首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A liquid chromatography–electrospray ionization tandem mass spectrometric method was developed for the simultaneous determination of losartan and its major active metabolite, EXP-3174, in human plasma. The two analytes and the internal standard (DuP-167) were extracted from plasma under acidic conditions by using solid-phase extraction cartridges containing a sorbent of copolymer, poly(divinylbenzene-co-N-vinylpyrrolidone). The analytes were separated by LC equipped with a reversed-phase C18 column, and introduced into the mass spectrometer via the electrospray ion source with pneumatically-assisted nebulization. For LC–MS–MS samples, an isocratic mobile phase consisting of [0.1% triethylamine–0.1% acetic acid (pH 7.1)]–acetonitorile (65:35, v/v) was used, and the assay was monitored for the negative fragment ions of the analytes. The method demonstrated linearity from 1 to 1000 ng/ml for both losartan and EXP-3174. The limit of quantification for both compounds in plasma was 1 ng/ml. This assay method may be useful for the measurement of levels of the two compounds in clinical studies of losartan.  相似文献   

2.
The characteristics of the mass spectra of vitamin D3 related compounds were investigated by GC–MS and LC–MS using 22-oxacalcitriol (OCT), an analog of 1,25-dihydroxyvitamin D3, and related compounds. Fragmentation during GC–MS (electron impact ionization) of TMS-derivatives of OCT and the postulated metabolites gave useful structural information concerning the vitamin D3-skeleton and its side-chain, especially with respect to the oxidation positions of metabolites. In contrast, few fragment ions were observed in LC–MS (atmospheric pressure chemical ionization), showing that LC–MS gave poor structural information, except for molecular mass. However, when comparing the signal-to-noise ratio (S/N) observed during GC–MS and LC–MS analysis for OCT in plasma extracts, the S/N in LC–MS was over ten-times greater than in GC–MS, possibly due to the low recovery on derivatization and thermal-isomerization in GC–MS. Furthermore, both the GC–MS and the LC–MS allowed the analysis of many postulated metabolites in a single injection without any prior isolation of target metabolites from biological fluids by LC. These results suggest that GC–MS and LC–MS analysis for vitamin D3 related compounds such as OCT each have unique and distinct advantages. Therefore, the complementary use of both techniques enables the rapid and detailed characterization of vitamin D3 related compounds.  相似文献   

3.
A sensitive LC–MS quantitation method of cetrorelix, a novel gonadotropin releasing hormone (GnRH) antagonist, was developed. Plasma and urine samples to which brominated cetrorelix was added as an internal standard (I.S.) were purified by solid-phase extraction with C8 cartridges. The chromatographic separation was achieved on a C18 reversed-phase column using acetonitrile–water–trifluoroacetic acid (35:65:0.1, v/v/v) as mobile phase. The mass spectrometric analysis was performed by electrospray ionization mode with negative ion detection, and the adduct ions of cetrorelix and I.S. with trifluoroacetic acid were monitored in extremely high mass region of m/z 1543 and 1700, respectively. The lower limit of quantitation was 1.00 ng per 1 ml of plasma and 2.09 ng per 2 ml of urine, and the present method was applied to the analysis of pharmacokinetics of cetrorelix in human during phase 1 clinical trial.  相似文献   

4.
A sensitive and selective reversed-phase LC–ESI-MS method to quantitate perifosine in human plasma was developed and validated. Sample preparation utilized simple acetonitrile precipitation without an evaporation step. With a Develosil UG-30 column (10×4 mm I.D.), perifosine and the internal standard hexadecylphosphocholine were baseline separated at retention times of 2.2 and 1.1 min, respectively. The mobile phase consisted of eluent A, 95% 9 mM ammonium formate (pH 8) in acetonitrile–eluent B, 95% acetonitrile in 9 mM ammonium formate (pH 8) (A–B, 40:60, v/v), and the flow-rate was 0.5 ml/min. The detection utilized selected ion monitoring in the positive-mode at m/z 462.4 and 408.4 for the protonated molecular ions of perifosine and the internal standard, respectively. The lower limit of quantitation of perifosine was 4 ng/ml in human plasma, and good linearity was observed in the 4–2000 ng/ml range fitted by linear regression with 1/x weight. The total LC–MS run time was 5 min. The validated LC–MS assay was applied to measure perifosine plasma concentrations from patients enrolled on a phase I clinical trial for pharmacokinetic/pharmacodynamic analyses.  相似文献   

5.
A fast, reliable and sensitive liquid chromatography–mass spectrometry (LC–MS) assay for the determination of itraconazole and hydroxyitraconazole in dog plasma has been developed. The analysis involves a simple liquid–liquid extraction followed by LC–MS analysis using electrospray ionization in the positive mode. Total separation of itraconazole, hydroxyitraconazole and the internal standard, miconazole, was achieved on a C18 column in 3.5 min using an isocratic mixture of acetonitrile and 10 mM ammonium acetate. The response was linear over four-orders of magnitude, allowing reliable quantification of each species. This paper describes the development of the method and its validation.  相似文献   

6.
A liquid chromatographic–tandem mass spectrometric (LC–MS–MS) method was developed for the quantitation of urinary leukotriene E4 (LTE4). LTE4 and its internal standard were extracted by solid-phase extraction and analysed using LC–MS–MS in the selected reaction monitoring (SRM) mode. A good linear response over the range of 10 pg to 10 ng was demonstrated. The accuracy of added LTE4 ranged from 97.0% to 108.0% with a mean and SD of 100.6±2.4%. We detected LTE4 (63.1±18.7 pg/mg creatinine, n=10) in healthy human urine. This method can be used to determine LTE4 in biological samples.  相似文献   

7.
A selected-ion monitoring (SIM) determination of serum lycopene, α-carotene and β-carotene by an atmospheric pressure chemical ionization mass spectrometry (APCI–MS) was developed. A large amount of serum cholesterols disturbed the SIM determination of carotenoids by contaminating the segment of interface with the LC–MS. Therefore, separation of carotenoids from the cholesterols was performed using a mixed solution of methanol and acetonitrile (70:30) as the mobile phase on a C18 column of mightsil ODS-5 (75 mm×4.6 mm I.D.). The SIM determination was carried out by introducing only the peak portions of carotenoids and I.S. (squalene) by means of an auto switching valve. In the positive mode of APCI–MS, lycopene, α-carotene and β-carotene were monitored at m/z 537 and I.S. was monitored at m/z 411. This method was linear for all analytes in the range of 15–150 ng for lycopene, 7–70 ng for α-carotene and 25–50 ng for β-carotene. The detection limit of LC–APCI–MS-SIM for carotenoids was about 3 ng per 1 ml of serum (S/N=3). The repeatabilities, expressed as C.V.s, were 10%, 8.4% and 5.3% for lycopene, α-carotene and β-carotene, respectively. The intermediate precisions, expressed as C.V.s, were 11. 2%, 8.8% and 6.5% for lycopene, α-carotene and β-carotene, respectively.  相似文献   

8.
For the first time, an LC–MS–MS method has been developed for the simultaneous analysis of buprenorphine (BUP), norbuprenorphine (NBUP), and buprenorphine–glucuronide (BUPG) in plasma. Analytes were isolated from plasma by C18 SPE and separated by gradient RP-LC. Electrospray ionization and MS–MS analyses were carried out using a PE-Sciex API-3000 tandem mass spectrometer. The m/z 644→m/z 468 transition was monitored for BUPG, whereas for BUP, BUP-d4, NBUP, and NBUP-d3 it was necessary to monitor the surviving parent ions in order to achieve the required sensitivity. The method exhibited good linearity from 0.1 to 50 ng/ml (r2≥0.998). Extraction recovery was higher than 77% for BUPG and higher than 88% for both BUP and NBUP. The LOQ was established at 0.1 ng/ml for the three analytes. The method was validated on plasma samples collected in a controlled intravenous and sublingual buprenorphine administration study. Norbuprenorphine–glucuronide was also tentatively detected in plasma by monitoring the m/z 590→m/z 414 transition.  相似文献   

9.
This work presents the development and the validation of an LC–MS–MS method with atmospheric pressure chemical ionization for the quantitative determination of levamisole, an anthelmintic for veterinary use, in porcine tissue samples. A liquid–liquid back extraction procedure using hexane–isoamylalcohol (95:5, v/v) as extraction solvent was followed by a solid-phase extraction procedure using an SCX column to clean up the tissue samples. Methyllevamisole was used as the internal standard. Chromatographic separation was achieved on a LiChrospher® 60 RP-select B (5 μm) column using a mixture of 0.1 M ammonium acetate in water and acetonitrile as the mobile phase. The mass spectrometer was operated in MS–MS full scanning mode. The method was validated for the analysis of various porcine tissues: muscle, kidney, liver, fat and skin plus fat, according to the requirements defined by the European Community. Calibration graphs were prepared for all tissues and good linearity was achieved over the concentration ranges tested (r>0.99 and goodness of fit <10%). Limits of quantification of 5.0 ng/g were obtained for the analysis of levamisole in muscle, kidney, fat and skin plus fat tissues, and of 50.0 ng/g for liver analysis, which correspond in all cases to half the MRLs (maximum residue limits). Limits of detection ranged between 2 and 4 ng/g tissue. The within-day and between-day precisions (RSD, %) and the results for accuracy fell within the ranges specified. The method has been successfully used for the quantitative determination of levamisole in tissue samples from pigs medicated via drinking water. Moreover the product ion spectra of the levamisole peak in spiked and incurred tissue samples were in close agreement (based on ion ratio measurements) with those of standard solutions, indicating the worthiness of the described method for pure qualitative purposes.  相似文献   

10.
A selective assay of olanzapine with liquid chromatography atmospheric pressure chemical ionization (LC–APCI–MS, positive ions) is described. The drug and internal standard (ethyl derivative of olanzapine) were isolated from serum using a solid-phase extraction procedure (C18 cartridges). The separation was performed on ODS column in acetonitrile–50 mM ammonium formate buffer, pH 3.0 (25:75). After analysis of mass spectra taken in full scan mode, a selected-ion monitoring detection (SIM) was applied with the following ions: m/z 313 and 256 for olanzapine and m/z 327 and 270 for the internal standard for quantitation. The limit of quantitation was 1 μg/l, the absolute recovery was above 80% at concentration level of 10 to 100 μg/l. The method tested linear in the range from 1 to 1000 μg/l and was applied for therapeutic monitoring of olanzapine in the serum of patients receiving (Zyprexa™) and in one case of olanzapine overdose. Olanzapine in frozen serum samples and in frozen extracts was stable over at least four weeks. The examinations of urine extracts from patients receiving olanzapine revealed peaks of postulated metabolites (glucuronide and N-desmethylolanzapine).  相似文献   

11.
A rapid, sensitive and specific assay method has been developed to determine plasma concentrations of olopatadine hydrochloride (A) and its metabolites, M1 (B), M2 (C) and M3 (D), using high-performance liquid chromatography with electrospray ionization tandem mass spectrometry (LC–ESI-MS–MS). Olopatadine, its metabolites, and internal standard, KF11796 (E), were separated from plasma using solid-phase extraction (Bond Elut C18 cartridge). The eluate was dried, reconstituted and injected into the LC–ESI-MS–MS system. The calibration curves showed good linearity over the ranges 1–200 ng/ml for olopatadine and M3, and 2–100 ng/ml for M1 and M2, and the method was thoroughly validated and applied to the determination of olopatadine and its metabolites in plasma collected during Phase I clinical trials. Furthermore, the assay values were compared with those determined by the radioimmunoassay method, which has been routinely used to determine olopatadine in plasma.  相似文献   

12.
A sensitive and very specific method, using liquid chromatography–electrospray mass spectrometry (LC–ES-MS), was developed for the determination of epirubicin, doxorubicin, daunorubicin, idarubicin and the respective active metabolites of the last three, namely doxorubicinol, daunorubicinol and idarubicinol in human serum, using aclarubicin as internal standard. Once thawed, 0.5-ml serum samples underwent an automated solid-phase extraction, using C18 Bond Elut cartridges (Varian) and a Zymark Rapid-Trace robot. After elution of the compounds with chloroform–2-propanol (4:1, v/v) and evaporation, the residue was reconstituted with a mixture of 5 mM ammonium formate buffer (pH 4.5)–acetonitrile (60:40, v/v). The chromatographic separation was performed using a Symmetry C18, 3.5 μm (150×1 mm I.D.) reversed-phase column, and a mixture of 5 mM ammonium formate buffer (pH 3)–acetonitrile (70:30, v/v) as mobile phase, delivered at 50 μl/min. The compounds were detected in the selected ion monitoring mode using, as quantitation ions, m/z 291 for idarubicin and idarubicinol, m/z 321 for daunorubicin and daunorubicinol, m/z 361 for epirubicin and doxorubicin, m/z 363 for doxorubicinol and m/z 812 for aclarubicin (I.S.). Extraction recovery was between 71 and 105% depending on compounds and concentration. The limit of detection was 0.5 ng/ml for daunorubicin and idarubicinol, 1 ng/ml for doxorubicin, epirubicin and idarubicin, 2 ng/ml for daunorubicinol and 2.5 ng/ml for doxorubicinol. The limit of quantitation (LOQ) was 2.5 ng/ml for doxorubicin, epirubicin and daunorubicinol, and 5 ng/ml for daunorubicin, idarubicin, doxorubicinol and idarubicinol. Linearity was verified from these LOQs up to 2000 ng/ml for the parent drugs (r≥0.992) and 200 ng/ml for the active metabolites (r≥0.985). Above LOQ, the within-day and between-day precision relative standard deviation values were all less than 15%. This assay was applied successfully to the analysis of human serum samples collected in patients administered doxorubicin or daunorubicin intravenously. This method is rapid, reliable, allows an easy sample preparation owing to the automated extraction and a high selectivity owing to MS detection.  相似文献   

13.
The determination of residues of benzimidazole using liquid chromatography and tandem mass spectrometry (LC–MS–MS) with ion spray ionization is described. Swine muscle tissue was spiked with a mixture of fifteen benzimidazoles, including metabolites of fenbendazole and albendazole. As clean-up procedure, an ethyl acetate extraction followed by solid-phase extraction on styrol-divinyl-benzene cartridge was used. The evaluation was performed by selecting the characteristic product ions for the benzimidazoles and using multiple reaction mode. 2-n-Butylmercaptobenzimidazole was used as internal standard. Blank muscle samples were fortified in the concentration range of 1–22 μg/kg. The limits of detection were below 6 μg/kg and the limits of quantification for most benzimidazoles were below 10 μg/kg. The matrix effect was checked using spiked muscle tissues of cattle and sheep as well as liver of cattle. Practical application will be shown by incurred egg material from laying hens treated with flubendazole. The recovery of the clean-up was mostly above 50% in muscle tissue and 70% in egg yolk.  相似文献   

14.
A sensitive, specific, accurate and reproducible LC–MS–MS method was developed and validated for the simultaneous quantitation of the prodrug fosinopril and its active drug fosinoprilat in human serum. The method employed acidification of the serum samples to minimize the hydrolysis of fosinopril to fosinoprilat prior to purification by solid-phase extraction to isolate the two analytes and the two internal standards from human serum. The extracted samples were analyzed by turbo ionspray LC–MS–MS in the positive ion mode. Chromatography was performed on a polymer-based C18 column (Asahipak™ ODP PVA-C18, 2×50 mm) using gradient elution with methanol and 10 mM ammonium acetate, pH 5.5. The calibration curve, 1.17 to 300 ng/ml, was fitted to a weighted (l/x) linear regression model. Serum quality control (QC) samples used to gauge the accuracy and precision of the method were prepared at concentrations of 5.00, 100, 250 and 500 ng/ml of each analyte. The inter-assay accuracies were within 6% (DEV) for both analytes. The intra- and inter-assay precisions were within 7% and 11% (RSD), respectively, for both analytes. The hydrolysis of fosinopril to fosinoprilat during sample processing was ≤6%. This degree of conversion would cause little error in the analysis of post-dose serum samples since such samples are known to contain low levels of the prodrug compared to the drug.  相似文献   

15.
We report here the development and validation of an LC–MS method for quantitation of loperamide (LOP) and its N-demethyl metabolite (DMLOP) in human plasma. O-Acetyl-loperamide (A-LOP) was synthesized by us for use as an internal standard in the assay. After addition of the internal standard, the compounds of interest were extracted with methyl tert.-butylether and separated by HPLC on a C18 reversed-phase column using an acetonitrile–water gradient containing 20 mM ammonium acetate. The three compounds were well separated by HPLC and no interfering peaks were detected at the usual concentrations found in plasma. Analytes were quantitated using positive electrospray ionization in a triple quadrupole mass spectrometer operating in the MS–MS mode. Selected reaction monitoring was used to quantify LOP (m/z 477→266), DMLOP (m/z 463→252) and A-LOP (m/z 519→266) on ions formed by loss of the 4-(p-chlorophenyl)-4-hydroxy-piperidyl group upon low energy collision-induced dissociation. Calibration curves, which were linear over the range 1.04 to 41.7 pmol/ml (LOP) and 1.55 to 41.9 pmol/ml (DMLOP), were run contemporaneously with each batch of samples, along with low (4.2 pmol/ml), medium (16.7 pmol/ml) and high (33.4 pmol/ml) quality control samples. The lower limit of quantitation (LLQ) of LOP and DMLOP was about 0.25 pmol/ml in plasma. The extraction efficiency of LOP and DMLOP from human plasma was 72.3±1.50% (range: 70.7–73.7%) and 79.4±12.8% (64.9–88.8%), respectively. The intra- and inter-assay variability of LOP and DMLOP ranged from 2.1 to 14.5% for the low, medium and high quality control samples. The method has been used successfully to study loperamide pharmacokinetics in adult humans.  相似文献   

16.
A sensitive and specific analytical method for a potent antitumor agent, TZT-1027, in plasma has been developed using liquid chromatography–mass spectrometry (LC–MS) with [2H4]TZT-1027 as an internal standard (I.S.). A plasma sample was purified by solid-phase extraction on a C18 cartridge, followed by solvent extraction with diethyl ether. The extract was then injected into the LC–MS system. Chromatography was carried out on a C18 reversed-phase column using acetonitrile–0.05% trifluoroacetic acid (TFA) (55:45) as a mobile phase. Mass spectrometric analysis was performed in atmospheric pressure chemical ionization (APCI) mode with positive ion detection, and the protonated molecular ions ([M+H]+) of TZT-1027 and I.S. were monitored to allow quantitation. The method was applied to the determination of TZT-1027 in human, monkey, dog, rat and mouse plasma. As far as the sample preparation was concerned, good recoveries (73.5–99.1%) were obtained. The calibration curves were linear over the range of 0.25–100 ng per 1 ml of human, dog and rat plasma, per 0.5 ml of monkey plasma, and per 0.1 ml of mouse plasma. From the intra- and inter-day accuracy and precision, the present method satisfies the accepted criteria for bioanalytical method validation. TZT-1027 was stable when stored below −15°C for 6 months in human plasma and for 3 weeks in plasma from other species. TZT-1027 was also stable in plasma through at least three freeze–thaw cycles.  相似文献   

17.
Zofenopril is a pro-drug designed to undergo metabolic hydrolysis yielding the active free sulfhydryl compound zofenoprilat, which is an angiotensin converting enzyme (ACE) inhibitor, endowed also with a marked cardioprotective activity. A simple, highly sensitive specific LC–MS–MS method was developed for the determination of zofenopril and zofenoprilat in human plasma. In order to prevent oxidative degradation of zofenoprilat and its internal standard, their free sulfhydryl groups were protected by treatment with N-ethylmaleimide (NEM), which produced the succinimide derivatives. The compounds and their corresponding fluorine derivatives, used as internal standards, were extracted from plasma with toluene. The reconstituted dried extracts were chromatographed and then monitored by a triple-stage-quadrupole instrument operating in the negative ion spray ionization mode. The method was validated over the concentration range of 1–300 ng/ml for zofenopril and 2–600 ng/ml for zofenoprilat. Inter- and intra-assay precision and accuracy of both zofenopril and zofenoprilat were better than 10%. The limit of quantitation was 1 ng/ml with zofenopril and 2 ng/ml with zofenoprilat. Extraction recovery proved to be on average 84.8% with zofenopril and 70.1% with zofenoprilat. Similar recoveries were shown by the above two internal standards. The method was applied to measure plasma concentrations of zofenopril and zofenoprilat in 18 healthy volunteers treated orally with zofenopril calcium salt at the dose of 60 mg.  相似文献   

18.
A solid-phase extract from Protoceratium reticulatum was partitioned between water and butanol and the two fractions purified on an alumina column. Fractionation was monitored by ELISA and LC–MS. Results indicate that while almost all yessotoxin (1) was extracted into butanol, large amounts of yessotoxin analogs remained in the aqueous extract along with lesser amounts in the butanolic extract. NMR analysis of selected fractions from reverse-phase chromatography of the extracts confirmed the presence of yessotoxin analogs, although structure determinations were not possible due to the complexity of the mixtures. Analysis of fractions with LC–MS3 and neutral-loss LC–MS/MS indicated the presence of more than 90 yessotoxin analogs, although structures for most of these have not yet been determined. These analogs provide a mechanism to rationalise the discrepancy between ELISA and LC–MS analyses of algae and shellfish.  相似文献   

19.
A coupled column liquid chromatographic (LC–LC) method for high-speed analysis of the urinary ring-opened benzene metabolite, trans,trans-muconic acid (t,t-MA) is described. Efficient on-line clean-up and concentration of t,t-MA from urine samples was obtained using a 3 μm C18 column (50×4.6 mm I.D.) as the first column (C-1) and a 5 μm C18 semi-permeable surface (SPS) column (150×4.6 mm I.D.) as the second column (C-2). The mobile phases applied consisted, respectively, of methanol–0.05% trifluoroacetic acid (TFA) in water (7:93, v/v) on C-1, and of methanol–0.05% TFA in water (8:92, v/v) on C-2. A rinsing mobile phase of methanol–0.05% TFA in water (25:75, v/v) was used for cleaning C-1 in between analysis. Under these conditions t,t-MA eluted 11 min after injection. Using relatively non-specific UV detection at 264 nm, the selectivity of the assay was enhanced remarkably by the use of LC–LC allowing detection of t,t-MA at urinary levels as low as 50 ng/ml (S/N>9). The study indicated that t,t-MA analysis can be performed by this procedure in less than 20 min requiring only pH adjustment and filtration of the sample as pretreatment. Calibration plots of standard additions of t,t-MA to blank urine over a wide concentration range (50–4000 ng/ml) showed excellent linearity (r>0.999). The method was validated using urine samples collected from rats exposed to low concentrations of benzene vapors (0.1 ppm for 6 h) and by repeating most of the analyses of real samples in the course of measurement sequences. Both the repeatability (n=6, levels 64 and 266 ng/ml) and intra-laboratory reproducibility (n=6, levels 679 and 1486 ng/ml) were below 5%.  相似文献   

20.
A rapid, simple, and sensitive liquid chromatography–atmospheric pressure chemical ionization tandem mass spectrometry (LC–APCI-MS/MS) method was developed for the identification and quantification of emodin metabolites in Raji cells, using aloe-emodin as an internal standard. Analyses were performed on an LC system employing a Cosmosil 5C18 AR-II column and a stepwise gradient elution with methanol–20 mM ammonium formate at a flow rate of 1.0 mL/min operating in the negative ion mode. As a result, the starting material emodin and its five metabolites were detected by analyzing extracts of Raji cells that had been cultivated in the presence of emodin. The identification of the metabolites and elucidation of their structures were performed by comparing their retention times and spectral patterns with those of synthetic samples. In addition to the major metabolite 8-O-methylemodin, four other metabolites were assigned as ω-hydroxyemodin, 3-O-methyl-ω-hydroxyemodin, 3-O-methylemodin (physcion), and chrysophanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号