首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of the parameters of ozone decontamination method assuring the least possible losses of biologically active substances (essential oils and polyphenols) and their activity in common juniper (Juniperus communis (L.)) berries was studied. Ozone treatment in dynamic bed was conducted 9 times. The process was conducted under different ozone concentrations (100.0; 130.0; 160.0 g O3/m3) and times (30, 60, 90 min). After each decontamination, the microbiological profile of the juniper berries was studied, and the contaminating microflora was identified. Next to the microbiological profile, the phenolic profile, as well as antioxidant activity of extracts and essential oils were determined. The total polyphenol content (TPC), composition of essential oils, free radical-scavenging capacity, total antioxidant capacity, ferric-reducing antioxidant power (FRAP), beta-carotene bleaching test (BCB) and LC-MS polyphenol analysis were carried out. The study reveals that during short ozone contact times, higher amounts of TPC, 15.47 and 12.91 mg CE/g of extract, for samples 100/30 and 130/30, respectively, were demonstrated. Whereas samples 100/60, 130/60, 100/90, and 160/90 exhibited the lowest amount of phenolics. The highest antioxidant activity was found in the methanol extract obtained from ozonated berries which exhibited the lowest IC50 in all the antioxidant assays, such as DPPH, FRAP, and BCB assays. Ozone treatment showed noteworthy potential and its usage in food manufacturing and as an alternative decontamination method should be considered.  相似文献   

2.

Background

Ozone, a pollutant known to induce airway hyper-responsiveness (AHR), increases morbidity and mortality in patients with obstructive airway diseases and asthma. We postulate oxidized lipids mediate in vivo ozone-induced AHR in murine airways.

Methodology/Principal Findings

Male BALB/c mice were exposed to ozone (3 or 6 ppm) or filtered air (controls) for 2 h. Precision cut lung slices (PCLS; 250 µm thickness) containing an intrapulmonary airway (∼0.01 mm2 lumen area) were prepared immediately after exposure or 16 h later. After 24 h, airways were contracted to carbachol (CCh). Log EC50 and Emax values were then calculated by measuring the airway lumen area with respect to baseline. In parallel studies, dexamethasone (2.5 mg/kg), or 1-aminobenzotriazol (ABT) (50 mg/kg) were given intraperitoneal injection to naïve mice 18 h prior to ozone exposure. Indomethacin (10 mg/kg) was administered 2 h prior. Cell counts, cytokine levels and liquid chromatography-mass spectrometry (LC-MS) for lipid analysis were assessed in bronchoalveolar lavage (BAL) fluid from ozone exposed and control mice. Ozone acutely induced AHR to CCh. Dexamethasone or indomethacin had little effect on the ozone-induced AHR; while, ABT, a cytochrome P450 inhibitor, markedly attenuated airway sensitivity. BAL fluid from ozone exposed animals, which did not contain an increase in neutrophils or interleukin (IL)-6 levels, increased airway sensitivity following in vitro incubation with a naïve PCLS. In parallel, significant increases in oxidized lipids were also identified using LC-MS with increases of 20-HETE that were decreased following ABT treatment.

Conclusions/Significance

These data show that ozone acutely induces AHR to CCh independent of inflammation and is insensitive to steroid treatment or cyclooxygenase (COX) inhibition. BAL fluid from ozone exposed mice mimicked the effects of in vivo ozone exposure that were associated with marked increases in oxidized lipids. 20-HETE plays a pivotal role in mediating acute ozone-induced AHR.  相似文献   

3.
AIMS: To clarify the inhibitory effects of ozone on Chlamydia trachomatis and C. pneumoniae. METHODS AND RESULTS: Cell culture was performed using HeLa229 cells for C. trachomatis, and Human Line cells for C. pneumoniae. C. trachomatis strain D/UW-3/Cx and C. pneumoniae strain AR-39 were used. Ozone water was generated by an ozone water dispenser and diluted to desired concentration just before each experiment. Preinoculation minimum cidal concentration (MCC) and postinoculation MCC methods were employed. In preinoculation MCC, chlamydial strains were treated with serially diluted ozone water followed by inoculation to cells. In postinoculation method, chlamydial strains were inoculated to cells and incubated for 24 h. Then infected cells were treated with ozone water, followed by additional incubation for 48 h. Complete inactivation was obtained in preinoculation MCC method at 0.5 ppm of ozone water for 30 s, or 4 ppm for 5 s. CONCLUSION: Ozone at a concentration of 4 ppm was enough for immediate inactivation of both C. trachomatis and C. pneumoniae. SIGNIFICANCE AND IMPACT OF THE STUDY: Ozone water at 4 ppm should be applicable for prevention of C. trachomatis urogenital infections.  相似文献   

4.
Misfolded prions (PrP(Sc)) are well known for their resistance to conventional decontamination processes. The potential risk of contamination of the water environment, as a result of disposal of specified risk materials (SRM), has raised public concerns. Ozone is commonly utilized in the water industry for inactivation of microbial contaminants and was tested in this study for its ability to inactivate prions (263K hamster scrapie = PrP(Sc)). Treatment variables included initial ozone dose (7.6 to 25.7 mg/liter), contact time (5 s and 5 min), temperature (4°C and 20°C), and pH (pH 4.4, 6.0, and 8.0). Exposure of dilute suspensions of the infected 263K hamster brain homogenates (IBH) (0.01%) to ozone resulted in the in vitro destruction of the templating properties of PrP(Sc), as measured by the protein misfolding cyclic amplification (PMCA) assay. The highest levels of prion inactivation (≥4 log(10)) were observed with ozone doses of 13.0 mg/liter, at pH 4.4 and 20°C, resulting in a CT (the product of residual ozone concentration and contact time) value as low as 0.59 mg · liter(-1) min. A comparison of ozone CT requirements among various pathogens suggests that prions are more susceptible to ozone degradation than some model bacteria and protozoa and that ozone treatment may be an effective solution for inactivating prions in water and wastewater.  相似文献   

5.
Ozone is a powerful oxidant capable of killing insects and microorganisms, and eliminating odors, taste, and color. Thus, it could be useful as a fumigant to decontaminate honey comb between uses. The experiments here are intended to determine the exposure levels required to kill an insect pest and spore forming bee pathogens. Ozone was effective against greater wax moth, Galleria mellonella (L.) (Lepidoptera: Pyralidae), even on naturally infested comb. Neonates and adults were the easiest life stages to kill, requiring only a few hours of exposure, whereas eggs required a 48-h exposure (at 460-920 mg O3/m3). Two honey bee, Apis mellifera L. (Hymenoptera: Apidae), pathogens, Ascosphaera apis (a fungus that causes chalkbrood) and Paenibacillus larvae (a bacterium that causes American foulbrood), also were killed with ozone. These pathogens required much higher concentrations (3200 and 8560 mg O3/m3, respectively) and longer exposure periods (3 d) than needed to control the insects. P. larvae was effectively sterilized only when these conditions were combined with high temperature (50 degrees C) and humidity (> or =75% RH). Thus, ozone shows potential as a fumigant for bee nesting materials, but further research is needed to evaluate its acceptability and efficacy in the field. The need for a reliable method to decontaminate honey bee nesting materials as part of an overall bee health management system is discussed.  相似文献   

6.
Ozone, in a liquid-phase application, was evaluated as a residue-free viral inactivant that may be suitable for use in an arboviral research laboratory. Commonly used sterilizing agents may leave trace residues, be flammable or explosive, and require lengthy periods for gases or residues to dissipate after decontamination of equipment such as biological safety cabinets. Complete liquid-phase inactivation of Venezuelan equine encephalomyelitis virus was attained at 0.025 mg of ozone per liter within 45 min of exposure. The inactivation of 10(6.5) median cell culture infective doses (CCID50 of Venezuelan equine encephalomyelitis virus per milliliter represented a reduction of 99.99997% of the viral particles from the control levels of 10(7.25-7.5) CCID50/ml. A dose-response relationship was demonstrated. Analysis by polynomial regression of the logarithmic values for both ozone concentrations and percent reduction of viral titers had a highly significant r2 of 0.8 (F = 63.6; df = 1, 16). These results, together with those of Akey (J. Econ. Entomol. 75:387-392, 1982) on the use of ozone to kill a winged arboviral vector, indicate that ozone is a promising candidate as a sterilizing agent in some applications for biological safety cabinets and other equipment used in vector studies with arboviruses.  相似文献   

7.
Ozone is a commonly encountered environmental oxidant which has been linked to asthma exacerbation in epidemiological studies. Ozone induces airway inflammation and enhances response to inhaled allergen. It has been suggested that antioxidant therapy may minimize the adverse effects of ozone in asthma. We have previously shown that the antioxidant gamma-tocopherol (gammaT), an isoform of vitamin E, also has anti-inflammatory effects. We employed a Brown Norway rat model of ozone-enhanced allergic responses to test the therapeutic effects of gammaT on O(3)-induced airway inflammation. Ovalbumin (OVA)-sensitized rats were intranasally challenged with 0 or 0.5% OVA on Days 1 and 2, and exposed to 0 or 1 ppm ozone (8 h/day) on Days 4 and 5. Rats were also given 0 or 100 mg/kg gammaT on Days 2 through 5. Pulmonary tissue and bronchoalveolar lavage fluid (BALF) were collected on Day 6. OVA challenge caused increased total cells (267% increase) and eosinophils (4000%) in BALF that was unaffected by ozone exposure. Morphometric evaluation of lung tissue revealed increases in intraepithelial mucosubstances (IM) (300%) and subepithelial eosinophils (400%) in main axial airways. Ozone exposure of allergic rats enhanced IM increases in proximal axial airways (200%), induced cys-leukotrienes, MCP-1, and IL-6 production in BALF, and upregulated expression of IL-5 and IL-13 mRNA. gammaT treatment had no effect on IM increases by allergen, but blocked enhancement by ozone. gammaT attenuated both OVA- or ozone-stimulated eosinophilic infiltration, and increases of BALF cys-leukotrienes, MCP-1, and IL-6, as well as IL-5 and IL-13 mRNA. These data demonstrate broad anti-inflammatory effects of a gammaT and suggest that it may be an effective therapy of allergic airway inflammation.  相似文献   

8.
Type 1 coliphage dried onto a glass surface was used as an indicator to monitor decontamination of biological safety cabinets. When desiccated virus was treated with formaldehyde vapor (5,000 or 10,000 ppm) adjusted to 70 to 90% relative humidity immediately before testing, viral inactivation was slow for the first 50 min but then accelerated, being complete in the next 10 min. However, when virus was incubated in an atmosphere containing 70% humidity for 1 h before formaldehyde was added, inactivation was complete within 3 min, indicating that careful attention must be paid to relative humidity in decontamination of safety cabinets.  相似文献   

9.

Background

Ozone concentrations are predicted to increase over the next 50 years due to global warming and the increased release of precursor chemicals. It is therefore urgent that good, reliable biomarkers are available to quantify the toxicity of this pollutant gas at the population level. Such a biomarker would need to be easily performed, reproducible, economically viable, and reflective of ongoing pathological processes occurring within the lung.

Methodology

We examined whether blood neutrophilia occurred following a controlled ozone challenge and addressed whether this could serve as a biomarker for ozone-induced airway inflammation. Three separate groups of healthy subjects were exposed to ozone (0.2 ppm, 2h) and filtered air (FA) on two separate occasions. Peripheral blood samples were collected and bronchoscopy with biopsy sampling and lavages was performed at 1.5h post exposures in group 1 (n=13), at 6h in group 2 (n=15) and at 18h in group 3 (n=15). Total and differential cell counts were assessed in blood, bronchial tissue and airway lavages.

Results

In peripheral blood, we observed fewer neutrophils 1.5h after ozone compared with the parallel air exposure (-1.1±1.0x109 cells/L, p<0.01), at 6h neutrophil numbers were increased compared to FA (+1.2±1.3x109 cells/L, p<0.01), and at 18h this response had fully attenuated. Ozone induced a peak in neutrophil numbers at 6h post exposure in all compartments examined, with a positive correlation between the response in blood and bronchial biopsies.

Conclusions

These data demonstrate a systemic neutrophilia in healthy subjects following an acute ozone exposure, which mirrors the inflammatory response in the lung mucosa and lumen. This relationship suggests that blood neutrophilia could be used as a relatively simple functional biomarker for the effect of ozone on the lung.  相似文献   

10.
Ozone oxidative preconditioning is a prophylactic approach, which favors the antioxidant-prooxidant balance for preservation of cell redox state by the increase of antioxidant endogenous systems in both in vivo and in vitro experimental models. Our aim is to analyze the effect of ozone oxidative preconditioning on serum TNF-alpha levels and as a modulator of oxidative stress on hepatic tissue in entodoxic shock model (mice treated with lipopolysaccharide (LPS)). Ozone/oxygen gaseous mixture which was administered intraperitoneally (0.2, 0.4, and 1.2 mg/kg) once daily for five days before LPS (0.1 mg/kg, intraperitoneal). TNF-alpha was measured by cytotoxicity on L-929 cells. Biochemical parameters such as thiobarbituric acid reactive substances (TBARS), enzymatic activity of catalase, glutathione peroxidase, and glutathione-S transferase were measured in hepatic tissue. One hour after LPS injection there was a significant increase in TNF-alpha levels in mouse serum. Ozone/oxygen gaseous mixture reduced serum TNF-alpha levels in a dose-dependent manner. Statistically significant decreases in TNF-alpha levels after LPS injection were observed in mice pretreated with ozone intraperitoneal applications at 0.2 (78%), 0.4 (98%), and 1.2 (99%). Also a significant increase in TBARS content was observed in the hepatic tissue of LPS-treated mice, whereas enzymatic activity of glutathion-S transferase and glutathione peroxidase was decreased. However in ozone-treated animals a significant decrease in TBARS content was appreciated as well as an increase in the activity of antioxidant enzymes. These results indicate that ozone oxidative preconditioning exerts inhibitory effects on TNF-alpha production and on the other hand it exerts influence on the antioxidant-prooxidant balance for preservation of cell redox state by the increase of endogenous antioxidant systems.  相似文献   

11.
Purified Cryptosporidium parvum oocysts were exposed to ozone, chlorine dioxide, chlorine, and monochloramine. Excystation and mouse infectivity were comparatively evaluated to assess oocyst viability. Ozone and chlorine dioxide more effectively inactivated oocysts than chlorine and monochloramine did. Greater than 90% inactivation as measured by infectivity was achieved by treating oocysts with 1 ppm of ozone (1 mg/liter) for 5 min. Exposure to 1.3 ppm of chlorine dioxide yielded 90% inactivation after 1 h, while 80 ppm of chlorine and 80 ppm of monochloramine required approximately 90 min for 90% inactivation. The data indicate that C. parvum oocysts are 30 times more resistant to ozone and 14 times more resistant to chlorine dioxide than Giardia cysts exposed to these disinfectants under the same conditions. With the possible exception of ozone, the use of disinfectants alone should not be expected to inactivate C. parvum oocysts in drinking water.  相似文献   

12.
Purified Cryptosporidium parvum oocysts were exposed to ozone, chlorine dioxide, chlorine, and monochloramine. Excystation and mouse infectivity were comparatively evaluated to assess oocyst viability. Ozone and chlorine dioxide more effectively inactivated oocysts than chlorine and monochloramine did. Greater than 90% inactivation as measured by infectivity was achieved by treating oocysts with 1 ppm of ozone (1 mg/liter) for 5 min. Exposure to 1.3 ppm of chlorine dioxide yielded 90% inactivation after 1 h, while 80 ppm of chlorine and 80 ppm of monochloramine required approximately 90 min for 90% inactivation. The data indicate that C. parvum oocysts are 30 times more resistant to ozone and 14 times more resistant to chlorine dioxide than Giardia cysts exposed to these disinfectants under the same conditions. With the possible exception of ozone, the use of disinfectants alone should not be expected to inactivate C. parvum oocysts in drinking water.  相似文献   

13.
14.
Ozone Induced Carbon Dioxide Evolution in Tobacco Callus Cultures   总被引:1,自引:0,他引:1  
Callus derived from Bel–W3 and Bel–B tobacco plants when exposed to ozone turned brown as a consequence of surface cell destruction. Ozone fumigations above a threshold concentration of 0.10 μl/1 for two hoars caused an increase in the rate of tissue carbon dioxide (CO2) evolution. The maximum increase in CO2 evolution was about 65 percent for both the ozone sensitive Bel–W3 and resistant Bel–B callus. However, the ozone dosage required to attain maximum increase in CO2 evolution was approximately two times greater for the resistant variety. Callus cultures that grew roots were observed to be more resistant to ozone. The addition of the antioxidant N,N'dipnenyl–p–phenylenediamine (DPPD) m the nutrient medium retarded ozone induced CO2 evolution.  相似文献   

15.
Ozonation strategies to reduce sludge production of a seafood industry WWTP   总被引:1,自引:0,他引:1  
In this work, several alternatives related to the application of ozone in different streams of a seafood industry WWTP were evaluated to minimize the production of waste sludge. The WWTP was composed of two coagulation-flocculation units and a biological unit and generated around of 6550 kg/d of sludge. Ozone was applied to sludge coming from flotation units (110 g TSS/L) at doses up to 0.03 g O(3)/g TSS during batch tests, no solids solubilization being observed. Ozone doses ranging from 0.007 to 0.02 g O(3)/g TSS were also applied to the raw wastewater in a bubble column reaching a 6.8% of TSS removal for the highest ozone dose. Finally, the effect of the pre-ozonation (0.05 g O(3)/g TSS) of wastewater coming from the first flotation unit was tested in two activated sludge systems during 70 days. Ozonation caused a reduction of the observed yield coefficient of biomass from 0.14 to 0.07g TSS/g COD(Tremoved) and a slight improvement of COD removal efficiencies. On the basis of the capacity for ozone production available in the industry, a maximum reduction of sludge generated by the WWTP of 7.5% could be expected.  相似文献   

16.
Interaction of ozone and negative air ions to control micro-organisms   总被引:2,自引:0,他引:2  
AIMS: The aims of this study were to investigate the effect of ozone and/or negative air ions (NAI) on the viability of bacteria. METHODS AND RESULTS: Dilute cell suspensions of Pseudomonas fluorescens, Erwinia carotovora pv. carotovora and Escherichia coli were inoculated onto agar and subsequently exposed to ozone and/or NAI. Ozone concentration was maintained at 100 +/- 5 nl l-1 and NAI at 106 ml-1. When exposed to a combination of ozone and NAI, viability among all three bacterial species decreased more rapidly when they were inoculated onto potato dextrose agar (PDA) than onto nutrient agar (NA). A subsequent test examined the effect of ozone and NAI alone or in combination on the bacteria inoculated onto PDA only. Treatment with NAI alone had no killing effect on any of the bacterial species. However, a strong interaction between ozone and NAI was observed. Pseudomonas fluorescens was most susceptible to the combined treatment. Cell viability was reduced to 0.7% after 6 h, while 76% of the cells remained viable when exposed to ozone alone. Viability of Erwinia carotovora pv. carotovora was reduced to 4% after 6 h in the combined treatment compared with 69% when exposed to ozone alone. Escherichia coli was relatively more resistant to the combined treatment; viability was reduced to 40% after 11 h compared with 70% in the ozone alone treatment. CONCLUSIONS: A strong synergism between ozone and NAI on bacterial cell death was found, but the degree of this effect varied depending on bacterial species. SIGNIFICANCE AND IMPACT OF THE STUDY: The synergism of ozone with NAI may provide an effective method of reducing food-borne disease and decay of fresh produce.  相似文献   

17.
Oxidative stress emerges as a key player in the ageing process. Controlled ozone administration is known to promote an oxidative preconditioning or adaptation to oxidative stress. The present study investigated whether prophylactic ozone administration could interfere with the age‐related changes in the heart and the hippocampus of rats. Four groups of rats, aged about 3 months old, were used. Group 1 (Prophylactic ozone group) received ozone/oxygen mixture by rectal insufflations (0.6 mg/kg) twice/week for the first 3 months, then once/week till the age of 15 months. Group 2 (Oxygen group) received oxygen as vehicle for ozone in a manner similar to group 1. Group 3 (Aged control group) was kept without any treatment until the age of 15 months. A fourth group of rats (Adult control group) was evaluated at 3 months of age to provide baseline data. Ozone alleviated age‐associated redox state imbalance as evidenced by reduction of lipid and protein oxidation markers, lessening of lipofuscin deposition, restoration of glutathione levels in both tissues and normalization of glutathione peroxidase activity in the heart tissue. Ozone also mitigated age‐associated energy failure in the heart and the hippocampus, improved cardiac cytosolic Ca2+ homeostasis and restored the attenuated Na+, K+‐ATPase activity in the hippocampus of aged rats. These data provide new evidence concerning the anti‐ageing potential of prophylactic ozone administration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
A study was made of cytopathological and cytogenetic effects of formaldehyde chronic inhalation, in doses 0.5 and 1.5 mg/m3, on the female rat's germ and marrow cells. The harmful effect of formaldehyde on germ cells (according to the patterns of early embryogenesis) is noted under the dose 1.5 mg/m3 only, while the reliable clastogenic and cytogenetic effects on the marrow cells were revealed even in the dose 0.5 mg/m3. It is concluded that the differences between effects of small doses of formaldehyde on different cell systems were evidently caused by the specific cell dynamics of these systems.  相似文献   

19.
Leptin is a satiety hormone that also has proinflammatory effects, including augmentation of ozone-induced pulmonary inflammation. The purpose of this study was to determine whether reductions in endogenous levels of leptin can attenuate pulmonary responses to ozone. To reduce serum leptin, we fasted mice overnight before ozone exposure. Fasting caused a marked reduction in serum leptin to approximately one-sixth the levels observed in fed mice, and continuous infusion of leptin via Alzet micro-osmotic pumps restored serum leptin to, but not above, fed levels. Ozone exposure (2 ppm for 3 h) caused a significant, approximately 40% increase in pulmonary resistance (P < 0.01) and increased airway responsiveness in fasted but not in fed mice. The increased effect of ozone on pulmonary mechanics and airway responsiveness in fasted mice was not observed when leptin was restored via continuous infusion. Ozone exposure caused pulmonary inflammation, as evident by increases in bronchoalveolar lavage cells, protein, and soluble tumor necrosis factor receptors. There was no effect of fasting status on ozone-induced changes in the bronchoalveolar lavage inflammatory profile, and leptin treatment did not alter these responses. Our results indicate that fasting augments ozone-induced changes in pulmonary mechanics and airway responsiveness in mice. These effects of fasting are the result of declines in serum leptin. The mechanistic basis for this protective effect of leptin in fasted mice remains to be determined but is not related to effects on ozone-induced inflammation.  相似文献   

20.
The objective of the present study was to investigate whether peak concentrations of ozone can deplete the apoplastic ascorbate pool of needles from Norway spruce trees (Picea abies L. Karst.) and, thereby, contribute to damage to forest trees. Twigs of forest trees grown at high altitude (1950m above sea level; Mt Patscherkofel, Austria) were enclosed in situ in chambers and fumigated for 5-5 or 17 h with ozone concentrations ranging from 60 to 798 nmol mol?1. Adjacent branches were fumigated with filtered air. Ozone influx into the foliage ranging from 1-7 to 17nmolm?2s?1 had little effect on whole-needle ascorbate or glutathione contents. However, apoplastic ascorbate decreased by about 30% when the needles were exposed to environmentally relevant ozone concentrations and increased about 3-fold at higher ozone concentrations. This response suggests the induction of ascorbate as a protective system and may also be important under field conditions. Needles of spruce trees from high altitude that were exposed to chronically increased ozone concentrations contained significantly higher apoplastic ascorbate concentrations than needles from spruce trees from lower altitudes with lower mean atmospheric ozone concentrations. The results show that peak concentrations of ozone do not act in spruce via a depletion of the apoplastic ascorbate pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号