首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major human erythrocyte membrane sialoglycoprotein (glycophorin A or MN glycoprotein) was purified from the red blood cells of an individual, homozygous for the Mi-VII gene in the Miltenberger subsystem of the MNSs blood-group system. The complete structure of a tryptic peptide comprising the residues 40-61 of glycophorin A was deduced from manual sequence analyses. The Mi-VII-specific glycophorin A was shown to exhibit an arginine----threonine and a tyrosine----serine exchange at the positions 49 and 52 respectively. The threonine-49 residue was found to be glycosylated. Inhibition assays demonstrated that one of the Mi-VII-specific antigen determinants (Anek) is located within the residues 40-61 of glycophorin A and comprises sialic acid residue(s) attached to O-glycosidically linked oligosaccharide(s). Our data contribute to an understanding of the Miltenberger system and provide an explanation at the molecular level for the previous finding that the erythrocytes from the Mi-VII homozygote lack a high-frequency antigen (EnaKT), located within the residues 46-56 of normal glycophorin A.  相似文献   

2.
Human red cells from donor Pj carry the Sta blood group antigen and an unusual sialoglycoprotein of 24 kDa molecular mass tentatively identified as a hybrid molecule of the anti-Lepore type [Blanchard et al. (1982) Biochem. J. 203, 419-426]. This component is resistant towards proteinase treatment and was purified from trypsin-treated and chymotrypsin-treated Pj erythrocytes. The molecule is composed of 99 amino acid residues whose alignment was established following manual and automatic sequencing of cyanogen bromide, trypsin, chymotrypsin and V8 proteinase peptides. The polypeptide chain comprises residues 1-26/28 of glycophorin B and residues 59/61-131 of glycophorin A. The sugar composition resembles that of glycophorin B, indicating the absence of an N-glycosidic chain. Identical sequences were obtained from analyses of the 24-kDa component purified from unrelated St(a+) donors. These results support the hypothesis that glycoprotein Pj represents a B-A hybrid molecule which is encoded by a new gene product resulting from an unequal crossing-over between the genes coding for the polypeptide chains of the glycophorins A and B. The novel molecule carries both N and Sta blood group antigens. The N activity is clearly understandable from the sequence of the five N-terminal residues (Leu and Glu at positions 1 and 5 respectively). Inhibition studies with the untreated and chemically modified hybrid glycoprotein indicate that the Sta determinant is located within residues approximately 25-30 of the molecule, which corresponds to the newly formed sequence found neither in glycophorin A nor in glycophorin B.  相似文献   

3.
Membrane glycophorins of Dantu blood group erythrocytes   总被引:3,自引:0,他引:3  
Glycophorins of erythrocytes of two unrelated individuals who exhibit the Dantu blood group phenotype were studied. Immunoblots indicated that erythrocytes of each individual contained a complement of a normal alpha-glycophorin (glycophorin A) and a variant N-glycophorin. delta-Glycophorin (glycophorin B) was present in one donor's cells but not the other's; the s and N phenotypes of the latter's erythrocytes may derive from the variant glycophorin. The variant glycophorin is of a smaller size, does not bind to Lens culinaris lectin agarose, and lacks residues approximately 40-60 of alpha-glycophorin and its single asparagine-linked carbohydrate; it contains approximately 2 less O-glycosidically bound units whose structures are identical to those found in alpha-glycophorins. All these properties are characteristic of delta-glycophorin. The variant is related to alpha-glycophorin in the carboxyl-terminal region as shown by reaction with a specific antiserum. Sequence analyses of a mixture of chymotryptic peptides of a CNBr fragment of the variant glycophorin identified the sequence Val-His-Arg-Phe-Thr-Val-Pro-Glu-Ile-Thr-Leu-Ile-Ile that contains the junction point of delta- and alpha-glycophorins spanning residues 33-38/39 of delta-glycophorin and residues 71/72-77 of alpha-glycophorin. Sequence analysis of a mixture of CNBr fragments allowed us to conclude that the variant originates from delta-s- rather than delta-S-glycophorin. The quantity of the variant Dantu glycophorin when compared to alpha-glycophorin differed in the two individuals, the ratio being 2/1 in one individual's cells and 0.5/1 in the other's. This may reflect that the two donors belong to different varieties of Dantu phenotypes. Together, the evidence indicates that both donors' erythrocytes contain a (delta-alpha) variant glycophorin, whose amino terminus originates from delta-s-glycophorin and the carboxyl end from alpha-glycophorin with a junction point around residues 39 of delta- and 71 of alpha-glycophorins. The results suggest that the unique junction region may be characteristic of the Dantu phenotype.  相似文献   

4.
In this report we examine the primary sequence of a variant glycophorin obtained from erythrocytes of an individual who exhibits an unusual MNSs blood group phenotype. We show that this protein is a hybrid molecule constructed from sequences of alpha- and delta-glycophorins (glycophorins A and B) in a alpha-delta arrangement. Serological typing revealed that the donor's phenotype was M+N+S+s+U+; yet his erythrocytes reacted with some but not all examples of anti-S antisera. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a variant glycophorin band, and immunoblotting and reaction with N-glycanase suggested that its amino terminus resembled that of M-alpha-glycophorin but that its carboxyl terminus did not. A preparation highly enriched in the variant was obtained and used to generate peptide fragments for sequencing. The sequence revealed that the variant was a hybrid molecule whose amino terminus corresponded to M-alpha-glycophorin and whose carboxyl terminus corresponded to S-delta-glycophorin. CNBr cleavage of the variant glycophorin yielded four peptides. The sequence of the amino-terminal CNBr peptide (residues 1-8) was identical to the amino-terminal octapeptide of M-alpha-glycophorin. The proceeding peptide (residues 9-61) contained a segment identical to residues 9-58 of alpha glycophorin, but its carboxyl-terminal sequence had the Gly-Glu-Met sequence from S-delta-glycophorin (residues 27-29). The other two peptides, insoluble in aqueous solutions, contained highly hydrophobic sequences, identical to residues 30-52 and 53-68 of delta-glycophorin. Sequences of overlapping peptides generated by trypsin and V8 protease confirmed the hybrid nature of the variant glycophorin: residues 1-58 were identical to residues 1-58 of M-alpha-glycophorin, and residues 59-100 were entirely identical to residues 27-68 of S-delta-glycophorin. The variant glycophorin is expected to have 4 additional residues at its carboxyl terminus that correspond to the carboxyl-terminal residues 69-72 of delta-glycophorin. The amino acid sequence arrangement of the variant alpha-delta-glycophorin is an exact reciprocal of that found in another hybrid glycophorin, Sta, that is a delta-alpha hybrid. We propose that the two hybrid glycophorins represent the two possible products resulting from a reciprocal recombination event.  相似文献   

5.
Flow cytometric analysis employing monoclonal antibodies to the Tn antigen and glycophorin A was used to characterize the erythrocyte populations present in blood samples from individuals with Tn syndrome. Four monoclonal antibodies specific for the Tn antigen, Gal-NAc monosaccharide, on human erythrocytes were obtained from a fusion of splenocytes from a Biozzi mouse immunized with red cells from a Tn individual. These monoclonal antibodies specifically recognize GalNAc monosaccharide sites located on the erythrocyte cell surface sialoglycoproteins, glycophorin A and glycophorin B, and do not bind to fixed normal red cells presenting the Neu-NAc alpha 2-3Gal beta 1-3(NeuNAc alpha 2-6)GalNAc alpha 1-O-Ser(Thr) tetrasaccharide or to fixed neuraminidase-digested cells presenting the Gal-GalNAc disaccharide. The percentages of Tn-positive red cells in samples from six unrelated Tn donors ranged from 28 to 99%. Binding of the glycophorin A-specific monoclonal antibodies showed that the erythrocytes composing the Tn-negative fraction presented normal amounts of the M and N epitopes on glycophorin A. The presumed somatic mutational origin of Tn-positive cells was tested in blood samples from five normal donors; three possible Tn cells were observed after analysis of a total of 1.1 x 10(7) erythrocytes, suggesting that the frequency of such cells in normal individuals is less than 1 x 10(-6).  相似文献   

6.
The N-terminal amino acid sequence (residues 1--35) of the Ss sialoglycoprotein (or glycophorin B) from human erythrocyte membranes of defined Ss blood group activity was determined by manual sequencing methods, using N-terminal tryptic or chymotryptic glycopeptides and various secondary peptides. The proposed structure differs considerably from that suggested on the basis of work with glucopeptides of unknown Ss blood group activity (Furthmayr, Nature 271, 519--523, 1978). Only one difference between glycopeptides from Ss and ss erythrocytes was found, i.e. a methionine/threonine polymorphism at position 29. On the basis of previous work (Dahr et al., Hoppe-Seyler's Z. Physiol. Chem. 361, 145--152, 1980), it is concluded that this amino acid heterogeneity represents the Ss polymorphism rather than the UX or UZ polymorphisms, which are in strong genetic linkage disequilibrium with the Ss antigens. A part of the sequence (residues 9--30) of the major (MN) red cell membrane sialoglycoprotein (glycophorin A) was re-investigated and revised at positions 11 and 17. As judged from the present data, the first 26 residues of the Ss and the blood group N-specific MN glycoprotein are identical. The sequence 27--35 of the Ss glycoprotein shows a homology with the residues 56--64 and 59--67 of the MN glycoprotein. Data on the partial N-terminal sequence of glycopeptides from a third erythrocyte membrane sialoglycoprotein (component D or glycophorin C) indicate that its structure is different from those of the two other glycoproteins.  相似文献   

7.
Human red cell glycophorin A shows an equilibrium between dimeric and monomeric forms which have been disignated PAS-1 and PAS-2, respectively. This equilibrium, which is dependent upon protein concentration is achieved by incubation in sodium dodecyl sulfate solutions at elevated temperatures and is assayed by sodium dodecyl sulfate gel electrophoresis. Carboxymethylation of glycophorin A in guanidine hydrochloride or urea alters the interactions between polypeptide chains so that the lower molecular weight form (PAS-2) is obtained much more readily. If the carboxymethylation is performed at pH 3.0 the reaction is limited to the two methionine residues of glycophorin A which are located at positions 8 and 81 in the sequence. In the presence of sodium dodecyl sulfate, only one of the two methionine residues is carboxymethylated, and glycoprotein modified under these conditions does not exhibit the change in electrophoretic mobility. Experiments with [1-14C]iodoacetic acid demonstrated that Met-81, located in the hydrophobic domain of the protein, is the residue protected by sodium dodecyl sulfate. Modification of Met-81 destabilizes the dimeric form relative to the monomer by weakening the interactions between polypeptide chains. The experiments described in this paper confirm that the hydrophobic domain of glycophorin A is involved in subunit interactions and that Met-81 plays a critical role in those interactions.  相似文献   

8.
We have developed methods for the preparative purification of two sialoglycoproteins (glycophorins B and C) from human erythrocyte membranes by high-performance ion exchange and gel permeation chromatography in the presence of Triton X-100. Glycophorin B was obtained without any detectable contaminants, and glycophorin C exhibited a purity of about 90-95%. The amino acid sequence of the intramembranous domain (residues 36-71) of glycophorin B was determined and found to be similar to that of the hydrophobic region of the major sialoglycoprotein (glycophorin A). The amino acid sequence of the hydrophobic domain (residues 49-88) of glycophorin C, that was also determined, agreed completely with the structure recently deduced from cDNA sequencing.  相似文献   

9.
The molecular properties of the major, high-frequency antigens (Ge2 and Ge3) of the human Gerbich blood group system were investigated using 14 different alloantibodies from rare Ge: -1,-2,-3 or Ge: -1,-2,3 individuals. Various modification, fractionation or fragmentation products of glycophorins (sialoglycoproteins) from normal erythrocytes (phenotype Ge: 1,2,3) were used in hemagglutination inhibition assays. The location of the antigens was also studied by blotting of proteins, separated by dodecyl sulfate polyacrylamide gel electrophoresis, to nitrocellulose and detection of bound antibodies by 125I-labelled protein G. Anti-Ge3 was found to be directed against a region of glycophorin C that surrounds a tryptic cleavage site at position 48 and a similar region of glycophorin D whose structure is not yet known. NeuAc residue(s), probably representing part(s) of a carbohydrate unit attached to serine42 of glycophorin C, methionine, aspartic or glutamic acid, tryptophan and/or arginine residue(s) are involved in the Ge3 epitopes, as judged from chemical modification. The Ge2 epitopes were found to be located on a tryptic glycopeptide from glycophorin D comprising about 20-30 amino-acid residues. NeuAc residue(s), attached to serine-/threonine-linked oligosaccharide(s), are involved in the Ge2 determinants. Using the immunoblotting technique, it could also be shown that the 'new' glycophorin in Ge: -1,-2,3 cells carries the Ge3 antigen.  相似文献   

10.
Glycophorin A is the major membrane sialoglycoprotein of human erythrocytes and represents a typical example of a transmembrane glycoprotein. The functional role of this cell-surface component is not known but it represents a receptor for viruses, bacteria and parasites like Plasmodium falciparum. 1. Two cDNA clones encoding glycophorin A have been characterized from human fetal cDNA libraries. The longer cDNA extended from the coding region of glycophorin A (residues 4-131) to the 3' untranslated region which included two polyadenylation signals and a poly(A) tail. 2. The structural gene for glycophorin A is located on chromosome 4, q28-q31 as shown by in situ hybridization, thus confirming the previous localization by genetic linkage analysis. 3. Three distinct mRNA species (1.0 kb, 1.7 kb and 2.2 kb) have been identified in erythroid spleen. Northern blot analyses with a probe directed against the 3' untranslated region of the mRNAs indicated that all these species share a homologous 3' non-coding region and that the first polyadenylation signal downstream the stop codon is not used. 4. Preliminary studies by Southern blot analysis of the genomic DNA from normal En(a+) and rare En(a-) donors suggest that the glycophorin A gene has a complex organization and is largely deleted in donors of the En(a-) phenotype (Finnish type) who lack glycophorin A on their red cells.  相似文献   

11.
The NeuNAc level of erythrocyte membranes from two related donors exhibiting the Mz variety of St(a+) phenotype within the MNSs blood group system was found to be decreased by about 16%. The quantity of glycophorin A was decreased by about 38%, whereas that of glycophorin B was not significantly different from normal. Mz erythrocyte membranes were also found to contain an abnormal component (molar ratio to glycophorin A about 0.89:1.0) with an apparent molecular mass of about 24,000 Da. Immunoblotting experiments and amino-acid sequence analysis revealed that the novel component (and glycophorin A in one of the donors) carries blood group M activity. Blood group N activity was demonstrable for glycophorin A and glycophorin B from both donors. Amino-acid sequence analysis of chymotryptic, tryptic and cyanogen bromide peptides demonstrated that the novel molecule exhibits the typical structure of a Sta-active molecule. However, since it exhibits blood group M activity, it appears to represent a variant of glycophorin A lacking the residues 27-58 (encoded by exon three of the glycophorin A gene) rather than a glycophorin B-glycophorin A-hybrid molecule of the anti-Lepore type. Since one of the Mz heterozygotes was found to exhibit both M- and N activity on glycophorin A, the Mz gene complex appears to encode a blood group N-active glycophorin A apart from the novel component and a blood group s-active glycophorin B, although the level of glycophorin A in the erythrocyte membranes is decreased by about half.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Structural and immunochemical studies of glycophorins isolated from erythrocytes of an individual homozygous for the M Sta blood group phenotype are described. Reactivities with specific monoclonal antibodies indicated that two major M and N glycophorins were present. The M and N Sta glycophorins were resolved by Lens culinaris lectin affinity chromatography. The N species was not held on the lectin but the M species, like control alpha glycophorins, was retained and could be eluted with alpha-methylmannoside. The two proteins were present in almost equimolar amounts. Studies of the CNBr fragments provided evidence that the structure of M Sta glycophorin is the same as that of the usual M alpha glycophorin but that the N Sta glycophorin is a variant. The amino-terminal octapeptides of the M and N species were similar in amino acid and carbohydrate composition to those isolated, respectively, from M and N alpha glycophorins. The studies focused on CNBr glycopeptide B that, in control alpha glycophorins, extends from amino acid residues 9 to 81. The fragment from the M species exhibited properties identical to those of the corresponding fragment of control alpha glycophorins in terms of size, chromatographic behavior, amino acid and carbohydrate contents and compositions, the presence of O-glycosidically linked saccharides and a single Asn-linked carbohydrate unit. The structures of the O-linked units were inferred experimentally to be NeuAc(alpha 2,3)Gal-(beta 1,3)GalNAc and NeuAc(alpha 2,3)Gal(beta 1,3) [NeuAc(alpha 2,6)]GalNAc, present in a ratio similar to that found in controls; and the Asn-linked unit also appeared to be as in the control. The tryptic glycopeptide pattern of the M Sta glycophorin CNBr fragment B was identical to the pattern of the corresponding control fragment, and the composition of the tryptic peptides suggested sequence identity with the control fragment. In contrast, the N Sta glycophorin yielded two CNBr glycopeptides B; both contained fewer amino acid residues and virtually lacked Man and GlcNAc, indicating the absence of the Asn-linked carbohydrate. The much decreased levels of these carbohydrates in the intact N protein, corroborated the latter finding. The O-glycosidic saccharides appeared similar to those found in control alpha glycophorins. However, the tryptic glycopeptide pattern of the variant differed from control M or N alpha glycophorins, suggesting a deletion of a large segment of the molecule near residues 40-61 and/or a substitution of methionine for a residue upstream from residue 40.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The epitopes of seven mouse monoclonal antibodies which are related to the Gerbich blood group system were investigated. BRIC4, BRIC10, GERO and MR4-130 have been published earlier. The three others (APO1, APO2, APO3) were prepared by immunization with normal human erythrocytes and detected by screening with red blood cells that lack glycophorins C and D. Using immunoblotting and hemagglutination inhibition assays, the epitopes for all antibodies were found to be located on glycophorin C. Hemagglutination inhibition experiments with peptides and chemically modified glycophorins revealed that MR4-130, GERO, BRIC10 and APO2 are all directed against identical or rather similar epitopes comprising the N-terminal three or four residues of glycophorin C. Modification of the N-terminal methionine residue or release of sialic acid attached to oligosaccharide(s) at the third and/or fourth position(s) destroyed all these antigens. The epitope of APO3 was found to comprise glutamic acid17 and/or aspartic acid19 as well as the oligosaccharide attached to serine15. The antigens of BRIC4 and APO1 were found to be located within the residues 2-21 and to comprise sialic acid attached to O-glycosidically linked oligosaccharide(s). However, these epitopes could not be elucidated further. Radio-iodinated MR4-130 bound to 39,000 receptor sites per normal red blood cell. Binding of the labelled antibody was completely inhibited by unlabelled MR4-130, BRIC10, APO2 and GERO. APO1 caused partial inhibition suggesting that it is directed against an adjacent site. BRIC4, APO3 and anti-Ge3 did not inhibit the binding of labelled MR4-130 to any significant extent.  相似文献   

14.
Liposomes could bind and fuse efficiently to human erythrocytes in the presence of HVJ when they contained glycophorin isolated from human erythrocytes (Umeda, M., et al. (1983) J. Biochem. 94, 1955). In the present work we demonstrated that HVJ-induced fusion between liposomes containing glycophorin and erythrocytes was suppressed when GM1 coexisted with glycophorin in the same liposomal membranes. Asialo-GM1 and other gangliosides such as GM3 and sialosylparagloboside did not affect the fusion between the liposomes and erythrocytes. An intermolecular interaction between glycophorin and GM1 was suggested by the ESR spectrum obtained from liposomes containing glycophorin and a ganglioside GM1 analog carrying a nitroxyl spin label in the fatty acyl chains (5SL-gangliosidoide). The overall splitting value (2A parallel) observed in the ESR spectrum of liposomes containing 5SL-gangliosidoide increased with increase of the amount of glycophorin, whereas 2A parallel of spin-labeled phosphatidylcholine was not changed. The increase of 2A parallel of 5SL-gangliosidoide suggests that the mobility of the fatty acyl chain of the gangliosidoide was restricted by the interaction with glycophorin. It can be concluded that GM1 located near glycophorin, a receptor of the virus, interferes with the activity of viral F protein, inhibiting the fusion of liposome to erythrocyte.  相似文献   

15.
The sialic acids content of glycophorin of thalassemic erythrocyte membranes is about 25% lower than in glycophorin of normal erythrocyte membranes. Glycophorin extracted from old thalassemic erythrocytes separated by density centrifugation, has about half the sialic acids content found in glycophorin extracted from young thalassemic erythrocytes. Possible sialidase activity was sought in the plasma and erythrocyte membranes of thalassemic erythrocytes. No increased sialidase activity was detected in the plasma of the patients as compared to that of normal donors. Thus, other sites for sialidase activity, or other possibilities have to be explored to account for the increased sialic acid hydrolysis of glycophorin of the thalassemic erythrocytes.  相似文献   

16.
The first Caucasian (MD) shown to exhibit the low-frequency MNSs system antigen, Dantu was detected due to an increased tendency of erythrocytes to be aggregated by substances that promote red cell agglutination. The donor was found to exhibit a novel variety of the Dantu gene complex (DantuMD), as judged from biochemical, immunochemical, and serological studies. The glycophorin (GP) A level of MD's erythrocyte membranes were slightly decreased (about 17%) but GP B was not significantly different from normal. GP A and GP B of MD's cells were shown to carry M and N or S and s antigens, respectively, indicating that MD exhibits two genes encoding GP A and two genes encoding GP B. MD's cells contain a Dantu-, N- and s-specific GP B-GP A hybrid GP (molar ratio to GP A approx. 0.6:1.0). Partial amino-acid sequence analysis indicates that the structure of this molecule is rather similar to, or completely identical with, that of the hybrid GP in DantuNE erythrocytes. The residues 1-39 or 40-99 of the latter molecule correspond to the residues 1-39 of s-specific GP B and the residues 72-131 of GP A, respectively. Statistical evidence suggests that MD exhibits a single gene encoding the hybrid GP. Thus, MD appears to be heterozygous for a typical anti-Lepore type gene complex that seems to comprise genes for GP A, GP B, and the GP B-GP A hybrid. The diminished GP A level and a decreased galactose-oxidase labelling of the major membrane protein (anion channel protein, band 3) in MD's cells is in accordance with previous data suggesting that band 3 might form a complex with GP A and the Dantu-specific hybrid GP. This complex formation may be necessary for optimum incorporation of the latter molecules into the membrane.  相似文献   

17.
We have found that the human leukemic cell line K562 (Lozzio, C.B., and Lozzio, B.B. (1975) Blood 45, 321-334) synthesizes a surface membrane glycoprotein which is identical or closely similar to the major red cell sialoglycoprotein, glycophorin A. The protein can be precipitated by specific anti-glycophorin A antiserum both from surface-labeled and metabolically labeled K562 cells. Cyanogen bromide cleavage of glycophorin A from red cells and the K562 cell protein gives apparently identical fragments, and the glycopeptides and oligosaccharides obtained after Pronase and mild alkaline treatment are closely similar. An antiserum made against intact K562 cells and absorbed with normal human white blood cells precipitated surface-labeled glycophorin A from erythrocytes. The amount of glycophorin A per cell in erythrocytes and K562 cells was very similar when determined by radioimmunoassay. The K562 cells contained blood group MN activity when tested with rabbit anti-M and anti-N sera. When incubated at 37 degrees C with rabbit anti-glycophorin A F(AB)2 fragments and fluorescent sheep anti-rabbit IgG, partial redistribution of glycophorin A (patching and capping) was seen in K562 cells but not in erythrocytes.  相似文献   

18.
A sialoglycoprotein fraction was isolated from chicken erythrocytes by two methods based on the phenol extraction or chloroform/2-propanol extraction of differently prepared erythrocyte membranes. Both preparations gave in SDS-PAGE two major PAS-stained bands (GP2 and GP3), which migrated as 60- and 33-kDa species, respectively, compared to reference proteins, or as 44- and 23-kDa molecules, compared to human glycophorins. Some less abundant slower migrating PAS-stained components, antigenically related to GP2 and GP3, also were detected. No evidence for the presence of antigenically distinct glycoproteins of leukosialin type was obtained. Interconversion in SDS-PAGE, similar carbohydrate composition, and similar antigenic properties of GP2 and GP3 indicated that they are a dimer and monomer, respectively, of the same glycoprotein which shows properties that allow it to be classified as a glycophorin. Lectin binding studies and methylation analysis of beta-elimination products of chicken glycophorin preparation showed the presence of O-glycans and N-glycans. The major O-glycans include sialylated Galbeta1-3GalNAc units and more complex GlcNAc-containing chains. Among the N-glycans, there are complex-type biantennary structures with a bisecting GlcNAc residue, accompanied by chains with additional antennas linked to alpha-mannose residues. A characteristic feature of the chicken glycophorin is a relatively high proportion of N-glycans to O-glycans, compared to the glycophorin A from human erythrocytes.  相似文献   

19.
It has been shown that malignant activation of ras proto-oncogenes was mediated by point mutations which resulted in the single amino acid conversions at positions 12, 13 or 61 of the ras gene products (p21 proteins). By analyzing randomly mutated ras genes, it has been demonstrated that amino acid substitutions at residues 12, 13, 59 and 63 activated p21. Furthermore, it has been shown that residues 16, 116 and 119 in p21 played critical roles in the guanine nucleotide binding and, consequently, the ability of the protein to induce changes characteristic of cellular transformation. By using the protein conformational prediction method of Chou and Fasman, the present work predicts that these critical amino acids, except glutamic acid at position 63, are located within beta-turns. The major "hot spots" for ras activation are codons 12 and 61. The author has predicted in an earlier paper that the single amino acid conversions at positions 12 and 61 would occur at beta-turn conformation consisting of residues 10-13 and 58-61, respectively. In the present study, probabilities of beta-turn occurrence at residues 10-13 or 58-61 of the p21 proteins encoded by various ras genes are compared. The probability for the normal p21 containing glycine as residue 12 is greatest, and the cancer-associated variants show less probabilities. The single amino acid substitutions at position 61 do not cause so decreased probabilities of beta-turn potential at residues 58-61, except the replacement by histidine. Histidine at position 61 is not predicted as occurring within a beta-turn.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Summary Using the label-fracture technique, an ultrastructural comparison was made of the number and distribution of wheat germ agglutinin (WGA)-binding sites between human normal and sickle red blood cells. The WGA was adsorbed to colloidal gold, and quantitative analysis of the electron micrographs revealed that more binding sites were present on the sickle erythrocytes than on the normal erythrocytes. Moreover, the sites were more clustered on the sickle red cells than on the normal red cells. Use of another lectin, Bandieraea simplicifolia-II, revealed that it did not bind to normal or sickle red cells. Because of the affinity of the WGA for sialic acid residues, it is probable that the WGA is binding to a transmembrane sialoglycoprotein, glycophorin A. The conformation and/or distribution of the glycophorin A molecules may be altered by the sickle hemoglobin that binds to the red cell membrane. Hence, as detected by WGA, new surface receptors, which could play a role in the adhesion of sickle cells to endothelium may be exposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号