首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
We have previously shown that an F9 teratocarcinoma retinoic acid receptor beta(2) (RARbeta(2)) knockout cell line exhibits no growth arrest in response to all-trans-retinoic acid (RA), whereas F9 wild type (Wt), F9 RARalpha(-/-), and F9 RARgamma(-/-) cell lines do growth arrest in response to RA. To examine the role of RARbeta(2) in growth inhibition, we analyzed the cell cycle regulatory proteins affected by RA in F9 Wt and F9 RARbeta(2)(-/-) cells. Flow microfluorimetry analyses revealed that RA treatment of F9 Wt cells greatly increased the percentage of cells in the G1/G0 phase of the cell cycle. In contrast, RA did not alter the cell cycle distribution profile of RARbeta(2)(-/-) cells. In F9 Wt cells, cyclin D1, D3, and cyclin E protein levels decreased, while cyclin D2 and p27 levels increased after RA treatment. Compared to the F9 Wt cells, the F9 RARbeta(2)(-/-) cells exhibited lower levels of cyclins D1, D2, D3, and E in the absence of RA, but did not exhibit further changes in the levels of these cell cycle regulators after RA addition. Since RA significantly increased the level of p27 protein (approximately 24-fold) in F9 Wt as compared to the F9 RARbeta(2)(-/-) cells, we chose to study p27 in greater detail. The p27 mRNA level and the rate of p27 protein synthesis were increased in RA-treated F9 Wt cells, but not in F9 RARbeta(2)(-/-) cells. Moreover, RA increased the half-life of p27 protein in F9 Wt cells. Reduced expression of RARbeta(2) is associated with the process of carcinogenesis and RARbeta(2) can mediate the growth arrest induced by RA in a variety of cancer cells. Using both genetic and molecular approaches, we have identified some of the molecular mechanisms, such as the large elevation of p27, through which RARbeta(2) mediates these growth inhibitory effects of RA in F9 cells.  相似文献   

3.
4.
Characterization of retinoic acid receptor-deficient keratinocytes   总被引:4,自引:0,他引:4  
Retinoids are essential for normal epidermal growth and differentiation and show potential for the prevention or treatment of various epithelial neoplasms. The retinoic acid receptors (RARalpha, -beta, and -gamma) are transducers of the retinoid signal. The epidermis expresses RARgamma and RARalpha, both of which are potential mediators of the effects of retinoids in the epidermis. To further investigate the role(s) of these receptors, we derived transformed keratinocyte lines from wild-type, RARalpha, RARgamma, and RARalphagamma null mice and investigated their response to retinoids, including growth inhibition, markers of growth and differentiation, and AP-1 activity. Our results indicate that RARgamma is the principle receptor contributing to all-trans-retinoic acid (RA)-mediated growth arrest in this system. This effect partially correlated with inhibition of AP-1 activity. In the absence of RARs, the synthetic retinoid N-(4-hydroxyphenyl)-retinamide inhibited growth; this was not observed with RA, 9-cis RA, or the synthetic retinoid (E)-4-[2-(5, 5, 8, 8 tetramethyl-5,6,7,8-tetrahydro-2-naphthalenyl)-1-propenyl] benzoic acid. Finally, both RARalpha and RARgamma differently affected the expression of some genes, suggesting both specific and overlapping roles for the RARs in keratinocytes.  相似文献   

5.
6.
Retinoic acid (RA), a derivative of vitamin A, is essential for normal patterning and neurogenesis during development. Until recently, studies have been focused on the physiological roles of RA receptors (RARs), one of the two types of nuclear receptors, whereas the functions of the other nuclear receptors, retinoid X receptors (RXRs), have not been explored. Accumulating evidence now suggests that RXRalpha is a critical receptor component mediating the effects of RA during embryonic development. In this study, we have examined the expression profiles of RXRalpha and RARs during the RA-induced neuronal differentiation in a human embryonal carcinoma cell line, NT2. Distinct expression profiles of RXRalpha, RARalpha, RARbeta, and RARgamma were observed following treatment with RA. In particular, we found that RA treatment resulted in a biphasic up-regulation of RXRalpha expression in NT2 cells. The induced RXRalpha was found to bind specifically to the retinoid X response element based on gel mobility retardation assays. Furthermore, immunocytochemical analysis revealed that RXRalpha expression could be localized to the somatoaxonal regions of the NT2 neurons, including the tyrosine hydroxylase- and vasoactive intestinal peptide-positive neurons. Taken together, our findings provide the first demonstration of the cellular localization and regulation of RXRalpha expression in NT2 cells and suggest that RXRalpha might play a crucial role in the cellular functions of human CNS neurons.  相似文献   

7.
8.
Mao GE  Collins MD 《Teratology》2002,66(6):331-343
BACKGROUND: Previous studies observed that retinoic acid receptor-gamma (RARgamma) is expressed in the open caudal neuroepithelium but that RARbeta is expressed in the closed neural tube. Furthermore, retinoic acid (RA) induces RARbeta expression, a molecular event associated with neural tube closure, but treatment with RA at the appropriate gestation time causes failure of neural tube closure. Since there are four isoforms of RARbeta, perhaps the isoforms expressed in the closed neural tube and induced by RA are different. To investigate the hypothesis that the switch from RARgamma to RARbeta is mechanistically linked to neural tube closure, this study determined the concentrations and distributions of RARbeta and RARgamma isoforms in mouse embryos with RA-induced neural tube defects and in splotch (Sp) mutant embryos with spina bifida. METHODS: Absolute concentrations of RARbeta and RARgamma isoforms were determined throughout primary neurulation (gestational day 8.5-10.0) in treated or untreated C57BL/6J mouse whole embryos by ribonuclease protection analysis. Treatment consisted of an oral dose of 100 mg/kg of all-trans-RA on gestational day 8.5. Spatial distributions of RARbeta and RARgamma were examined in RA-treated and Sp mutant embryos by in situ hybridization. RESULTS: RARbeta2, gamma1, and gamma2 were expressed in untreated embryos and were induced 4.5-, 1.6-, and 4.0-fold, respectively, 4 hr after treatment with RA. In embryos with RA-induced spina bifida, RARbeta2 was expressed in the closed neural tube while RARgamma1 and RARgamma2 were expressed in the open caudal neuroepithelium. In splotch mice with spina bifida, the boundary between RARbeta and RARgamma did not correspond to the site of neural tube closure. CONCLUSIONS: In RA-treated embryos, the relationship between RARbeta expression in the closed and RARgamma in the open caudal neuroepithelium was not altered. However, in splotch embryos with spina bifida, the juncture between RARbeta and RARgamma expression remained in the same anatomical position in the neuroepithelium irrespective of the neural tube closure status and suggests that the switch from RARgamma to RARbeta expression in the closing caudal neuroepithelium may not be causally linked to neural tube closure in the splotch mutant.  相似文献   

9.
10.
Sertoli cells (SC) are instrumental to stem spermatogonia differentiation, a process that critically depends on retinoic acid (RA). We show here that selective ablation of RA receptor alpha (RARalpha) gene in mouse SC, singly (Rara(Ser-/-) mutation) or in combination with RARbeta and RARgamma genes (Rara/b/g(Ser-/-) mutation), abolishes cyclical gene expression in these cells. It additionally induces testis degeneration and delays spermatogonial expression of Stra8, two hallmarks of RA deficiency. As identical defects are generated upon inactivation of RARalpha in the whole organism, our data demonstrate that all the functions exerted by RARalpha in male reproduction are Sertoli cell-autonomous. They further indicate that RARalpha is a master regulator of the cyclical activity of SC and controls paracrine pathways required for spermatogonia differentiation and germ cell survival. Most importantly, we show that the ablation of all RXR (alpha, beta and gamma isotypes) in SC does not recapitulate the phenotype generated upon ablation of all three RARs, thereby providing the first evidence that RARs exert functions in vivo independently of RXRs.  相似文献   

11.
Limb skeletal muscle is derived from cells of the dermomyotome that detach and migrate into the limb buds to form separate dorsal and ventral myogenic precursor domains. Myogenic precursor cell migration is dependent on limb bud mesenchymal expression of hepatocyte growth factor/scatter factor (Hgf), which encodes a secreted ligand that signals to dermomyotome through the membrane receptor tyrosine kinase Met. Here, we find that correct patterning of Hgf expression in forelimb buds is dependent on retinoic acid (RA) synthesized by retinaldehyde dehydrogenase 2 (Raldh2) expressed proximally. Raldh2(-/-) forelimb buds lack RA and display an anteroproximal shift in expression of Hgf such that its normally separate dorsal and ventral expression domains are joined into a single anterior-proximal domain. Met and MyoD are expressed in this abnormal domain, indicating that myogenic cell migration and differentiation are occurring in the absence of RA, but in an abnormal location. An RA-reporter transgene revealed that RA signaling in the forelimb bud normally exists in a gradient across the proximodistal axis, but uniformly across the anteroposterior axis, with all proximal limb bud cells exhibiting activity. Expression of Bmp4, an inhibitor of Hgf expression, is increased and shifted anteroproximally in Raldh2(-/-) limb buds, thus encroaching into the normal expression domain of Hgf. Our studies suggest that RA signaling provides proximodistal information for limb buds that counterbalances Bmp signaling, which in turn helps mediate proximodistal and anteroposterior patterning of Hgf expression to correctly direct migration of Met-expressing myogenic precursor cells.  相似文献   

12.
Retinoic Acid (RA) has been shown to control growth and induce differentiation in a number of human neuroblastoma (NB) cell lines. However, a number of NB cell lines may be termed resistant to RA as they fail to growth arrest and differentiate. In studying the mechanism mediating RA-resistance, we noted that invariably RA-resistant NB cell lines constitutively express Insulin-like Growth Factor 2 (IGF2) (Gaetano, 1991b). The NB cell line LAN-1-15N (15N) represented an interesting model in which to study the development of RA-resistance as initially 15N cells are growth arrested by RA, however with prolonged culture (8-10 days) cells begin to proliferate. Coincidentally, RA induces IGF2 mRNA and protein secretion in 15N NB cells (Matsumoto, 1992). In this study we isolated RA-resistant 15N cell lines and analyzed their growth properties and changes in cell cycle related (cdc2, cdk2, cyclins A, B, D and E) and early response (fos and jun) gene expression to evaluate the role IGF2 may play in mediating RA resistance. We found that exogenous IGF2 stimulates growth in 15N and is capable of altering RA induced inhibition of NB cell growth. Finally we show that by blocking the Insulin-like Growth Factor Receptor (IGF1(R)) with a monoclonal antibody (alpha-IR3) in the presence of RA the growth of RAR cell lines could be completely blocked. These data are consistent with the concept that signals by IGF2 and transduced via the IGF1(R) can mediate resistance to the growth inhibiting properties of RA.  相似文献   

13.
The purpose of this study was to investigate whether MURC/cavin-4, a plasma membrane and Z-line associated protein exhibiting an overlapping distribution with Caveolin-3 (Cav-3) in heart and muscle tissues, may be expressed and play a role in rhabdomyosarcoma (RMS), an aggressive myogenic tumor affecting childhood. We found MURC/cavin-4 to be expressed, often concurrently with Cav-3, in mouse and human RMS, as demonstrated through in silico analysis of gene datasets and immunohistochemical analysis of tumor samples. In vitro expression studies carried out using human cell lines and primary mouse tumor cultures showed that expression levels of both MURC/cavin-4 and Cav-3, while being low or undetectable during cell proliferation, became robustly increased during myogenic differentiation, as detected via semi-quantitative RT-PCR and immunoblotting analysis. Furthermore, confocal microscopy analysis performed on human RD and RH30 cell lines confirmed that MURC/cavin-4 mostly marks differentiated cell elements, colocalizing at the cell surface with Cav-3 and labeling myosin heavy chain (MHC) expressing cells. Finally, MURC/cavin-4 silencing prevented the differentiation in the RD cell line, leading to morphological cell impairment characterized by depletion of myogenin, Cav-3 and MHC protein levels. Overall, our data suggest that MURC/cavin-4, especially in combination with Cav-3, may play a consistent role in the differentiation process of RMS.  相似文献   

14.
15.
16.
17.
Retinoic acid (RA) is indispensable for morphogenesis and differentiation of several tissues, including the nervous system. The requirement of the RA receptor (RAR) isotypes alpha, beta, and gamma and the putative role of retinoid X receptor-(RXR) signaling in RA-induced neural differentiation, was analyzed. For this compound-selective retinoids and the murine embryonal carcinoma cell line PCC7, a model system for RA-dependent neural differentiation was used. The present paper shows that proliferating PCC7 cells primarily express RXRalpha and RARalpha, lower levels of RXRbeta, and barely detectable amounts of RARbeta, RARgamma, and RXRgamma. At receptor-selective concentrations, only a RARalpha or RARgamma agonist induced the typical tissue-like differentiation pattern consisting of neuronal and nonneuronal cells. Differentiation-associated processes, such as the down-regulation of Oct4, up-regulation of certain nuclear receptors and proneuronal genes, and the induction of neuronal markers could be triggered by receptor-selective concentrations of a RARalpha-, beta-, or gamma-selective agonist, although with distinct efficacy. The differences are only partially explained by the distinct RARalpha, beta, and gamma expression levels and the dissociation constants for the bound retinoids, suggesting differential requirement of RAR isotypes during the initial stages of neural differentiation of PCC7 cells.  相似文献   

18.
19.
20.
Elevated expression of the Eph receptor tyrosine kinase EphA3 is associated with lymphocytic leukaemia, but little is known about its expression or function in solid tumours. Out of a panel of cancer cell lines, we found that EphA3 was expressed only on two rhabdomyosarcoma (RMS) cell lines of the embryonal histological subtype and on one of the alveolar RMS subtype, whereas it was not detected on two other cell lines of the alveolar subtype. Other EphA receptors (1-7) were, either not expressed in any, or expressed in all five RMS cell lines. Stimulation of EphA3-expressing TE671 and RD RMS cells with ephrinA5 resulted in loss of adhesion to fibronectin, decreased migration towards the stromal cell-derived growth factor-I (SDF-I), increased EphA3 phosphorylation, and increased Rho GTPase activity. In contrast, ectopic expression of EphA3 in the EphA3 negative CRL2061 cell line resulted in decreased cell adhesion. Finally, suppression of EphA3 expression by siRNA in RD cells results in increased SDF-I-mediated motility. These data indicate that EphA3 expression may define subsets of RMS tumours, and that EphA3 suppresses motility through regulation of Rho GTPases in RMS cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号