首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Aims

Extensive evidence suggests inflammatory components participate in the pathogenic processes of acute coronary syndromes (ACS). In this study, we aimed to elucidate the role and mechanism underlying the imbalance of Th17 and Treg cell peripheral populations in the pathogenesis of ACS.

Methods and Results

Using a flow cytometric analysis, we observed a significantly increased frequency of Th17 cells and a concurrently decreased CD4+CD25+Foxp3+ Treg cells in patients with ACS. To elucidate the mechanism of Th17/Treg imbalance in ACS, 22 inflammatory cytokines were measured using multiplexed immunobead-based assays. Of six elevated cytokines in ACS patients, only IL-6 was positively correlated with a higher Th17 cell level (r = 0.39, P<0.01). Relying on IL-6 stimulating and neutralizing studies, we demonstrated a direct role for IL-6 in sera from ACS patients with an increased frequency of Th17 cells. IL-6 induces the differentiation of Th17 cells from naïve CD4+ T cells through STAT3 activation and RORγt induction. However, we observed that high levels of TGF-β1 inhibited IL-6-dependent Th17 cell differentiation, indicating a complex interplay between the two cytokines in the control of Th17 and Treg cell populations.

Conclusions

Our results demonstrate the role of IL-6-STAT3 signaling in ACS through increased Th17 cell differentiation. These findings indicate that IL-6 neutralizing strategies could present novel therapeutic avenues in the treatment of ACS.  相似文献   

2.

Objective

Regulatory T cells (Treg) play a critical role in the prevention of autoimmunity, and the suppressive activity of these cells is impaired in rheumatoid arthritis (RA). The aim of the present study was to investigate function and properties of Treg of RA patients in response to purified polysaccharide glucuronoxylomannogalactan (GXMGal).

Methods

Flow cytometry and western blot analysis were used to investigate the frequency, function and properties of Treg cells.

Results

GXMGal was able to: i) induce strong increase of FOXP3 on CD4+ T cells without affecting the number of CD4+CD25+FOXP3+ Treg cells with parallel increase in the percentage of non-conventional CD4+CD25FOXP3+ Treg cells; ii) increase intracellular levels of TGF-β1 in CD4+CD25FOXP3+ Treg cells and of IL-10 in both CD4+CD25+FOXP3+ and CD4+CD25FOXP3+ Treg cells; iii) enhance the suppressive activity of CD4+CD25+FOXP3+ and CD4+CD25FOXP3+ Treg cells in terms of inhibition of effector T cell activity and increased secretion of IL-10; iv) decrease Th1 response as demonstrated by inhibition of T-bet activation and down-regulation of IFN-γ and IL-12p70 production; v) decrease Th17 differentiation by down-regulating pSTAT3 activation and IL-17A, IL-23, IL-21, IL-22 and IL-6 production.

Conclusion

These data show that GXMGal improves Treg functions and increases the number and function of CD4+CD25FOXP3+ Treg cells of RA patients. It is suggested that GXMGal may be potentially useful for restoring impaired Treg functions in autoimmune disorders and for developing Treg cell-based strategies for the treatment of these diseases.  相似文献   

3.

Background

Both regulatory T cells (Tregs) and T helper IL-17-producing cells (Th17 cells) have been found to be involved in human malignancies, however, the possible implication of Tregs in regulating generation and differentiation of Th17 cells in malignant pleural effusion remains to be elucidated.

Methods

The numbers of both CD39+Tregs and Th17 cells in malignant pleural effusion and peripheral blood from patients with lung cancer were determined by flow cytometry. The regulation and mechanism of Tregs on generation and differentiation of Th17 cells were explored.

Results

Both CD39+Tregs and Th17 cells were increased in malignant pleural effusion when compared with blood, and the numbers of CD39+Tregs were correlated negatively with those of Th17 cells. It was also noted that high levels of IL-1β, IL-6, and TGF-β1 could be observed in malignant pleural effusion when compared the corresponding serum, and that pleural CD39+Tregs could express latency-associated peptide on their surface. When naïve CD4+ T cells were cocultured with CD39+Tregs, Th17 cell numbers decreased as CD39+Treg numbers increased, addition of the anti-latency-associated peptide mAb to the coculture reverted the inhibitory effect exerted by CD39+Tregs.

Conclusions

Therefore, the above results indicate that CD39+Tregs inhibit generation and differentiation of Th17 cells via a latency-associated peptide-dependent mechanism.  相似文献   

4.

Objective

Immune imbalance between regulatory T (Treg) and Th17 cells is a characteristic of systemic sclerosis (SSc). The functional heterogeneity among Treg can be elucidated by separating Treg into different subsets based on the expression of FoxP3 and CD45RA. The aim of this study was to investigate the role of Treg subsets in the immune imbalance in naïve SSc.

Methods

Peripheral blood mononuclear cells (PBMCs) of 31 SSc patients and 33 healthy controls were analyzed for the expression of CD4, CD25, CD45RA, CTLA-4, FoxP3, and IL-17 using flow cytometry. Treg immunesuppression capacity was measured in co-culture experiments. The expression of FoxP3, CTLA-4, IL-17A, and RORC mRNA was measured by real-time PCR.

Results

The frequency of CD4+CD25+FoxP3+ Treg cells was significantly elevated in patients with SSc (3.62±1.14 vs 1.97±0.75, p<0.001) with diminished immunosuppression capacity. In SSc, the proportion of FoxP3highCD45RA activated Treg cells (aTreg) was decreased, the proportion of FoxP3lowCD45RA T cells was increased, and the proportion of FoxP3lowCD45RA+ resting Treg cells (rTreg) was decreased. The immune suppression capacity of aTreg and rTreg was diminished, while FoxP3lowCD45RA T cells exhibited a lack of suppression capacity. The immune dysfunction of aTreg was accompanied by the abnormal expression of CTLA-4. Th17 cell numbers were elevated in SSc, FoxP3lowCD45RA T cells produced IL-17, confirming their Th17 potential, which was consistent with the elevated levels of FoxP3+IL-17+ cells in SSc.

Conclusion

A decrease in aTreg levels, along with functional deficiency, and an increase in the proportion of FoxP3lowCD45RA T cells, was the reason for the increase in dysfunctional Treg in SSc patients, potentially causing the immune imbalance between Treg and Th17 cells.  相似文献   

5.
Hu Y  Ma DX  Shan NN  Zhu YY  Liu XG  Zhang L  Yu S  Ji CY  Hou M 《PloS one》2011,6(10):e26522

Background

IL-17-secreting CD8+ T cells (Tc17 subset) have recently been defined as a subpopulation of effector T cells implicated in the pathogenesis of autoimmune diseases. The role of Tc17 and correlation with Th17 cells in the pathophysiology of immune thrombocytopenia (ITP) remain unsettled.

Design and Methods

We studied 47 ITP patients (20 newly-diagnosed and 27 with complete response) and 34 healthy controls. IL-17-producing CD3+CD8+ cells (Tc17) and IL-17-producing CD3+CD8− cells (Th17) were evaluated by flow cytometry and expressed as a percentage of the total number of CD3+ cells. Specific anti-platelet glycoprotein (GP) GPIIb/IIIa and/or GPIb/IX autoantibodies were measured by modified monoclonal antibody specific immobilization of platelet antigens. Peripheral blood mononuclear cells of ITP patients were isolated, incubated in the presence of 0, 0.25, 0.5, or 1 µmol/L of dexamethasone for 72 h, and collected to detect Tc17 and Th17 cells by flow cytometric analysis.

Results

IL-17 was expressed on CD3+CD8− and CD3+CD8+ T cells. The percentages of Tc17 and Th17 cells in newly-diagnosed patients were significantly elevated compared to controls, and Tc17 was decreased after clinical treatment. The Th17∶Tc17 ratio was significantly lower in newly-diagnosed patients compared with controls, and was increased in patients who had complete response. There was a significantly positive correlation between Tc17 and Th17 cells in the control group, but not in the ITP patients. A positive correlation existed between Tc17 and the CD8∶CD4 ratio, as well as CD8+ cells in patients with ITP. The frequencies of Tc17 were marginally higher in autoantibody-negative patients than autoantibody-positive patients. Moreover, both Tc17 and Th17 cell percentages decreased as the concentration of dexamethasone in the culture media increased in ITP patients.

Conclusions

Tc17 and the Th17 subset are involved in the immunopathology of ITP. Blocking the abnormally increased number of Tc17 may be a reasonable therapeutic strategy for ITP.  相似文献   

6.

Background

IL-22 and IL-17A are implicated in the pathogenesis of autoimmune diseases. However, the role of IL-22+ and IL-17A+ CD4+ T cells in the pathogenesis of Hashimoto’s thyroiditis (HT) is not fully understood. This study investigates serum IL-22 and IL-17A levels and determines the frequency of circulating IL-22+ CD4+ T cells in HT patients to understand their roles in the pathogenesis of HT.

Methods

The levels of serum IL-22, IL-17A and IFN-γ and the frequency of circulating IL-22+CD4+ and IL-17A+CD4+ T cells in 17 HT patients and 17 healthy controls (HC) were determined by enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The levels of serum free triiodothyronine (FT4), free thyroxine (FT3), thyroid stimulating hormone (TSH), anti-thyroid peroxidase (TPO) and anti-thyroglobulin antibodies (TgAb) by chemiluminescent enzyme immunoassay and radioimmunoassay.

Results

The percentages of circulating IL-22+CD4+ and IL-17+CD4+ T cells (p<0.0001, p<0.0001) and the levels of serum IL-22, IL-17A and IFN-γ (p<0.0001, p<0.0001, p = 0.0210) in the HT patients were significantly higher than that in the HC. The percentages of IL-22+CD4+ T cells were positively correlated with Th17 cells (r = 0.8815, p<0.0001) and IL-17A+IL-22+CD4+ T cells (r = 0.8914, p<0.0001), but were negatively correlated with Th1 cells (r = −0.6110, p<0.0092) in the HT patients. The percentages of Th22 cells, Th17 cells and IL-17A+IL-22+CD4+ T cells were negatively correlated with the levels of serum TSH in the HT patients (r = −0.8402, p<0.0001; r = −0.8589, p<0.0001; r = −0.8289 p<0.0001, respectively).

Conclusions

A higher frequency of circulating IL-22+CD4+ and IL-17A+CD4+ T cells may be associated with the development of HT in Chinese patients.  相似文献   

7.
8.

Background

Leprosy is a chronic disease, caused by Mycobacterium leprae, which poses a serious public health problem worldwide. Its high incidence in people under 15 years old in Ceará state, Brazil, reflects the difficulty of its control. The spectrum of clinical manifestations is associated with the immune response developed, with the Th1 and Th2 responses being related to the paucibacillary and multibacillary forms, respectively. Regulatory T cells (Treg), which can suppress Th1 and Th2 response, have received special attention in the literature and have been associated with development of chronic infections. However, their role in leprosy in individuals under 15 years old has not yet been elucidated. We evaluated the frequency of CD4+/CD8+CD25highFOXP3+ and CD4+/CD8+CD25highFOXP3high cells in leprosy patients and household contacts, in both cases under 15 years old.

Methodology/Principal Findings

PBMC from 12 patients and 17 contacts were cultured for 72 hours with anti-CD3 and anti-CD28 (activators) or with activators associated with total sonicated fraction of M. leprae. After culture, the frequency of CD4+/CD8+ Treg was identified by flow cytometry. Cells stimulated by activators and antigen from multibacillary patients showed Treg frequencies almost two times that of the contacts: CD4+FOXP3+ (21.93±8.43 vs. 13.79±8.19%, p = 0.0500), CD4+FOXP3high (10.33±5.69 vs. 5.57±4.03%, p = 0.0362), CD8+FOXP3+ (13.88±9.19 vs. 6.18±5.56%, p = 0.0230) and CD8+FOXP3high (5.36±4.17 vs. 2.23±2.68%, p = 0.0461). Furthermore, the mean fluorescence intensity of FOXP3 in Treg was higher in multibacillary patients than in the contacts. Interestingly, there was a positive correlation of the bacillary index and number of lesions with the frequency of all Treg evaluated in patients.

Conclusions/Significance

We have demonstrated for the first time that multibacillary leprosy patients under 15 years old have greater CD4+ and CD8+ Treg frequencies and these correlate with clinical and laboratorial aspects of disease. These findings suggest the involvement of these cells in the perpetuation of M. leprae infection.  相似文献   

9.

Background

Th1 and Th17 responses are known to play an important role in immunity to pulmonary tuberculosis (PTB), although little is known about their role in extrapulmonary forms of tuberculosis (TB).

Methods

To identify the role of Th1, Th17, and Th22 cells in multi-focal TB lymphadenitis (TBL), we examined mycobacteria–specific immune responses in the whole blood of individuals with PTB (n = 20) and compared them with those with TBL (n = 25).

Results

Elevated frequencies of CD4+ T cells expressing IFN- γ, TNF-α, and IL-2 were present in individuals with TBL compared with those with PTB at baseline and in response to ESAT-6 and CFP-10. Similarly, increased frequencies of CD4+ T cells expressing IL-17A, IL-17F, and IFN-γ were also present in individuals with TBL at baseline and following ESAT-6 and CFP-10 stimulation although no significant difference in frequency of Th22 cells was observed. Finally, frequencies of Th1 (but not Th17) cells exhibited a significantly negative correlation with natural regulatory T cell frequencies at baseline.

Conclusions

Multi-focal TB lymphadenitis is therefore characterized by elevated frequencies of Th1 and Th17 cells, indicating that Th1 and Th17 responses in TB disease are probably correlates of disease severity rather than of protective immunity.  相似文献   

10.

Background

CMV-specific T-cells are crucial to control CMV-replication post-transplant. Regulatory T-cells (T-regs) are associated with a tolerant immune state and may contribute to CMV-replication. However, T-cell subsets such as T-regs and IL-17 producing T-cells (Th-17) are not well studied in this context. We explored T-regs and Th-17 frequencies during CMV-replication after transplantation.

Methods

We prospectively evaluated 30 transplant patients with CMV-viremia. We quantified CMV-specific CD4+ and CD8+ T-cells, T-regs (CD4+CD25+FoxP3+) and Th-17 frequencies using flow-cytometry and followed patients requiring anti-viral treatment. Two subsets were compared: anti-viral treatment requirement (n = 20) vs. spontaneous clearance of viremia (n = 10).

Results

Higher initial CMV-specific CD4+ T-cells and lower T-regs were observed in patients with spontaneous clearance (p = 0.043; p = 0.021 respectively). Using a ratio of CMV-specific CD4+ T-cells to T-regs allowed prediction of viral clearance with 80% sensitivity and 90% specificity (p = 0.001). One month after stop of treatment, the same correlation was observed in patients protected from CMV-relapse. The ratio of CMV-specific CD4+ T-cells to T-regs allowed prediction of relapse with 85% sensitivity and 86% specificity (p = 0.004). Th-17 responses were not correlated with virologic outcomes.

Conclusions

This study provides novel insights into T-regs and Th-17 subpopulations during CMV-replication after transplantation. These preliminary data suggest that measurement of CMV-specific CD4+ T-cells together with T-regs has value in predicting spontaneous clearance of viremia and relapse.  相似文献   

11.

Objective

Many studies have shown that magnetic fields (MF) inhibit tumor growth and influence the function of immune system. However, the effect of MF on mechanism of immunological function in tumor-bearing mice is still unclear.

Methods

In this study, tumor-bearing mice were prepared by subcutaneously inoculating Balb/c mice with hepatocarcinoma cell line H22. The mice were then exposed to a low frequency MF (0.4 T, 7.5 Hz) for 30 days. Survival rate, tumor growth and the innate and adaptive immune parameters were measured.

Results

MF treatment could prolong survival time (n = 28, p<0.05) and inhibit tumor growth (n = 9, p<0.01) in tumor-bearing mice. Moreover, this MF suppressed tumor-induced production of cytokines including interleukin-6 (IL-6), granulocyte colony- stimulating factor (G-CSF) and keratinocyte-derived chemokine (KC) (n = 9–10, p<0.05 or 0.01). Furthermore, MF exposure was associated with activation of macrophages and dendritic cells, enhanced profiles of CD4+ T and CD8+ T lymphocytes, the balance of Th17/Treg and reduced inhibitory function of Treg cells (n = 9–10, p<0.05 or 0.01) in the mice model.

Conclusion

The inhibitory effect of MF on tumor growth was related to the improvement of immune function in the tumor-bearing mice.  相似文献   

12.

Background

CD4+ T cells in the lung are involved in the pathogenesis of chronic obstructive pulmonary disease (COPD), although CD4+ T cell subsets and the direct effect of smoking on these cells, especially the expression of MRs, have not been comprehensively examined.

Methods

First, circulating CD4+ T cell subsets in healthy nonsmokers, patients with SCOPD and patients with AECOPD were evaluated by flow cytometry. Then, differentiation experiments were carried out using RT-PCR, and Ki-67/Annexin V antibodies were used to measure proliferation and apoptosis. We also explored the impact of CSE on the differentiation and survival of CD4+Th/Tregs and examined the expression of MRs in healthy nonsmokers and patients with SCOPD.

Results

We found the percentages of circulating Th1 and Th17 cells were increased in patients with AECOPD, while the percentage of Th2 cells was decreased in patients with SCOPD. The percentages of Th10 cells were decreased in both patients with SCOPD and patients with AECOPD, while the percentages of Tregs were increased. In addition, the percentages of CD4+α-7+ T cells were decreased in patients with SCOPD and patients with AECOPD. However, only the decrease observed in patients with AECOPD was significant. In vitro studies also revealed MR expression affected the polarization of T cells, with different CD4+ T cell subtypes acquiring different MR expression profiles. The addition of CSE facilitated CD4+ T cell polarization towards pro-inflammatory subsets (Th1 and Th17) and affected the survival of CD4+ T cells and Treg cells by up-regulating the expression of MR3 and 5, resulting in an imbalance of CD4+ T cell subsets.

Conclusions

Our findings suggest an imbalance of circulating CD4+ T cell subsets is involved in COPD pathogenesis in smokers. Cigarette smoking may contribute to this imbalance by affecting the polarization and survival of Th/Tregs through the up-regulation of MR3 and MR5.  相似文献   

13.

Background

Artemisinin analogue SM934 was previously reported to possess immunosuppressive properties. The aim of this study was to determine the effects and the underlying mechanisms of SM934 in murine experimental autoimmune encephalomyelitis (EAE).

Methods

Female C57BL/6 mice immunized with MOG35–55 were treated with or without SM934, then the clinical scores and other relevant parameters were assessed. Th1, Th17 and regulatory T (Treg) cell profiles were determined through ELISA, qRT-PCR, flow cytometry and BrdU incorporation assay. The effects of SM934 on Th1, Th17 and Treg cells differentiation were explored through intracellular staining and flow cytometry examination.

Results

In vivo, administration of SM934 significantly inhibited the development of EAE and suppressed the elevation of serum IL-17. Ex vivo, upon antigen-recall stimulation, IL-2, IFN-γ, IL-17 and IL-6 production were decreased, whereas IL-10 and TGF-β production were increased from the splenocytes isolated from SM934-treated mice. Consistently, both flow cytometry and qRT-PCR results showed that SM934 treatment significantly increased the Treg, while strongly suppressed the Th17 and Th1, responses in the peripheral. Furthermore, in the spinal lesion, SM934 treatment dramatically decreased the infiltration of CD4+ T cells, within which the Treg cells percentage was enlarged, whereas the Th17, but not Th1 percentage, was significantly decreased comparing with the vehicle-treated groups. Finally, both BrdU incorporation and in vitro Treg differentiation assays revealed that SM934 treatment could directly promote the expansion of Treg cells in vivo and in vitro.

Conclusion

Taken together, this study demonstrated that SM934 treatment could ameliorate the murine EAE disease, which might be mediated by inducing Treg differentiation and expansion.  相似文献   

14.

Introduction

Naturally occurring CD4+CD25+ regulatory T (Treg) cells are central to the maintenance of peripheral tolerance. Impaired activity and/or a lower frequency of these cells lead to systemic lupus erythematosus (SLE). Manipulating the number or activity of Treg cells is to be a promising strategy in treating it and other autoimmune diseases. We have examined the effects of Y27, a novel derivative of 4-hydroxyquinoline-3-formamide, on SLE-like symptoms in MRL/lpr autoimmune mice and BDF1 hybrid mice. Whether the beneficial effect of Y27 involves modulation of CD4+CD25+ Treg cells has also been investigated.

Methods

Female MRL/lpr mice that spontaneously develop lupus were treated orally by gavage with Y27 for 10 weeks, starting at 10 weeks of age. BDF1 mice developed a chronic graft-versus-host disease (GVHD) by two weekly intravenous injections of parental female DBA/2 splenic lymphocytes, characterized by immunocomplex-mediated glomerulonephritis resembling SLE. Y27 was administered to chronic GVHD mice for 12 weeks. Nephritic symptoms were monitored and the percentage of CD4+CD25+FoxP3+ Treg peripheral blood leukocyte was detected with mouse regulatory T cell staining kit by flowcytometry. Purified CD4+CD25+ Tregs were assessed for immune suppressive activity using the mixed lymphocyte reaction.

Results

The life-span of MRL/lpr mice treated with Y27 for 10 weeks was significantly prolonged, proteinuria and renal lesion severity were ameliorated, and blood urea nitrogen, triglyceride and serum anti-double-stranded DNA antibodies were decreased. Similar results were found in chronic GVHD mice. Administration of Y27 had little impact on percentage of the peripheral blood lymphocyte CD4+CD25+Foxp3+ Treg cells in both groups of mice. In contrast, the suppressive capacity of CD4+CD25+ Treg cells in splenocytes was markedly augmented in Y27-treated mice ex vivo.

Conclusions

Experimental evidence of the protect effects of Y27 against autoimmune nephritis has been shown. The mechanism may involve enhancement of the suppressive capacity of CD4+CD25+ Treg cells.  相似文献   

15.

Background

Regulatory T-cells (Tregs), characterized as CD4+CD25hi T-cells expressing FOXP3, play a crucial role in controlling healthy immune development during early immune maturation. Recently, FOXP3 demethylation was suggested to be a novel marker for natural Tregs in adults. In cord blood, the role and function of Tregs and its demethylation is poorly understood. We assessed FOXP3 demethylation in cord blood in relation to previously used Treg markers such as CD4+CD25hi, FOXP3 mRNA, protein expression, and suppressive Treg function.

Methodology

Cord blood mononuclear cells (CBMC) were isolated from 70 healthy neonates, stimulated for 3 days with the microbial stimulus lipid A (LpA), and allergen Dermatophagoides pteronyssinus (Derp1). Tregs (CD4+CD25hi, intracellular, mRNA FOXP3 expression, isolated cells), DNA methylation of the FOXP3-locus and suppressive Treg function were assessed.

Principal Findings

Demethylation of FOXP3 in whole blood was specific for isolated CD4+CD25hi Tregs. Demethylation of FOXP3 was positively correlated with unstimulated and LpA-stimulated FOXP3 mRNA-expression (p≤0.05), and CD4+CD25hi T-cells (p≤0.03). Importantly, increased FOXP3 demethylation correlated with more efficient suppressive capacity of Tregs (r = 0.72, p = 0.005). Furthermore, FOXP3 demethylation was positively correlated with Th2 cytokines (IL-5, IL-13) following LpA-stimulation (p = 0.006/0.04), with Th2 and IL-17 following Derp1+LpA-stimulations (p≤0.009), but not Th1 cytokines (IFN-γ).

Conclusions

FOXP3 demethylation reliable quantifies Tregs in cord blood. FOXP3 demethylation corresponds well with the suppressive potential of Tregs. The resulting strict correlation with functionally suppressive Tregs and the relative ease of measurement render it into a valuable novel marker for large field studies assessing Tregs as qualitative marker indicative of functional activity.  相似文献   

16.

Objective

To observe the proportion of peripheral T follicular helper (Tfh) cells in patients with systemic lupus erythematosus (SLE) and to assess the role of steroids on Tfh cells from SLE patients.

Methods

Peripheral blood mononuclear cells (PBMCs) from 42 SLE patients and 22 matched healthy subjects were collected to assess proportions of circulating CXCR5+PD1+/CD4+ T cells (Tfh), CD4+CCR6+ T cells (Th17-like) and CD19+CD138+ plasma cells by flow cytometry. 8 of the patients had their blood redrawn within one week after receiving methylprednisolone pulse treatment. Disease activity was evaluated by SLE disease activity index. To test the effect of IL-21 and corticosteroids on Tfh cells in vitro, PBMCs harvested from another 15 SLE patients were cultured with medium, IL-21, or IL-21+ dexamethasone for 24 hours and 72 hours. PBMCs from an independent 23 SLE patients were cultured with different concentrations of dexamethasone for 24 hours.

Results

Compared to normal controls, percentages of circulating Tfh cells, but not Th17 cells, were elevated in SLE patients and correlated with disease activity. Proportions of Tfh cells in SLE patients were positively correlated with those of plasma cells and serum levels of antinuclear antibodies. After methylprednisolone pulse treatment, both percentages and absolute numbers of circulating Tfh cells were significantly decreased. In vitro cultures showed an increase of Tfh cell proportion after IL-21 stimulation that was totally abolished by the addition of dexamethasone. Both 0.5 and 1 µM dexamethasone decreased Tfh cells dose dependently (overall p = 0.013).

Conclusions

We demonstrated that elevated circulating Tfh cell proportions in SLE patients correlated with their disease activities, and circulating levels of plasma cells and ANA. Corticosteroids treatment down-regulated aberrant circulating Tfh cell proportions both in vivo and in vitro, making Tfh cells a new treatment target for SLE patients.  相似文献   

17.

Background

Multiple sclerosis (MS) likely results from an imbalance between regulatory and inflammatory immune processes. CD39 is an ectoenzyme that cleaves ATP to AMP and has been suggested as a novel regulatory T cells (Treg) marker. As ATP has numerous proinflammatory effects, its degradation by CD39 has anti-inflammatory influence. The purpose of this study was to explore regulatory and inflammatory mechanisms activated in fingolimod treated MS patients.

Methods and Findings

Peripheral blood mononuclear cells (PBMCs) were isolated from relapsing-remitting MS patients before starting fingolimod and three months after therapy start. mRNA expression was assessed in ex vivo PBMCs. The proportions of CD8, B cells, CD4 and CD39-expressing cells were analysed by flow cytometry. Treg proportion was quantified by flow cytometry and methylation-specific qPCR. Fingolimod treatment increased mRNA levels of CD39, AHR and CYP1B1 but decreased mRNA expression of IL-17, IL-22 and FOXP3 mRNA in PBMCs. B cells, CD4+ cells and Treg proportions were significantly reduced by this treatment, but remaining CD4+ T cells were enriched in FOXP3+ cells and in CD39-expressing Tregs.

Conclusions

In addition to the decrease in circulating CD4+ T cells and CD19+ B cells, our findings highlight additional immunoregulatory mechanisms induced by fingolimod.  相似文献   

18.

Background

50% of leprosy patients suffer from episodes of Type 1/ reversal reactions (RR) and Type 2/ Erythema Nodosum Leprosum (ENL) reactions which lead to morbidity and nerve damage. CD4+ subsets of Th17 cells and CD25+FOXP3+ regulatory T cells (Tregs) have been shown to play a major role in disease associated immunopathology and in stable leprosy as reported by us and others. The aim of our study was to analyze their role in leprosy reactions.

Methodology and Principle Findings

Quantitative reverse transcribed PCR (qPCR), flowcytometry and ELISA were used to respectively investigate gene expression, cell phenotypes and supernatant levels of cytokines in antigen stimulated PBMC cultures in patients with stable disease and those undergoing leprosy reactions. Both types of reactions are associated with significant increase of Th17 cells and associated cytokines IL-17A, IL-17F, IL-21, IL-23 and chemokines CCL20, CCL22 as compared to matching stable forms of leprosy. Concurrently patients in reactions show reduction in FOXP3+ Treg cells as well as reduction in TGF-β and increase in IL-6. Moreover, expression of many T cell markers, cytokines, chemokines and signaling factors were observed to be increased in RR as compared to ENL reaction patients.

Conclusions

Patients with leprosy reactions show an imbalance in Th17 and Treg populations. The reduction in Treg suppressor activity is associated withhigherTh17cell activity. The combined effect of reduced TGF-β and enhanced IL-6, IL-21 cytokines influence the balance between Th17 or Treg cells in leprosy reactions as reported in the murine models and autoimmune diseases. The increase in Th17 cell associated cytokines may contribute to lesional inflammation.  相似文献   

19.

Background

Dendritic cells (DC) and regulatory cells (Treg) play pivotal roles in controlling both normal and autoimmune adaptive immune responses. DC are the main antigen-presenting cells to T cells, and they also control Treg functions. In this study, we examined the frequency and phenotype of DC subsets, and the frequency and function of Treg from patients with ANCA-associated vasculitis (AAV).

Methodology/Principal Findings

Blood samples from 19 untreated patients with AAV during flares and before any immunosuppressive treatment were analyzed, along with 15 AAV patients in remission and 18 age-matched healthy controls. DC and Treg numbers, and phenotypes were assessed by flow cytometry, and in vitro suppressive function of Treg was determined by co-culture assay. When compared to healthy volunteers, absolute numbers of conventional and plasmacytoid DC were decreased in AAV patients. During the acute phase this decrease was significantly more pronounced and was associated with an increased DC expression of CD62L. Absolute numbers of Treg (CD4+CD25highCD127low/− Tcells) were moderately decreased in patients. FOXP3 and CD39 were expressed at similar levels on Treg from patients as compared to controls. The suppressive function of Treg from AAV patients was dramatically decreased as compared to controls, and this defect was more pronounced during flares than remission. This Treg functional deficiency occurred in the absence of obvious Th17 deviation.

Conclusion

In conclusion, these data show that AAV flares are associated with both a decrease number and altered phenotype of circulating DC and point to a role for Treg functional deficiency in the pathogenesis of AAV.  相似文献   

20.

Introduction

During HIV infection the severe depletion of intestinal CD4+ T-cells is associated with microbial translocation, systemic immune activation, and disease progression. This study examined intestinal and peripheral CD4+ T-cell subsets reconstitution under combined antiretroviral therapy (cART), and systemic immune activation markers.

Methods

This longitudinal single-arm pilot study evaluates CD4+ T cells, including Th1 and Th17, in gut and blood and soluble markers for inflammation in HIV-infected individuals before (M0) and after eight (M8) months of cART. From January 2010 to December 2011, 10 HIV-1 naïve patients were screened and 9 enrolled. Blood and gut CD4+ T-cells subsets and cellular immune activation were determined by flow-cytometry and plasma soluble CD14 by ELISA. CD4+ Th17 cells were detected in gut biopsies by immunohistochemistry. Microbial translocation was measured by limulus-amebocyte-lysate assay to detect bacterial lipopolysaccharide (LPS) and PCR Real Time to detect plasma bacterial 16S rDNA.

Results

Eight months of cART increased intestinal CD4+ and Th17 cells and reduced levels of T-cell activation and proliferation. The magnitude of intestinal CD4+ T-cell reconstitution correlated with the reduction of plasma LPS. Importantly, the magnitude of Th17 cells reconstitution correlated directly with blood CD4+ T-cell recovery.

Conclusion

Short-term antiretroviral therapy resulted in a significant increase in the levels of total and Th17 CD4+ T-cells in the gut mucosa and in decline of T-cell activation. The observation that pre-treatment levels of CD4+ and of CD8+ T-cell activation are predictors of the magnitude of Th17 cell reconstitution following cART provides further rationale for an early initiation of cART in HIV-infected individuals.

Trial Registration

ClinicalTrials.gov NCT02097381  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号