首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both conservation biology and macroecology are synthetic, and macroecological research consistently has informed the theory and practice of biological conservation. Explicit integration of the macroecology of human systems and natural systems has been rare, but can advance the incorporation of social justice, environmental justice and environmental equity into conservation biology and participatory conservation (inclusion in decision‐making of those who are affected by, or can affect, that decision). The basis of this strong link is the focus of macroecology on the relations of a given biota to environmental patterns and processes, and these patterns and processes can affect humans differentially. Macroecological integration of social justice and conservation generally requires spatial and temporal representation of all variables at resolutions and extents that allow meaningful analyses. This requirement may facilitate clarity about social metrics and norms. To illustrate, we examine applications of macroecology to analysis of the effects of climate change on social justice and biological conservation; relations among climate, violence among humans and conservation; and the response of the spread of disease to social and ecological factors. We believe that macroecology is a means of providing transparent inferences that can inform conservation, health and social policies.  相似文献   

2.
Over the last two decades, macroecology – the analysis of large‐scale, multi‐species ecological patterns and processes – has established itself as a major line of biological research. Analyses of statistical links between environmental variables and biotic responses have long and successfully been employed as a main approach, but new developments are due to be utilized. Scanning the horizon of macroecology, we identified four challenges that will probably play a major role in the future. We support our claims by examples and bibliographic analyses. 1) Integrating the past into macroecological analyses, e.g. by using paleontological or phylogenetic information or by applying methods from historical biogeography, will sharpen our understanding of the underlying reasons for contemporary patterns. 2) Explicit consideration of the local processes that lead to the observed larger‐scale patterns is necessary to understand the fine‐grain variability found in nature, and will enable better prediction of future patterns (e.g. under environmental change conditions). 3) Macroecology is dependent on large‐scale, high quality data from a broad spectrum of taxa and regions. More available data sources need to be tapped and new, small‐grain large‐extent data need to be collected. 4) Although macroecology already lead to mainstreaming cutting‐edge statistical analysis techniques, we find that more sophisticated methods are needed to account for the biases inherent to sampling at large scale. Bayesian methods may be particularly suitable to address these challenges. To continue the vigorous development of the macroecological research agenda, it is time to address these challenges and to avoid becoming too complacent with current achievements.  相似文献   

3.
A macroecological perspective has become recognised as an important component of ecological studies, serving particularly to crystallise the notion that processes operating at large spatial (geographic) and temporal scales often play important roles in shaping species assemblages and communities at more local scales. However, within the field, consideration has been surprisingly lacking of the influence of humans in shaping macroecological patterns, the determinants of those patterns, or their consequences for local assemblages and communities. Here I briefly review the reasons why this might be so, and the possible interactions between macroecology and people, and suggest some simple steps for exploring this issue.  相似文献   

4.
Aim Earth observation (EO) products are a valuable alternative to spectral vegetation indices. We discuss the availability of EO products for analysing patterns in macroecology, particularly related to vegetation, on a range of spatial and temporal scales. Location Global. Methods We discuss four groups of EO products: land cover/cover change, vegetation structure and ecosystem productivity, fire detection, and digital elevation models. We address important practical issues arising from their use, such as assumptions underlying product generation, product accuracy and product transferability between spatial scales. We investigate the potential of EO products for analysing terrestrial ecosystems. Results Land cover, productivity and fire products are generated from long‐term data using standardized algorithms to improve reliability in detecting change of land surfaces. Their global coverage renders them useful for macroecology. Their spatial resolution (e.g. GLOBCOVER vegetation, 300 m; MODIS vegetation and fire, ≥ 500 m; ASTER digital elevation, 30 m) can be a limiting factor. Canopy structure and productivity products are based on physical approaches and thus are independent of biome‐specific calibrations. Active fire locations are provided in near‐real time, while burnt area products show actual area burnt by fire. EO products can be assimilated into ecosystem models, and their validation information can be employed to calculate uncertainties during subsequent modelling. Main conclusions Owing to their global coverage and long‐term continuity, EO end products can significantly advance the field of macroecology. EO products allow analyses of spatial biodiversity, seasonal dynamics of biomass and productivity, and consequences of disturbances on regional to global scales. Remaining drawbacks include inter‐operability between products from different sensors and accuracy issues due to differences between assumptions and models underlying the generation of different EO products. Our review explains the nature of EO products and how they relate to particular ecological variables across scales to encourage their wider use in ecological applications.  相似文献   

5.
Mark Padgham 《Ecosystems》2011,14(1):94-111
Many animals move in response to climatic variations, with responses of highly mobile species such as waterbirds being especially dynamic. Climatic patterns are commonly quantified through static aggregation of meteorological variables, yet static analyses may only poorly relate to dynamic ecological responses. A technique is developed here to examine relationships between ecological responses and climatic dynamics through quantifying the dynamic structure of large-scale weather systems as they propagate through time and space. Analyses of localized climatic dynamics permit insight into the dependence of ecosystem responses not just upon spatial and temporal scales, but also upon frequencies and prevailing directions, of climatic variation. The technique is applied to the single variable of the aggregate abundance of all species of waterbirds counted in the annual Eastern Australian Aerial Waterbird Survey. The strongest climatic influence on avian abundance is shown to be the coherence of large-scale precipitation systems with spectral frequencies of around 15 days that propagate south-east into the interior of the continent from the tropical north. Directly aggregated rainfall presents a secondary influence. These comprehensively integrative analyses of localized weather are ultimately able to explain over 75% of the inter-annual variance in the aggregate abundance of over 90 species of waterbirds. These results provide a powerful demonstration of the techniques developed here, and reveal the profound extent to which environmental variability structures Australian ecosystems.  相似文献   

6.
Conserving different spatial and temporal dimensions of biological diversity is considered necessary for maintaining ecosystem functions under predicted global change scenarios. Recent work has shifted the focus from spatially local (α‐diversity) to macroecological scales (β‐ and γ‐diversity), emphasizing links between macroecological biodiversity and ecosystem functions (MB–EF relationships). However, before the outcomes of MB–EF analyses can be useful to real‐world decisions, empirical modeling needs to be developed for natural ecosystems, incorporating a broader range of data inputs, environmental change scenarios, underlying mechanisms, and predictions. We outline the key conceptual and technical challenges currently faced in developing such models and in testing and calibrating the relationships assumed in these models using data from real ecosystems. These challenges are explored in relation to two potential MB–EF mechanisms: “macroecological complementarity” and “spatiotemporal compensation.” Several regions have been sufficiently well studied over space and time to robustly test these mechanisms by combining cutting‐edge spatiotemporal methods with remotely sensed data, including plant community data sets in Australia, Europe, and North America. Assessing empirical MB–EF relationships at broad spatiotemporal scales will be crucial in ensuring these macroecological processes can be adequately considered in the management of biodiversity and ecosystem functions under global change.  相似文献   

7.
8.
吴志丰  邱月  任引  蒋梧州  杨磊 《生态学报》2022,42(6):2489-2500
城市化进程将原有自然生态系统改造为以不透水面为主的人工景观,这种变化影响了空气微生物群落的生存环境及其时空异质性。空气微生物受城市化的影响程度与其生态功能的发挥关系密切,微生物群落特征的改变会在一定程度上影响当地生态环境质量并给人群健康带来潜在威胁。城市化进程和空气微生物群落动态分属两个时空尺度差异巨大的生态过程,二者的联合分析已成为目前生态安全与环境健康领域的研究热点。从空气微生物的来源及其组成特征、空气微生物群落的时空异质性及其影响因素以及空气微生物的生态环境效应三个方面系统梳理和总结了近年来探索城市化和空气微生物群落动态之间关系的研究,从宏观视角探讨了当前空气微生物研究的不足,并引入社会-经济-自然复合生态系统、景观格局与过程等相关理论和方法来分析城市化对空气微生物群落特征的影响,旨在明确城市景观格局作用下的空气微生物群落对人群健康的潜在威胁程度,为快速城市化过程中的人居环境的改善提供参考。  相似文献   

9.
Scale and macroecological patterns in seed dispersal mutualisms   总被引:2,自引:0,他引:2  
Although some studies of seed dispersal mutualisms have documented adaptive relationships between fruits and frugivores, others have shown that adaptive patterns are constrained by phylogenetic, historical or climatic effects. Variable results among studies have thwarted attempts to find a paradigm to unite the field and direct research. Two recent studies in Global Ecology and Biogeography exemplify this dichotomy. One paper reported adaptive relationships between abundances of birds and fruits, while the other study found that bird‐fruit abundance patterns were constrained by climatic effects. Almost paradoxically, both studies were conducted at the same locale. However, they focused on different spatio‐temporal scales. These results are surprisingly consistent with several other recent studies that have taken a macroecological approach. They also indicate that mutualistic relationships between fruits and frugivores are scale dependent. When viewed together, recent work suggests that the conflicting results of previous studies may result from spatio‐temporal variability of mutualistic relationships. This paper briefly reviews the emerging field of seed dispersal macroecology. A growing appreciation for scale appears to be leading the field in a new direction.  相似文献   

10.
Stefano Mammola 《Ecography》2019,42(7):1331-1351
The use of semi‐isolated habitats such as oceanic islands, lakes and mountain summits as model systems has played a crucial role in the development of evolutionary and ecological theory. Soon after the discovery of life in caves, different pioneering authors similarly recognized the great potential of these peculiar habitats as biological model systems. In their 1969 paper in Science, ‘The cave environment’, Poulson and White discussed how caves can be used as natural laboratories in which to study the underlying principles governing the dynamics of more complex environments. Together with other seminal syntheses published at the time, this work contributed to establishing the conceptual foundation for expanding the scope and relevance of cave‐based studies. Fifty years after, the aim of this review is to show why and how caves and other subterranean habitats can be used as eco‐evolutionary laboratories. Recent advances and directions in different areas are provided, encompassing community ecology, trophic‐webs and ecological networks, conservation biology, macroecology and climate change biology. Special emphasis is given to discuss how caves are only part of the extended network of fissures and cracks that permeate most substrates and, thus, their ecological role as habitat islands is critically discussed. Numerous studies have quantified the relative contribution of abiotic, biotic and historical factors in driving species distributions and community turnovers in space and time, from local to regional scales. Conversely, knowledge of macroecological patterns of subterranean organisms at a global scale remains largely elusive, due to major geographical and taxonomical biases. Also, knowledge regarding subterranean trophic webs and the effect of anthropogenic climate change on deep subterranean ecosystems is still limited. In these research fields, the extensive use of novel molecular and statistical tools may hold promise for quickly producing relevant information not accessible hitherto.  相似文献   

11.
Theory posits that community dynamics organize at distinct hierarchical scales of space and time, and that the spatial and temporal patterns at each scale are commensurate. Here we use time series modeling to investigate fluctuation frequencies of species groups within invertebrate metacommunities in 26 boreal lakes over a 20-year period, and variance partitioning analysis to study whether species groups with different fluctuation patterns show spatial signals that are commensurate with the scale-specific fluctuation patterns identified. We identified two groups of invertebrates representing hierarchically organized temporal dynamics: one species group showed temporal variability at decadal scales (slow patterns of change), whilst another group showed fluctuations at 3 to 5-year intervals (faster change). This pattern was consistently found across all lakes studied. A spatial signal was evident in the slow but not faster-changing species groups. As expected, the spatial signal for the slow-changing group coincided with broad-scale spatial patterns that could be explained with historical biogeography (ecoregion delineation, and dispersal limitation assessed through a dispersal trait analysis). In addition to spatial factors, the slow-changing groups correlated with environmental variables, supporting the conjecture that boreal lakes are undergoing environmental change. Taken together our results suggest that regionally distinct sets of taxa, separated by biogeographical boundaries, responded similarly to broad-scale environmental change. Not only does our approach allow testing theory about hierarchically structured space-time patterns; more generally, it allows assessing the relative role of the ability of communities to track environmental change and dispersal constraints limiting community structure and biodiversity at macroecological scales.  相似文献   

12.
13.
Two different approaches currently prevail for predicting spatial patterns of species assemblages. The first approach (macroecological modelling, MEM) focuses directly on realized properties of species assemblages, whereas the second approach (stacked species distribution modelling, S‐SDM) starts with constituent species to approximate the properties of assemblages. Here, we propose to unify the two approaches in a single ‘spatially explicit species assemblage modelling’ (SESAM) framework. This framework uses relevant designations of initial species source pools for modelling, macroecological variables, and ecological assembly rules to constrain predictions of the richness and composition of species assemblages obtained by stacking predictions of individual species distributions. We believe that such a framework could prove useful in many theoretical and applied disciplines of ecology and evolution, both for improving our basic understanding of species assembly across spatio‐temporal scales and for anticipating expected consequences of local, regional or global environmental changes. In this paper, we propose such a framework and call for further developments and testing across a broad range of community types in a variety of environments.  相似文献   

14.
JANI HEINO 《Freshwater Biology》2011,56(9):1703-1722
1. The aim of this paper is to review literature on species diversity patterns of freshwater organisms and underlying mechanisms at large spatial scales. 2. Some freshwater taxa (e.g. dragonflies, fish and frogs) follow the classical latitudinal decline in regional species richness (RSR), supporting the patterns found for major terrestrial and marine organism groups. However, the mechanisms causing this cline in most freshwater taxa are inadequately understood, although research on fish suggests that energy and history are major factors underlying the patterns in total species and endemic species richness. Recent research also suggests that not all freshwater taxa comply with the decline of species richness with latitude (e.g. stoneflies, caddisflies and salamanders), but many taxa show more complex geographical patterns in across‐regions analyses. These complexities are even more profound when studies of global, continental and regional extents are compared. For example, clear latitudinal gradients may be present in regional studies but absent in global studies (e.g. macrophytes). 3. Latitudinal gradients are often especially weak in the across‐ecosystems analyses, which may be attributed to local factors overriding the effects of large‐scale factors on local communities. Nevertheless, local species richness (LSR) is typically linearly related to RSR (suggesting regional effects on local diversity), although saturating relationships have also been found in some occasions (suggesting strong local effects on diversity). Nestedness has often been found to be significant in freshwater studies, yet this pattern is highly variable and generally weak, suggesting also a strong beta diversity component in freshwater systems. 4. Both geographical location and local environmental factors contribute to variation in alpha diversity, nestedness and beta diversity in the freshwater realm, although the relative importance of these two groups of explanatory variables may be contingent on the spatial extent of the study. The mechanisms associated with spatial and environmental control of community structure have also been inferred in a number of studies, and most support has been found for species sorting (possibly because many freshwater studies have species sorting as their starting point), although also dispersal limitation and mass effects may be contributing to the patterns found. 5. The lack of latitudinal gradients in some freshwater taxa begs for further explanations. Such explanations may not be gained for most freshwater taxa in the near future, however, because we lack species‐level information, floristic and faunistic knowledge, and standardised surveys along extensive latitudinal gradients. A challenge for macroecology is thus to use the best possible species‐level information on well‐understood groups (e.g. fish) or use surrogates for species‐level patterns (e.g. families) and then develop hypotheses for further testing in the freshwater realm. An additional research challenge concerns understanding patterns and mechanisms associated with the relationships between alpha, beta and gamma components of species diversity. 6. Understanding the mechanistic basis of species diversity patterns should preferably be based on a combination of large‐scale macroecological and landscape‐scale metacommunity research. Such a research approach will help in elucidating patterns of species diversity across regional and local scales in the freshwater realm.  相似文献   

15.
Mangroves harbor diverse invertebrate communities, suggesting that macroecological distribution patterns of habitat‐forming foundation species drive the associated faunal distribution. Whether these are driven by mangrove biogeography is still ambiguous. For small‐bodied taxa, local factors and landscape metrics might be as important as macroecology. We performed a meta‐analysis to address the following questions: (1) can richness of mangrove trees explain macroecological patterns of nematode richness? and (2) do local landscape attributes have equal or higher importance than biogeography in structuring nematode richness? Mangrove areas of Caribbean‐Southwest Atlantic, Western Indian, Central Indo‐Pacific, and Southwest Pacific biogeographic regions. We used random‐effects meta‐analyses based on natural logarithm of the response ratio (lnRR) to assess the importance of macroecology (i.e., biogeographic regions, latitude, longitude), local factors (i.e., aboveground mangrove biomass and tree richness), and landscape metrics (forest area and shape) in structuring nematode richness from 34 mangroves sites around the world. Latitude, mangrove forest area, and forest shape index explained 19% of the heterogeneity across studies. Richness was higher at low latitudes, closer to the equator. At local scales, richness increased slightly with landscape complexity and decreased with forest shape index. Our results contrast with biogeographic diversity patterns of mangrove‐associated taxa. Global‐scale nematode diversity may have evolved independently of mangrove tree richness, and diversity of small‐bodied metazoans is probably more closely driven by latitude and associated climates, rather than local, landscape, or global biogeographic patterns.  相似文献   

16.
There is growing interest in the integration of macroecology and palaeoecology towards a better understanding of past, present, and anticipated future biodiversity dynamics. However, the empirical basis for this integration has thus far been limited. Here we review prospects for a macroecology–palaeoecology integration in biodiversity analyses with a focus on marine microfossils [i.e. small (or small parts of) organisms with high fossilization potential, such as foraminifera, ostracodes, diatoms, radiolaria, coccolithophores, dinoflagellates, and ichthyoliths]. Marine microfossils represent a useful model system for such integrative research because of their high abundance, large spatiotemporal coverage, and good taxonomic and temporal resolution. The microfossil record allows for quantitative cross‐scale research designs, which help in answering fundamental questions about marine biodiversity, including the causes behind similarities in patterns of latitudinal and longitudinal variation across taxa, the degree of constancy of observed gradients over time, and the relative importance of hypothesized drivers that may explain past or present biodiversity patterns. The inclusion of a deep‐time perspective based on high‐resolution microfossil records may be an important step for the further maturation of macroecology. An improved integration of macroecology and palaeoecology would aid in our understanding of the balance of ecological and evolutionary mechanisms that have shaped the biosphere we inhabit today and affect how it may change in the future.  相似文献   

17.
The difficulty of integrating multiple theories, data and methods has slowed progress towards making unified inferences of ecological change generalizable across large spatial, temporal and taxonomic scales. However, recent progress towards a theoretical synthesis now provides a guiding framework for organizing and integrating all primary data and methods for spatiotemporal assemblage‐level inference in ecology. In this paper, we describe how recent theoretical developments can provide an organizing paradigm for linking advances in data collection and methodological frameworks across disparate ecological sub‐disciplines and across large spatial and temporal scales. First, we summarize the set of fundamental processes that determine change in multispecies assemblages across spatial and temporal scales by reviewing recent theoretical syntheses of community ecology. Second, we review recent advances in data and methods across the main sub‐disciplines concerned with ecological inference across large spatial, temporal and taxonomic scales, and organize them based on the primary fundamental processes they include, rather than the spatiotemporal scale of their inferences. Finally, we highlight how iteratively focusing on only one fundamental process at a time, but combining all relevant spatiotemporal data and methods, may reduce the conceptual challenges to integration among ecological sub‐disciplines. Moreover, we discuss a number of avenues for decreasing the practical barriers to integration among data and methods. We aim to reconcile the recent convergence of decades of thinking in community ecology and macroecology theory with the rapid progress in spatiotemporal approaches for assemblage‐level inference, at a time where a robust understanding of spatiotemporal change in ecological assemblages is more crucial than ever to conserve biodiversity.  相似文献   

18.
Poleward declines in species diversity [latitudinal diversity gradients (LDG)] remain among the oldest and most widespread of macroecological patterns. However, their contemporary dynamics remain largely unexplored even though changing ecological conditions, including global change, may modify LDG and their respective ecosystems. Here, we examine temporal variation within a temperate Northwest Atlantic LDG using 31 years of annual fisheries-independent surveys and explore its dynamics in relation to a dominant climate signal [the wintertime North Atlantic Oscillation (NAO)] that varies interannually and alters the latitudinal gradient of Northwest Atlantic continental shelf bottom water temperatures. We found that the slopes of the annual LDG vary dramatically due to changes in geographic distributions of 100+ species, variations that are concealed within the cumulative, static LDG. These changes are strongly associated with changes in NAO sign and strength. This is the first illustration of temporal dynamics in a contemporary LDG and the first demonstration of the speed at which local environmental variations can alter an LDG. Our findings underscore the need to investigate factors that modify LDG separately from those that contribute to their origins.  相似文献   

19.
Most studies of plant–animal mutualistic networks have come from a temporally static perspective. This approach has revealed general patterns in network structure, but limits our ability to understand the ecological and evolutionary processes that shape these networks and to predict the consequences of natural and human‐driven disturbance on species interactions. We review the growing literature on temporal dynamics of plant–animal mutualistic networks including pollination, seed dispersal and ant defence mutualisms. We then discuss potential mechanisms underlying such variation in interactions, ranging from behavioural and physiological processes at the finest temporal scales to ecological and evolutionary processes at the broadest. We find that at the finest temporal scales (days, weeks, months) mutualistic interactions are highly dynamic, with considerable variation in network structure. At intermediate scales (years, decades), networks still exhibit high levels of temporal variation, but such variation appears to influence network properties only weakly. At the broadest temporal scales (many decades, centuries and beyond), continued shifts in interactions appear to reshape network structure, leading to dramatic community changes, including loss of species and function. Our review highlights the importance of considering the temporal dimension for understanding the ecology and evolution of complex webs of mutualistic interactions.  相似文献   

20.
Here we consider evolutionary patterns writ large in the fossil record. We argue that Darwin recognized but downgraded or de-emphasized several of these important patterns, and we consider what a renewed emphasis on these patterns can tell us about the evolutionary process. In particular, one of the key patterns we focus on is the role geographic isolation plays in fomenting evolutionary divergence; another one of the key patterns is stasis of species; the final pattern is turnovers, which exist at several hierarchical scales, including regional ecosystem replacement and pulses of speciation and extinction. We consider how each one of these patterns are related to the dynamic of changing ecological and environmental conditions over time and also investigate their significance in light of other concepts including punctuated equilibria and hierarchy theory. Ultimately, we tie each of these patterns into a framework involving macroecological dynamics and the important role environmental change plays in shaping evolution from the micro- to macroscale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号