首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interleukin-22 (IL-22) is a member of the interleukin-10 cytokine family, which is involved in anti-microbial defenses, tissue damage protection and repair, and acute phase responses. Its signaling mechanism involves the sequential binding of IL-22 to interleukin-22 receptor 1 (IL-22R1), and of this dimer to interleukin-10 receptor 2 (IL-10R2) extracellular domain. We report a 1.9A crystal structure of the IL-22/IL-22R1 complex, revealing crucial interacting residues at the IL-22/IL-22R1 interface. Functional importance of key residues was confirmed by site-directed mutagenesis and functional studies. Based on the X-ray structure of the binary complex, we discuss a molecular basis of the IL-22/IL-22R1 recognition by IL-10R2. STRUCTURED SUMMARY:  相似文献   

2.
Interleukin-22 (IL-22) plays an important role in the regulation of immune and inflammatory responses in mammals. The IL-22 binding protein (IL-22BP), a soluble receptor that specifically binds IL-22, prevents the IL-22/interleukin-22 receptor 1 (IL-22R1)/interleukin-10 receptor 2 (IL-10R2) complex assembly and blocks IL-22 biological activity. Here we present the crystal structure of the IL-22/IL-22BP complex at 2.75 Å resolution. The structure reveals IL-22BP residues critical for IL-22 binding, which were confirmed by site-directed mutagenesis and functional studies. Comparison of IL-22/IL-22BP and IL-22/IL-22R1 crystal structures shows that both receptors display an overlapping IL-22 binding surface, which is consistent with the inhibitory role played by IL-22 binding protein.

Structured summary

MINT-7010533: IL-22 BP (uniprotkb:Q969J5) and IL-22 (uniprotkb:Q9GZX6) bind (MI:0407) by X-ray crystallography (MI:0114)  相似文献   

3.
Interleukin-10 (IL-10)-related T cell-derived inducible factor (IL-TIF; provisionally designated IL-22) is a cytokine with limited homology to IL-10. We report here the identification of a functional IL-TIF receptor complex that consists of two receptor chains, the orphan CRF2-9 and IL-10R2, the second chain of the IL-10 receptor complex. Expression of the CRF2-9 chain in monkey COS cells renders them sensitive to IL-TIF. However, in hamster cells both chains, CRF2-9 and IL-10R2, must be expressed to assemble the functional IL-TIF receptor complex. The CRF2-9 chain (or the IL-TIF-R1 chain) is responsible for Stat recruitment. Substitution of the CRF2-9 intracellular domain with the IFN-gammaR1 intracellular domain changes the pattern of IL-TIF-induced Stat activation. The CRF2-9 gene is expressed in normal liver and kidney, suggesting a possible role for IL-TIF in regulating gene expression in these tissues. Each chain, CRF2-9 and IL-10R2, is capable of binding IL-TIF independently and can be cross-linked to the radiolabeled IL-TIF. However, binding of IL-TIF to the receptor complex is greater than binding to either receptor chain alone. Sharing of the common IL-10R2 chain between the IL-10 and IL-TIF receptor complexes is the first such case for receptor complexes with chains belonging to the class II cytokine receptor family, establishing a novel paradigm for IL-10-related ligands similar to the shared use of the gamma common chain (gamma(c)) by several cytokines, including IL-2, IL-4, IL-7, IL-9, and IL-15.  相似文献   

4.
Interleukin-10 receptor 2 (IL-10R2) is a critical component of the IL-10.IL-10R1.IL-10R2 complex which regulates IL-10-mediated immunomodulatory responses. The ternary IL-10 signaling complex is assembled in a sequential order with the IL-10.IL-10R1 interaction occurring first followed by engagement of the IL-10R2 chain. In this study we map the IL-10R2 binding site on IL-10 using surface plasmon resonance and cell-based assays. Critical IL-10R2 binding residues are located in helix A adjacent to the previously identified IL-10R1 recognition surface. Interestingly, IL-10R2 binding residues located in the N-terminal end of helix A exhibit large structural differences between unbound cIL-10 and cIL-10.IL-10R1 crystal structures. This suggests IL-10R1-induced conformational changes regulate IL-10R2 binding and assembly of the ternary IL-10.IL-10R1.IL-10R2 complex. The basic mechanistic features of the assembly process are likely shared by six additional class-2 cytokines (viral IL-10s, IL-22, IL-26, IL-28A, IL28B, and IL-29) to promote IL-10R2 binding to six additional receptor complexes. These studies highlight the importance of structure in regulating low affinity protein-protein interactions and IL-10 signal transduction.  相似文献   

5.
The class II cytokine receptor family includes the receptors for IFN-alphabeta, IFN-gamma, IL-10, and IL-10-related T cell-derived inducible factor/IL-22. By screening genomic DNA databases, we identified a gene encoding a protein of 231 aa, showing 33 and 34% amino acid identity with the extracellular domains of the IL-22 receptor and of the IL-20R/cytokine receptor family 2-8, respectively, but lacking the transmembrane and cytoplasmic domains. A lower but significant sequence identity was found with other members of this family such as the IL-10R (29%), cytokine receptor family 2-4/IL-10Rbeta (30%), tissue factor (26%), and the four IFN receptor chains (23-25%). This gene is located on chromosome 6q24, at 35 kb from the IFNGR1 gene, and is expressed in various tissues with maximal expression in breast, lungs, and colon. The recombinant protein was found to bind IL-10-related T cell-derived inducible factor/IL-22, and to inhibit the activity of this cytokine on hepatocytes and intestinal epithelial cells. We propose to name this natural cytokine antagonist IL-22BP for IL-22 binding protein.  相似文献   

6.
Human IL-10 (hIL-10) is a cytokine that modulates diverse immune responses. The Epstein-Barr virus (EBV) genome contains an IL-10 homolog (vIL-10) that shares high sequence and structural similarity with hIL-10. Although vIL-10 suppresses inflammatory responses like hIL-10, it cannot activate many other immunostimulatory functions performed by the cellular cytokine. These functional differences have been correlated with the approximately 1000-fold lower affinity of vIL-10, compared to hIL-10, for the IL-10R1 receptor chain. To define the structural basis for these observations, crystal structures of vIL-10 and a vIL-10 point mutant were determined bound to the soluble IL-10R1 receptor fragment (sIL-10R1) at 2.8 and 2.7 A resolution, respectively. The structures reveal that subtle changes in the conformation and dynamics of the vIL-10 AB and CD loops and an orientation change of vIL-10 on sIL-10R1 are the main factors responsible for vIL-10's reduced affinity for sIL-10R1 and its distinct biological profile.  相似文献   

7.
With the use of a partial sequence of the human genome, we identified a gene encoding a novel soluble receptor belonging to the class II cytokine receptor family. This gene is positioned on chromosome 6 in the vicinity of the IFNGR1 gene in a head-to-tail orientation. The gene consists of six exons and encodes a 231-aa protein with a 21-aa leader sequence. The secreted mature protein demonstrates 34% amino acid identity to the extracellular domain of the IL-22R1 chain. Cross-linking experiments demonstrate that the protein binds IL-22 and prevents binding of IL-22 to the functional cell surface IL-22R complex, which consists of two subunits, the IL-22R1 and the IL-10R2c chains. Moreover, this soluble receptor, designated IL-22-binding protein (BP), is capable of neutralizing IL-22 activity. In the presence of the IL-22BP, IL-22 is unable to induce Stat activation in IL-22-responsive human lung carcinoma A549 cells. IL-22BP also blocked induction of the suppressors of cytokine signaling-3 (SOCS-3) gene expression by IL-22 in HepG2 cells. To further evaluate IL-22BP action, we used hamster cells expressing a modified IL-22R complex consisting of the intact IL-10R2c and the chimeric IL-22R1/gammaR1 receptor in which the IL-22R1 intracellular domain was replaced with the IFN-gammaR1 intracellular domain. In these cells, IL-22 activates biological activities specific for IFN-gamma, such as up-regulation of MHC class I Ag expression. The addition of IL-22BP neutralizes the ability of IL-22 to induce Stat activation and MHC class I Ag expression in these cells. Thus, the soluble receptor designated IL-22BP inhibits IL-22 activity by binding IL-22 and blocking its interaction with the cell surface IL-22R complex.  相似文献   

8.

Background  

Interleukin-10 (IL-10) is a cytokine whose main biological function is to suppress the immune response by induction of a signal(s) leading to inhibition of synthesis of a number of cytokines and their cellular receptors. Signal transduction is initiated upon formation of a ternary complex of IL-10 with two of its receptor chains, IL-10R1 and IL-10R2, expressed on the cell membrane. The affinity of IL-10R1 toward IL-10 is very high, which allowed determination of the crystal structure of IL-10 complexed with the extracellular/soluble domain of IL-10R1, while the affinity of IL-10R2 toward either IL-10 or IL-10/sIL-10R1 complex is quite low. This so far has prevented any attempts to obtain structural information about the ternary complex of IL-10 with its receptor chains.  相似文献   

9.
Interleukin-10 (IL-10) family of cytokines includes a number of its viral homologs and eight cellular cytokines (IL-19, IL-20, IL-22, IL-24, IL-26, IL-28A, IL-28B, and IL-29). The latter three proteins are also known as IFN-λ2, IFN-λ3, and IFN-λ1, and are recognized as type III (or λ) interferons. Most of the cellular homologs of IL-10 are monomeric in solution, whereas IL-10 and its viral homologs are intercalated dimers consisting of two helical bundle domains topologically similar to the monomeric members of the family. A classical four-helix bundle, a signature element of all helical cytokines, is always found as part of the domain of each member of the IL-10 family. The only crystal structures of these cytokine receptors that have been determined to date are for their extracellular domains (ECDs). Each ECD consists of two β-sandwich domains connected in the middle by a linkage. Signal transduction occurs when a cytokine binds to its two appropriate receptor chains. IL-10 and its viral homologs use the same IL-10 receptor system, whereas the cellular homologs of IL-10 use their own receptors, which in some cases may overlap and be used in different pairwise combinations. The known structures of binary complexes allowed for marking of the receptor binding site, which always includes helix A, loop AB and helix F (IL-10 notations) on the side of a ligand, loops of the N-terminal and C-terminal domains directed toward the ligand, and the interdomain linkage of the ECD. An analysis of the published structures of both the binary and ternary complexes of all helical cytokines allowed for the generation of a model of the signaling complex of IL-10. The receptor binding site I of the high affinity receptor IL-10R1 is exactly the same as in the crystal structure of the binary IL-10/sIL-10R1 complex, whereas the receptor binding site II is located on the surface of the first and the third helices of the four-helix bundle. The receptor/receptor interface, or site III, is formed between the C-terminal domains of IL-10R1 and IL-10R2.  相似文献   

10.
Interleukin-22 (IL-22) is a class 2 cytokine whose primary structure is similar to that of interleukin 10 (IL-10) and interferon-γ (IFN-γ). IL-22 induction during acute phase immune response indicates its involvement in mechanisms of inflammation. Structurally different from IL-10 and a number of other members of IL-10 family, which form intertwined inseparable V-shaped dimers of two identical polypeptide chains, a single polypeptide chain of IL-22 folds on itself in a relatively globular structure. Here we present evidence, based on native gel electrophoresis, glutaraldehyde cross-linking, dynamic light scattering, and small angle x-ray scattering experiments, that human IL-22 forms dimers and tetramers in solution under protein concentrations assessable by these experiments. Unexpectedly, low-resolution molecular shape of IL-22 dimers is strikingly similar to that of IL-10 and other intertwined cytokine dimeric forms. Furthermore, we determine an ab initio molecular shape of the IL-22/IL-22R1 complex which reveals the V-shaped IL-22 dimer interacting with two cognate IL-22R1 molecules. Based on this collective evidence, we argue that dimerization might be a common mechanism of all class 2 cytokines for the molecular recognition with their respective membrane receptor. We also speculate that the IL-22 tetramer formation could represent a way to store the cytokine in nonactive form at high concentrations that could be readily converted into functionally active monomers and dimers upon interaction with the cognate cellular receptors.  相似文献   

11.
IL-22 is produced by activated T cells and signals through a receptor complex consisting of IL-22R1 and IL-10R2. The aim of this study was to analyze IL-22 receptor expression, signal transduction, and specific biological functions of this cytokine system in intestinal epithelial cells (IEC). Expression studies were performed by RT-PCR. Signal transduction was analyzed by Western blot experiments, cell proliferation by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay and Fas-induced apoptosis by flow cytometry. IEC migration was studied in wounding assays. The IEC lines Caco-2, DLD-1, SW480, HCT116, and HT-29 express both IL-22 receptor subunits IL-22R1 and IL-10R2. Stimulation with TNF-alpha, IL-1beta, and LPS significantly upregulated IL-22R1 without affecting IL-10R2 mRNA expression. IL-22 binding to its receptor complex activates STAT1/3, Akt, ERK1/2, and SAPK/JNK MAP kinases. IL-22 significantly increased cell proliferation (P = 0.002) and phosphatidylinsitol 3-kinase-dependent IEC cell migration (P < 0.00001) as well as mRNA expression of TNF-alpha, IL-8, and human beta-defensin-2. IL-22 had no effect on Fas-induced apoptosis. IL-22 mRNA expression was increased in inflamed colonic lesions of patients with Crohn's disease and correlated highly with the IL-8 expression in these lesions (r = 0.840). Moreover, IL-22 expression was increased in murine dextran sulfate sodium-induced colitis. IEC express functional receptors for IL-22, which increases the expression of proinflammatory cytokines and promotes the innate immune response by increased defensin expression. Moreover, our data indicate intestinal barrier functions for this cytokine-promoting IEC migration, which suggests an important function in intestinal inflammation and wound healing. IL-22 is increased in active Crohn's disease and promotes proinflammatory gene expression and IEC migration.  相似文献   

12.
Interleukin-22 (IL-22) is a member of the IL-10 cytokine family that binds to a heterodimeric receptor consisting of IL-22 receptor 1 (IL-22R1) and IL-10R2. IL-22R expression was initially characterized on epithelial cells, and plays an essential role in a number of inflammatory diseases. Recently, a functional receptor was detected on cancer cells such as hepatocarcinoma and lung carcinoma, but its presence was not reported in glioblastoma (GBM). Two GBM cell lines and 10 primary cell lines established from patients undergoing surgery for malignant GBM were used to investigate the expression of IL-22 and IL-22R by using quantitative RT-PCR, western blotting and confocal microscopy studies. The role of IL-22 in proliferation and survival of GBM cell lines was investigated in vitro by BrdU and ELISA cell death assays. We report herein that the two subunits of the IL-22R complex are expressed on human GBM cells. Their activation, depending on exogenous IL-22, induced antiapoptotic effect and cell proliferation. IL-22 treatment of GBM cells resulted in increased levels of phosphorylated Akt, STAT3 signaling protein and its downstream antiapoptotic protein Bcl-xL and decreased level of phosphorylated ERK1/2. In addition, IL-22R subunits were expressed in all the 10 tested primary cell lines established from GBM tumors. Our results showed that IL-22R is expressed on GBM established and primary cell lines. Depending on STAT3, ERK1/2 and PI3K/Akt pathways, IL-22 induced GBM cell survival. These data are consistent with a potential role of IL-22R in tumorigenesis of GBM. Since endogenous IL-22 was not detected in all studied GBM cells, we hypothesize that IL-22R could be activated by immune microenvironmental IL-22 producing cells.  相似文献   

13.
The soluble IL-6 receptor (sIL-6R) can increase IL-6-induced signalling by forming a complex with IL-6 and membrane-bound gp130 (the receptor beta chain which transduces signals). The conditions affecting this response to sIL-6R were studied using fibrinogen release from HepG2 hepatocytes. Exogenous sIL-6R had no effect alone or in the presence of a submaximal concentration of IL-6, but increased responses to supramaximal IL-6 concentrations in a concentration-related manner. Dexamethasone increased the expression of the membrane IL-6R and endogenous sIL6R release, and increased responses to supramaximal but not submaximal IL-6 concentrations. The amount of endogenous sIL-6R released is relatively small and is unlikely to influence the effects of the exogenous sIL-6R. The observed concentration-related decrease in sIL-6R production in the presence of IL-6 may indicate internalization of ligand/receptor complexes. This would significantly decrease the amount of IL-6R (soluble or membrane) available for signalling and limit continued functional response later in the cultures. These data indicate that the major factor influencing responses to exogenous sIL-6R is an excess of IL-6 which is necessary to form complexes with the sIL-6R, which can then interact with gp130 to increase signalling.  相似文献   

14.
Cytokines are key mediators for the regulation of hemopoiesis and the coordination of immune responses. They exert their various functions through activation of specific cell surface receptors, thereby initiating intracellular signal transduction cascades which lead to defined cellular responses. As the common signal-transducing receptor subunit of at least seven different cytokines, gp130 is an important member of the family of hemopoietic cytokine receptors which are characterized by the presence of at least one cytokine-binding module. Mutants of gp130 that either lack the Ig-like domain D1 (DeltaD1) or contain a distinct mutation (F191E) within the cytokine-binding module have been shown to be severely impaired with respect to IL-6 induced signal transduction. After cotransfection of COS-7 cells with a combination of both inactive gp130 mutants, signal transduction in response to IL-6 is restored. Whereas cells transfected with DeltaD1 do not bind IL-6/sIL-6R complexes, cells transfected with the F191E mutant bind IL-6/sIL-6R with low affinity. Combination of DeltaD1 and F191E, however, leads to high-affinity ligand binding. These data suggest that two different gp130 epitopes, one on each receptor chain, sequentially cooperate in asymmetrical binding of IL-6/IL-6R in a tetrameric signaling complex. On the basis of our data, a model for the mechanism of IL-6-induced gp130 activation is proposed.  相似文献   

15.
Interleukin-22 (IL-22) is an IL-10 family cytokine produced by T cells and innate lymphoid cells. The IL-22 signaling pathway orchestrates mucosal immune defense and tissue regeneration through pleiotropic effects including pro-survival signaling, cell migration, dysplasia and angiogenesis. While these functions can prevent initial establishment of tumors, they can also be hijacked by aggressive cancers to enhance tumor growth and metastasis. Thus, the role of the IL-22/IL-22R1 axis in cancer is complex and context-specific. Evidence of IL-22 involvement manifests as dysregulation of IL-22 expression and signaling in patients with many common cancers including those of the gut, skin, lung and liver. Unlike other cancer-associated cytokines, IL-22 has restricted tissue specificity as its unique receptor IL-22R1 is exclusively expressed on epithelial and tissue cells, but not immune cells. This makes it an attractive target for therapy as there is potential achieve anti-tumor immunity with fewer side effects. This review summarizes current findings on functions of IL-22 in association with general mechanisms for tumorigenesis as well as specific contributions to particular cancers, and ponders how best to approach further research in the field.  相似文献   

16.
IL-10-related cytokines include IL-20 and IL-22, which induce, respectively, keratinocyte proliferation and acute phase production by hepatocytes, as well as IL-19, melanoma differentiation-associated gene 7, and AK155, three cytokines for which no activity nor receptor complex has been described thus far. Here, we show that mda-7 and IL-19 bind to the previously described IL-20R complex, composed by cytokine receptor family 2-8/IL-20Ralpha and DIRS1/IL-20Rbeta (type I IL-20R). In addition, mda-7 and IL-20, but not IL-19, bind to another receptor complex, composed by IL-22R and DIRS1/IL20Rbeta (type II IL-20R). In both cases, binding of the ligands results in STAT3 phosphorylation and activation of a minimal promoter including STAT-binding sites. Taken together, these results demonstrate that: 1) IL-20 induces STAT activation through IL-20R complexes of two types; 2) mda-7 and IL-20 redundantly signal through both complexes; and 3) IL-19 signals only through the type I IL-20R complex.  相似文献   

17.
Accumulating evidence suggests that in serum and other biological fluids, cytokine binding is a property associated with soluble proteins, including a high-affinity soluble version of the IL-4 receptor (sIL-4R). While it is tempting to speculate that sIL-4R might act as a serum carrier protein or serve to inhibit or modulate IL-4 action, specific biological roles for sIL-4R remain to be established. To further assess the immunoregulatory and therapeutic potential of sIL-4R and other soluble receptors, we have created transgenic mice which constitutively express elevated levels of biologically active sIL-4R. Phenotypic characterization of lymphoid organs in sIL-4R transgenic mice revealed normal numbers of B and T cells and normal surface marker expression. Splenic lymphocytes displayed normal in vitro activities as measured by the PFC response and generation of cytotoxic T cells. In addition, antigen-specific IgE and IgG1 in vivo responses were similar in control and transgenic mice. Despite the apparent developmental normality of the sIL-4R transgenic mice, these animals were markedly deficient in the ability to reject cardiac allografts, suggesting that IL-4 is critical for the generation of alloreactivity. The results further suggest that the ability of sIL-4R to regulate IL-4 activities may be under the control of complex interactions that remain to be elucidated.  相似文献   

18.
IL-15 and IL-2 are two structurally and functionally related cytokines whose high affinity receptors share the IL-2R beta-chain and gamma-chain in association with IL-15R alpha-chain (IL-15R alpha) or IL-2R alpha-chain, respectively. Whereas IL-2 action seems restricted to the adaptative T cells, IL-15 appears to be crucial for the function of the innate immune responses, and the pleiotropic expression of IL-15 and IL-15R alpha hints at a much broader role for the IL-15 system in multiple cell types and tissues. In this report, using a highly sensitive radioimmunoassay, we show the existence of a soluble form of human IL-15R alpha (sIL-15R alpha) that arises from proteolytic shedding of the membrane-anchored receptor. This soluble receptor is spontaneously released from IL-15R alpha-expressing human cell lines as well as from IL-15R alpha transfected COS-7 cells. This release is strongly induced by PMA and ionomycin, and to a lesser extent by IL-1 beta and TNF-alpha. The size of sIL-15R alpha (42 kDa), together with the analysis of deletion mutants in the ectodomain of IL-15R alpha, indicates the existence of cleavage sites that are proximal to the plasma membrane. Whereas shedding induced by PMA was abrogated by the synthetic matrix metalloproteinases inhibitor GM6001, the spontaneous shedding was not, indicating the occurrence of at least two distinct proteolytic mechanisms. The sIL-15R alpha displayed high affinity for IL-15 and behaved as a potent and specific inhibitor of IL-15 binding to the membrane receptor, and of IL-15-induced cell proliferation (IC(50) in the range from 3 to 20 pM). These results suggest that IL-15R alpha shedding may play important immunoregulatory functions.  相似文献   

19.
IL-22 is a class 2 alpha-helical cytokine involved in the generation of inflammatory responses. These activities require IL-22 to engage the cell surface receptors IL-22R1 and the low-affinity signaling molecule IL-10R2. IL-10R2 also interacts with five other class 2 cytokines: IL-10, IL-26, and the interferon-like cytokines IL-28A, IL-28B, and IL-29. Here, we define the IL-10R2 binding site on IL-22 using surface plasmon resonance (SPR) and site-directed mutagenesis. Surprisingly, the binding hot spot on IL-22 includes asparagine 54 (N54), which is post-translationally modified by N-linked glycosylation. Further characterization of the glycosylation reveals that only a single fucosylated N-acetyl glucosamine on N54 is required for maximal IL-10R2 binding. Biological responses of IL-22 mutants measured in cell-based luciferase assays correlate with the in vitro SPR studies. Together, these data suggest that IL-22 activity may be modulated via changes in the glycosylation state of the ligand during inflammation.  相似文献   

20.
We used fluorescence resonance energy transfer previously to show that the interferon-gamma (IFN-gamma) receptor complex is a preformed entity mediated by constitutive interactions between the IFN-gammaR2 and IFN-gammaR1 chains, and that this preassembled entity changes its structure after the treatment of cells with IFN-gamma. We applied this technique to determine the structure of the interleukin-10 (IL-10) receptor complex and whether it undergoes a similar conformational change after treatment of cells with IL-10. We report that, like the IFN-gamma receptor complex, the IL-10 receptor complex is preassembled: constitutive but weaker interactions occur between the IL-10R1 and IL-10R2 chains, and between two IL-10R2 chains. The IL-10 receptor complex undergoes no major conformational changes when cells are treated with cellular or Epstein-Barr viral IL-10. Receptor complex preassembly may be an inherent feature of Class 2 cytokine receptor complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号