertrophy index.TGF-β1 protein (tunica adventitia) was negatively correlated withHIF-lα mRNA.Taken together,our results suggest that changes in HIF-lα and TGF-β1 expression afterhypoxia play an important role in hypoxia-induced pulmonary hypertension of rats.  相似文献   

3.
4.
5.
Transforming growth factor-β1 (TGF-β1) is a multifunctional cytokine that signals through the interaction of type I (TβRI) and type II (TβRII) receptors to activate distinct intracellular pathways. TAK1 is a serine/threonine kinase that is rapidly activated by TGF-β1. However, the molecular mechanism of TAK1 activation is incompletely understood. Here, we propose a mechanism whereby TAK1 is activated by TGF-β1 in primary mouse mesangial cells. Under unstimulated conditions, endogenous TAK1 is stably associated with TβRI. TGF-β1 stimulation causes rapid dissociation from the receptor and induces TAK1 phosphorylation. Deletion mutant analysis indicates that the juxtamembrane region including the GS domain of TβRI is crucial for its interaction with TAK1. Both TβRI-mediated TAK1 phosphorylation and TGF-β1-induced TAK1 phosphorylation do not require kinase activity of TβRI. Moreover, TβRI-mediated TAK1 phosphorylation correlates with the degree of its association with TβRI and requires kinase activity of TAK1. TAB1 does not interact with TGF-β receptors, but TAB1 is indispensable for TGF-β1-induced TAK1 activation. We also show that TRAF6 and TAB2 are required for the interaction of TAK1 with TβRI and TGF-β1-induced TAK1 activation in mouse mesangial cells. Taken together, our data indicate that TGF-β1-induced interaction of TβRI and TβRII triggers dissociation of TAK1 from TβRI, and subsequently TAK1 is phosphorylated through TAB1-mediated autophosphorylation and not by the receptor kinase activity of TβRI.Members of the transforming growth factor-β (TGF-β)3 superfamily are key regulators of various biological processes such as cellular differentiation, proliferation, apoptosis, and wound healing (1, 2). TGF-β1, the prototype of TGF-β family, is a potent inducer of extracellular matrix synthesis and is well established as a central mediator in the final common pathway of fibrosis associated with progressive kidney diseases (3, 4). Upon ligand stimulation, TGF-β type I (TβRI) and type II (TβRII) receptors form heterotetrameric complexes, by which TβRI is phosphorylated in the GS domain and activated. Smad signaling pathway is well established as a canonical pathway induced by TGF-β1 (5, 6). Receptor-regulated Smads (Smad2 and Smad3) are recruited and activated by the activated TβRI. The phosphorylation in the GS domain (7) and L45 loop (8) of TβRI are crucial for its interaction with receptor-regulated Smads. After phosphorylation, receptor-regulated Smads are rapidly dissociated from TβRI and interact with common Smad (Smad4) followed by nuclear translocation. In addition to the Smad pathway, a recently emerging body of evidence has demonstrated that TGF-β1 also induces various Smad-independent signaling pathways (917) by which mitogen-activated protein kinases (MAPKs), c-Jun N-terminal kinase (JNK) (18, 19), p38 MAPK (2022), and extracellular signal-regulated kinase 1/2 (23, 24) can be activated by TGF-β1.TAK1, initially identified as a MAPK kinase kinase 7 (MKKK7 or MAP3K7) in the TGF-β signaling pathway (11, 12), also can be activated by environmental stress (25), proinflammatory cytokines such as IL-1 and TNF-α (26, 27) and lipopolysaccharide (28). For TAK1 activation, phosphorylation at Thr-187 and Ser-192 in the activation loop of TAK1 is essentially required (2931). TAK1 can transduce signals to several downstream signaling cascades, including the MAPK kinase (MKK) 4/7-JNK cascade, MKK3/6-p38 MAPK cascade, and nuclear factor κB (NF-κB)-inducing kinase-IκB kinase cascade (2628). A recent report has shown that TAK1 is also activated by agonists of AMP-activated kinase (AMPK) and ischemia, which in turn activates the LKB1/AMPK pathway, a pivotal energy-sensor pathway (32). TAK1 is also involved in Wnt signaling (33). We and others have previously demonstrated that TAK1 is a major mediator of TGF-β1-induced type I collagen and fibronectin expression through activation of the MKK3-p38 MAPK and MKK4-JNK signaling cascades, respectively (3437). Furthermore, increased expression and activation of TAK1 enhance p38 phosphorylation and promote interstitial fibrosis in the myocardium from 9-day-old TAK1 transgenic mice (37). These data implicate a crucial role of TAK1 in extracellular matrix production and tissue fibrosis. TAK1 is also implicated in regulation of cell cycle (38), cell apoptosis (3941), and the Smad signaling pathway (4244). Thus, TAK1 may function as an important regulator and mediator of TGF-β1-induced Smad-dependent and Smad-independent signaling pathways.It has been demonstrated that TAK1 can be activated by the interaction with TAK1-binding protein 1 (TAB1) by in vitro binding assays and in overexpression studies (2931); however, it is not clear whether TAB1 plays a crucial role in ligand-induced TAK1 activation. In embryonic fibroblasts from TAB1 null mice, IL-1 and TNF-α could induce TAK1-mediated NF-κB and JNK activation (45). TAK1 activation induced by TNF-α, IL-1, and T-cell receptor requires TAB2 or its homologous protein TAB3 (4650). Although many questions still remain, much progress has been made in understanding the activation mechanism of TAK1 by inflammatory cytokines (46, 47, 5153). Ligand binding of IL-1 receptor (IL-1R) results in recruitment of MyD88, which serves as an adaptor for IL-1 receptor-associated kinase (IRAK) 1 and 4. Subsequently IRAK1 is hyperphosphorylated and induces interaction with TNF-α receptor-associated factor 6 (TRAF6), resulting in TRAF6 oligomerization. After oligomerization of TRAF6, IRAK1-TRAF6 complex is dissociated from the receptor and associated with TAK1, which is mediated by TAB2 (or TAB3). In this process polyubiquitination of TRAF6 by Ubc13/Uev1A is thought to be critical for the association with TAB2 (or TAB3), which links TAK1 activation (46, 54, 55). In the case of TNF-α stimulation, TNF-α receptors form trimers and recruit adaptor proteins, TRAF2/5, and receptor-interacting protein 1 on the membrane. Ubc13/Uev1A- and TRAF2-dependent polyubiquitination of receptor-interacting protein 1 induce association of TAB2 (or TAB3), which then activates TAK1. Thus, TAB2 is required for ubiquitin-dependent activation of TAK1 by TRAFs. On the other hand, it has been demonstrated that hematopoietic progenitor kinase 1 plays a role as an upstream mediator of TGF-β-induced TAK1 activation, which in turn activates the MKK4-JNK signaling cascade in 293T cells (56, 57). Besides hematopoietic progenitor kinase 1, it has been also suggested that X-linked inhibitor of apoptosis (XIAP) might link TAK1 to TGF-β/BMP receptors through the capability of XIAP to interact with TGF-β/BMP receptors and TAB1 (58). Thus, although various molecules participate in the activation of TAK1, the precise mechanism by which TGF-β1 induces TAK1 activation is incompletely understood. Here, we provide evidence that the association of TAK1 with TGF-β receptors is important for TGF-β1-induced activation of TAK1 in mouse mesangial cells. TGF-β1 stimulation induces interaction of TβRI and TβRII, triggering dissociation of TAK1 from TβRI, and subsequently TAK1 is phosphorylated through TAB1-mediated autophosphorylation, independent of receptor kinase activity of TβRI.  相似文献   

6.
Abnormal transforming growth factor-β (TGF-β) signaling is a critical contributor to the pathogenesis of various human diseases ranging from tissue fibrosis to tumor formation. Excessive TGF-β signaling stimulates fibrotic responses. Recent research has focused in the main on the antiproliferative effects of TGF-β in fibroblasts, and it is presently understood that TGF-β-stimulated cyclooxygenase-2 (COX-2) induction in fibroblasts is essential for antifibroproliferative effects of TGF-β. Both TGF-β and COX-2 have been implicated in tumor growth, invasion, and metastasis, and therefore tumor-associated fibroblasts are a recent topic of interest. Here we report the identification of positive and negative regulatory factors of COX-2 expression induced by TGF-β as determined using proteomic approaches. We show that TGF-β coordinately up-regulates three factors, heterogeneous nuclear ribonucleoprotein A/B (HNRPAB), nucleotide diphosphate kinase A (NDPK A), and nucleotide diphosphate kinase A (NDPK B). Functional pathway analysis showed that HNRPAB augments mRNA and protein levels of COX-2 and subsequent prostaglandin E2 (PGE2) production by suppressing degradation of COX-2 mRNA. In contrast, NDPK A and NDPK B attenuated mRNA and protein levels of COX-2 by affecting TGF-β-Smad2/3/4 signaling at the receptor level. Collectively, we report on a new regulatory pathway of TGF-β in controlling expression of COX-2 in fibroblasts, which advances our understanding of pathophysiological mechanisms of TGF-β.  相似文献   

7.
In order to test the estrogenic activity of sterol oxidation products from cholesterol and phytosterols, an estrogen-dependent gene expression assay was performed in estrogen receptor α-stably transformed HeLa cells. The ranking of the estrogenic potency of these compounds was different: 17β-estradiol >> genistein >> β-epoxycholesterol = daidzein = cholestanetriol = 22(R)-hydroxycholesterol = 20(S)-hydroxycholesterol = sitostanetriol > campestanetriol = β-epoxysitosterol = 7β-hydroxycholesterol. These compounds were not estrogenic in estrogen receptor-negative HeLa cells.  相似文献   

8.
9.
1. The present study was aimed at elucidating effects of transforming growth factor-beta (TGF-beta) on blood-brain barrier (BBB) functions with mouse brain capillary endothelial (MBEC4) cells. 2. The permeability coefficients of sodium fluorescein and Evans blue albumin for MBEC4 cells and the cellular accumulation of rhodamine 123 in MBEC4 cells were dose-dependently decreased after a 12-h exposure to TGF-beta1 (0.01-10 ng/mL). 3. The present study demonstrates that TGF-beta lowers the endothelial permeability and enhances the functional activity of P-gp, suggesting that cellular constituents producing TGF-beta in the brain may keep the BBB functioning.  相似文献   

10.
11.
12.
Ma  Yanhan  Sun  Hanliang  An  Shuhong  Wang  Zhaojin 《Neurochemical research》2021,46(11):2958-2968
Neurochemical Research - Interleukin-1β (IL-1β) plays a critical role in the development of neuropathic pain through activation of Schwann cells (SCs) after nerve injury. Here, we applied...  相似文献   

13.
14.
15.
16.
17.
18.
The influence of bone morphogenetic protein-2 (BMP-2) and transforming growth factor (TGF-) on the expression of small proteoglycans, decorin and biglycan was investigated in a clonal rat osteoblastic cell line, ROS-C26 (C26) cells, which is a potential osteoblast precursor cell line and capable of differentiating into mature osteoblasts after treatment with recombinant BMP-2 (rhBMP-2). Following the culture of C26 cells for 3, 6, and 9 days in the presence or absence of rhBMP-2, alkaline phosphatase activity increased in the rhBMP-2 treated cells in direct proportion to their differentiation into more mature osteoblastic cells, whereas decorin mRNA decreased in the cells, when compared to control cells without rhBMP-2 treatment. These results were evident 6 days after treatment. However, rhBMP-2 treatment had no effect on biglycan mRNA expression in the cells. Subsequently, after removal of rhBMP-2 from the culture media, the cells were further cultured for 24h with graded concentrations of TGF-1 (0, 0.1, 1.0, 5.0, and 10ng/ml). TGF-1 decreased decorin mRNA expression in the cells dose dependently, but did not affect their biglycan mRNA expression. Furthermore, either removal of rhBMP-2 from the culture media or addition of TGF-1 significantly decreased alkaline phosphatase activity of rhBMP-2-induced cells. These results indicate that osteoblastic differentiation is accompanied by increased alkaline phosphatase activity and decreased expression of decorin mRNA, but continuous expression of biglycan mRNA. Both rhBMP-2 and TGF-1 inhibit decorin mRNA expression in osteoblasts at varying stages of differentiation, but their effects on biglycan mRNA expression and alkaline phosphatase are different.  相似文献   

19.
Adipocyte hyperplasia and hypertrophy in obesity can lead to many changes in adipose tissue, such as hypoxia, metabolic dysregulation, and enhanced secretion of cytokines. In this study, hypoxia increased the expression of Wnt10b in both human and mouse adipogenic cells, but not in hypoxia-inducible factor (HIF)-2α-deficient adipogenic cells. Chromatin immunoprecipitation analysis revealed that HIF-2α, but not HIF-1α, bound to the Wnt10b enhancer region as well as upstream of the Wnt1 gene, which is encoded by an antisense strand of the Wnt10b gene. Hypoxia-conditioned medium (H-CM) induced phosphorylation of lipoprotein-receptor-related protein 6 as well as β-catenin-dependent gene expression in normoxic cells, which suggests that H-CM contains canonical Wnt signals. Furthermore, adipogenesis of both human mesenchymal stem cells and mouse preadipocytes was inhibited by H-CM even under normoxic conditions. These results suggest that O2 concentration gradients influence the formation of Wnt ligand gradients, which are involved in the regulation of pluripotency, cell proliferation, and cell differentiation.  相似文献   

20.
De-differentiation of vascular smooth muscle cells (VSMCs) plays a critical role in the development of atherosclerosis, a chronic inflammatory disease involving various cytokines such as tumor necrosis factor-α (TNFα). Myocardin is a co-factor of serum response factor (SRF) and is considered to be the master regulator of VSMC differentiation. It binds to SRF and regulates the expression of contractile proteins in VSMCs. Myocardin is also known to inhibit VSMC proliferation by inhibiting the NF-κB pathway, whereas TNFα is known to activate the NF-κB pathway in VSMCs. NF-κB activation has also been shown to inhibit myocardin expression and smooth muscle contractile marker genes. However, it is not definitively known whether TNFα regulates the expression and activity of myocardin in VSMCs. The current study aimed to investigate the role of TNFα in regulating myocardin and VSMC function. Our studies showed that TNFα down-regulated myocardin expression and activity in cultured VSMCs by activating the NF-κB pathway, resulting in decreased VSMC contractility and increased VSMC proliferation. Surprisingly, we also found that TNFα prevented myocardin mRNA degradation, and resulted in a further significant increase in myocardin expression and activity in differentiated VSMCs. Both the NF-κB and p44/42 MAPK pathways were involved in TNFα regulation of myocardin, which further increased the contractility of VSMCs. These differential effects of TNFα on myocardin seemingly depended on whether VSMCs were in a differentiated or de-differentiated state. Taken together, our results demonstrate that TNFα differentially regulates myocardin expression and activity, which may play a key role in regulating VSMC functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号