首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R59 022 (6-[2-[4-[(4-fluorophenyl)phenylmethylene]-1- piperidinyl]ethyl]-7-methyl-5H-thiazolo[3,2-a]pyrimidin-5-one) has been suggested as an inhibitor of diacylglycerol kinase in erythrocyte membranes and intact platelets. In the present study, we have investigated the effects of this drug on arachidonic acid mobilization occurring in response to thrombin in intact human platelets. Our results indicate that release of arachidonic acid from membrane phospholipids such as phosphatidylcholine and phosphatidylinositol was severely impaired by R59 022 and the extent of inhibition amounted to 77% and 84%, respectively, as compared to controls. This resulted in a dramatic decrease in the accumulation of free arachidonic acid (labeled/unlabeled) and the percent inhibition of free arachidonic acid accumulation amounted to 80-90% as compared to controls. Furthermore, the drug caused a significant accumulation of thrombin-induced diacylglycerol (labeled) without affecting the formation of labeled phosphatidic acid (PA). We found no significant changes in the radioactivity of either phosphatidylethanolamine or phosphatidylserine following stimulation with thrombin in the presence or absence of R59 022. We conclude that the observed inhibition of thrombin-induced arachidonic acid mobilization by R59 022 may be due to its effects on the activities of diacylglycerol lipase/phospholipase A2. In addition, the failure of further stimulation of thrombin-induced PA by R59 022 may indicate that PA-specific phospholipase A2 is either not involved in the release of arachidonic acid or is not a major source for arachidonic acid release in thrombin-stimulated human platelets. These findings may prove to be important when this drug is used as a selective inhibitor of diacylglycerol kinase.  相似文献   

2.
The diacylglycerol kinase inhibitor R59022 (10 microM) potentiates secretion and aggregation responses in human platelets challenged with sub-maximal concentrations of thrombin. Potentiation correlates closely with increased formation of diacylglycerol, increased phosphorylation of a 40 kDa protein, a known substrate for protein kinase C, and with decreased formation of phosphatidic acid, the product of diacylglycerol kinase. Phosphorylation of myosin light chains, formation of inositol phosphates and the mobilization of Ca2+ by thrombin are not affected by R59022 (10 microM). These data support a role for protein kinase C in platelet aggregation and secretion, and provide further evidence that endogenous diacylglycerols bring about the activation of this enzyme. These data also add further argument against a role for phosphatidic acid in platelet activation.  相似文献   

3.
Sphingosine 1-phosphate (Sph-1-P) is considered to play a dual role in cellular signaling, acting intercellularly as well as intracellularly. In this study, we examined the role of Sph-1-P as a signaling molecule in human platelets, using DL-threo-dihydrosphingosine (DHS) and N,N-dimethylsphingosine (DMS), inhibitors of Sph kinase and protein kinase C. Both DMS and DL-threo-DHS were confirmed to be competitive inhibitors of Sph kinase obtained from platelet cytoplasmic fractions. In intact platelets labeled with [3H]Sph, stimulation with 12-O-tetradecanoylphorbol 13-acetate or thrombin did not affect [3H]-Sph-1-P formation. While both DMS and DL-threo-DHS inhibited not only [3H]Sph-1-P formation but also protein kinase C-dependent platelet aggregation, staurosporine, a potent protein kinase inhibitor, only inhibited the protein kinase C-dependent reaction. Hence, it is unlikely that Sph kinase activation and the resultant Sph-1-P formation are mediated by protein kinase C in platelets. Furthermore, Ca2+ mobilization induced by platelet agonists that act on G protein-coupled receptor was not affected by DMS or DL-threo-DHS. Our results suggest that Sph-1-P does not mediate intracellular signaling, including Ca2+ mobilization, in platelets.  相似文献   

4.
In intact platelets, a permeable diacylglycerol having a 1,2-sn- but not 2,3-sn- configuration activated protein kinase C directly. In the presence of Ca2+-ionophore this diacylglycerol caused full activation of platelet release reaction. 1,3-Isomer was inactive. Among these isomers only 1,2-sn-diacylglycerol was converted rapidly to the corresponding phosphatidic acid in both intact and broken cell preparations. Thus, the diacylglycerol which functions in stimulus-response coupling possesses a 1,2-sn-glycerol backbone, and other isomers are not involved in the signal transduction through the protein kinase C pathway.  相似文献   

5.
Diacylglycerol kinase is though to play a central role in the metabolism of diacylglycerol second messengers in agonist-stimulated cells. A series of diacylglycerol analogs were tested for their ability to act as substrates or inhibitors of diacylglycerol kinase with the goal of determining the substrate specificity of the enzyme, and of discovering inhibitors. Screening of these compounds was performed using a partially purified diacylglycerol kinase from pig brain. Modified assays for this enzyme using co-sonicated mixtures of diacylglycerol and anionic phospholipids were developed. This enzyme was found to be quite specific for sn-1,2-diacylglycerol (KM 24 microM for dioctanoyl-glycerol). Among the analogs investigated, only 1,2-dioctanoyl-2-amino-1,3-propanediol was utilized at a significant rate. Two analogs, dioctanoylethylene glycol (KI 58 microM) and 1-monooleoylglycerol (KI 91 microM), were potent inhibitors in vitro. These compounds were tested for effects on diacylglycerol formation and metabolism in thrombin-stimulated human platelets. Dioctanoylethylene glycol inhibited diacylglycerol phosphorylation in platelets (70-100% at 100 microM) leading to a longer-lived diacylglycerol signal. This compound may be a useful tool for studies of diacylglycerol kinase in other cell types. 1-Monooleoylglycerol treatment elevated diacylglycerol levels up to 4-fold in unstimulated platelets and up to 10-fold in thrombin-stimulated platelets. The implications with regard to the pathways of diacylglycerol metabolism in human platelets are discussed.  相似文献   

6.
Upon stimulation with serotonin of washed human platelets prelabeled with [32P]orthophosphate, we found an approximately 250% increase in [32P]phosphatidic acid (PA) formation, a small decrease in [32P]phosphatidylinositol 4,5-bisphosphate, and a concomitant increase in [32P]phosphatidylinositol 4-phosphate. Using [3H]arachidonate for prelabeling, [3H]diacylglycerol accumulated transiently at 10 s after addition of the agonist, [3H]PA increased but to a lower extent compared to 32P-labeled lipid, and the formation of both [3H]polyphosphoinositides increased. The serotonin-induced dose-dependent changes in [32P]PA correlate with its effect on the changes in slope of aggregation of platelets. The potency of 13 drugs to antagonize the serotonin-induced PA formation closely corresponds to both their potency to inhibit platelet aggregation and their binding affinity for serotonin-S2 receptor sites. It is suggested that at least part of the signal transducing system following activation of the serotonin-S2 receptors involves phospholipase C catalyzed inositol lipid breakdown yielding diacylglycerol which is subsequently phosphorylated to PA.  相似文献   

7.
In an earlier study we reported the effect of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] in releasing Ca2+ from highly purified human platelet intracellular membrane vesicles. [Authi & Crawford (1985) Biochem. J. 230, 247-253]. We have now investigated the metabolic and functional consequences of introducing Ins(1,4,5)P3 into saponin-permeabilized platelets. Washed human platelets when resuspended in a suitable medium were permeabilized with saponin (10-14 micrograms/ml) to allow entry of low-Mr water-soluble molecules without significant release of the cytoplasmic marker enzyme protein lactate dehydrogenase. Saponin-permeabilized platelets show identical platelet responses (shape change, aggregation and release of 5-hydroxy[14C]tryptamine) to both collagen (5 micrograms/ml) and thrombin (0.1 unit/ml) as obtained with intact cells, indicating that there is minimal disturbance to the surface membrane receptor topography for these two agonists. Ins(1,4,5)P3 (1-10 microM) added to saponin-treated platelets (but not to intact platelets) induced dose-related shape change, aggregation and release of 5-hydroxy[14C]tryptamine which at maximal doses was comparable with responses obtained with thrombin or collagen. The cyclo-oxygenase inhibitors indomethacin and aspirin, if added prior to saponization and Ins(1,4,5)P3 addition, completely inhibited both aggregation and release of 5-hydroxy[14C]tryptamine (EC50 for indomethacin, 50 nM; for aspirin, 30 microM). We believe that Ins(1,4,5)P3 induces the release of Ca2+ from intracellular storages sites which stimulates the Ca2+-dependent phospholipase A2 releasing arachidonic acid from membrane phospholipids. Arachidonic acid is then converted to the aggregatory prostanoids (prostaglandin H2 and thromboxane A2) resulting in the observed responses. This concept is supported by the use of the thromboxane receptor antagonists EPO 45 and EPO 92, both of which also completely inhibit Ins(1,4,5)P3-induced responses in saponin-permeabilized platelets. Electron microscopy of the platelet preparations revealed that thrombin- and collagen-induced platelet aggregates of intact and saponized cells were identical, showing extensive pseudopod formation and dense granule release. The Ins(1,4,5)P3-induced aggregates also showed similar dense granule release but an almost total absence of pseudopod formation. These results are discussed in the light of the second messenger role of Ins(1,4,5)P3 in stimulus-response coupling in platelets.  相似文献   

8.
Octadecadienoic acids (linoleic acid and linolelaidic acid) and the diacylglycerol, 1-oleoyl-2-acetyl-rac-glycerol (OAG) concentration-dependently induced activation of gel-filtered human platelets, i.e. aggregation and phosphorylation of 20 kDa and 47 kDa peptides. In contrast, octadecenoic acids (oleic and elaidic acid) and octadecanoic (stearic) acid were inactive. Octadecadienoic acid-induced platelet activation was suppressed by the protein kinase C inhibitor, polymyxin B, but not by the cyclooxygenase inhibitor, indomethacin. OAG-induced activation was potentiated by octadecadienoic acids present at non-stimulatory concentrations. Our data suggest that octadecadienoic acids and diacylglycerol synergistically induce platelet activation via protein kinase C. Furthermore, linolelaidic acid may provide a useful experimental tool to study fatty acid regulation of protein kinase C in intact cells.  相似文献   

9.
Thromboxane A2 (TXA2) induces platelet shape change, secretion, and aggregation. Using a novel TXA2/prostaglandin endoperoxide receptor antagonist, [1r-[1 alpha(Z),2 beta,3 beta,5 alpha]]-(+)-7-[5-[[(1,1'- biphenyl)-4-yl]methoxy]-3-hydroxy-2-(1-piperidinyl) cyclopentyl]-4-heptenoic acid hydrochloride (GR32191), we demonstrate that these responses are mediated by at least two receptor-effector systems. GR32191 non-competitively inhibited platelet aggregation to the TXA2 mimetics, (15S)-hydroxy-11,9-(epoxymethano) prostadienoic acid (U46619) and [1S-(1 alpha,2 beta(5Z),3 alpha (1E,-3S), 4 alpha)]-7-[3-(3-hydroxy-4-(p-iodophenoxy)-1-butenyl)7- oxabicyclo[2.2.1]hept-2yl]-5-heptenoic acid by binding irreversibly to a TXA2/prostaglandin endoperoxide receptor. Dissociation of [3H]GR32191 from human platelets demonstrated two specific binding sites, one which was rapidly dissociating and a site to which binding was essentially irreversible. Stimulation by U46619 of platelets incubated with GR32191 and subsequently washed to expose the reversible binding site failed to aggregate or to secrete [3H]5-hydroxy-tryptamine; formation of inositol phosphates and activation of protein kinase C were markedly suppressed. In contrast, platelet shape change and calcium stimulation remained at 90% of control. Furthermore, stimulation of the reversible binding site with U46619 induced aggregation in the presence of ADP, demonstrating its functional importance in amplifying the response to other agonists. These data suggest that TXA2 mediates platelet activation through at least two receptor-effector systems; one linked to phospholipase C activation, resulting in platelet aggregation and secretion and a second site mediating an increase in cytosolic calcium and platelet shape change.  相似文献   

10.
Whereas adenosine itself exerted independent stimulatory and inhibitory effects on the adenylate cyclase activity of a platelet particulate fraction at low and high concentrations respectively, 2-substituted and N6-monosubstituted adenosines had stimulatory but greatly decreased inhibitory effects. Deoxyadenosines, on the other hand, had enhanced inhibitory but no stimulatory effects. The most potent inhibitors found were, in order of increasing activity, 9-(tetrahydro-2-furyl)adenine (SQ 22536), 2',5'-dideoxyadenosine and 2'-deoxyadenosine 3'-monophosphate. Kinetic studies on prostaglandin E1-activated adenylate cyclase showed that the inhibition caused by either 2',5'-dideoxyadenosine or compound SQ 22536 was non-competitive with MgATP and that the former compound, at least, showed negative co-operativity; 50% inhibition was observed with 4 micron-2',5'-dideoxyadenosine or 13 micron-SQ 22536. These two compounds also inhibited both the basal and prostaglandin E1-activated adenylate cyclase activities of intact platelets, when these were measured as the increases in cyclic [3H]AMP in platelets that had been labelled with [3H]adenine and were then incubated briefly with papaverine or papaverine and prostaglandin E1. Both compounds, but particularly 2',5'-dideoxyadenosine, markedly decreased the inhibition by prostaglandin E1 of platelet aggregation induced by ADP or [arginine]vasopressin as well as the associated increases in platelet cyclic AMP, so providing further evidence that the effects of prostaglandin E1 on platelet aggregation are mediated by cyclic AMP. 2'-Deoxyadenosine 3'-monophosphate did not affect the inhibition of aggregation by prostaglandin E1, suggesting that the site of action of deoxyadenosine derivatives on adenylate cyclase is intracellular. Neither 2',5'-dideoxyadenosine nor compound SQ 22536 alone induced platelet aggregation. Moreover, neither compound potentiated platelet aggregation or the platelet release reaction when suboptimal concentrations of ADP, [arginine]vasopressin, collagen or arachidonate were added to heparinized or citrated platelet-rich plasma in the absence of prostaglandin E1. These results show that cyclic AMP plays no significant role in the responses of platelets to aggregating agents in the absence of compounds that increase the platelet cyclic AMP concentration above the resting value.  相似文献   

11.
R59022 is an inhibitor of the enzyme 1,2-diacylglycerol (DAG) kinase, which, by inhibiting the conversion of DAG to phosphatidic acid, causes an increase in endogenous DAG levels and the activity of the DAG-dependent enzyme protein kinase C. This property of the drug was utilized in the present study to assess the role of DAG, i.e., its relative importance as a potentiatory versus inhibitory mediator, in agonist-induced platelet activation. The phosphorylation of the 40-47-kDa protein by protein kinase C was monitored as an indicator of endogenous DAG levels and correlated with other agonist-induced platelet responses such as platelet aggregation, 5-hydroxytryptamine (5HT) secretion and arachidonate release, the agonists used being those that induce DAG formation, e.g., thrombin and collagen. Pretreatment of platelets with R59022 before agonist addition resulted in the potentiation of 5HT secretion as well as 45 kDa protein phosphorylation induced by thrombin and the DAG analogue, 1,2-dioctanoylglycerol (DiC8). However, collagen-induced 5HT secretion was significantly inhibited (70%) in the presence of R59022, which also had strong inhibitory effects on aggregation induced by collagen, as well as by thrombin and DiC8. The inhibition of collagen-induced secretion by R59022 was in contrast to the potentiatory effects of DiC8 on the same, suggesting that even although DAG acts as a potentiatory signal in this system, the inhibitory effects of R59022 on collagen-induced aggregation can mask any effects of endogenous DAG. This inhibitory effect of R59022 on agonist-induced platelet aggregation makes it unsuitable as a tool in studying the role of DAG in platelet activation induced by agonists such as collagen as well as the 'weak' agonists (ADP, adrenaline and platelet-activating factor), where aggregation mediates other responses such as arachidonate release and secretion. Furthermore, potentiatory effects of R59022 on 5HT secretion induced by phorbol 12-myristate 13-acetate and ionomycin, which are effects unlikely to be related to inhibition of DAG kinase was observed, and these effects further underline the non-specificity in the actions of R59022 and its limitations as a tool in studying platelet stimulus-response coupling.  相似文献   

12.
In hepatocytes pre-labelled with [3H]glycerol, compound R59022 (6-[2-(4-[(4-fluorophenyl)phenylmethylene]-1-piperidinyl)ethyl]-7- methyl-5H-thiazolo[3,2-alpha]pyrimidin-5-one) and 2-bromooctanoate each increased the amount of radioactivity in diacylglycerols. R59022 mimicked the actions of 12-O-tetradecanoylphorbol 13-acetate in completely abolishing the activation by adrenaline (but not that by vasopressin or glucagon) of glycogen phosphorylase a, and in decreasing the activity of glycogen synthetase. Exogenous dioctanoylglycerol caused a small inhibition of adrenaline-stimulated phosphorylase activity. The concentration of R59022 which gave half-maximal inhibition of adrenaline-stimulated phosphorylase activity was 15 microM. Maximal inhibition was observed within 2 min of addition of R59022. 2-Bromooctanoate activated phosphorylase by a process independent of changes in cyclic AMP and Ca2+, and decreased glycogen synthetase. It is concluded that in hepatocytes (i) diacylglycerols which accumulate as a result of the inhibition of diacylglycerol kinase by R59022 activate protein kinase C and (ii) 2-bromooctanoate increases diacylglycerols but also has other effects on hepatocyte metabolism.  相似文献   

13.
Diacylglycerol has gained wide acceptance as an important second messenger in the signal transduction mechanism by which occupancy of certain membrane receptors such as the formyl peptide receptor of neutrophils leads to biological responses, but supporting evidence for this proposed role is limited. We have utilized a recently developed diacylglycerol kinase assay (Preiss, J. E., Loomis, C. R., Bishop, W. R., Stein, R., Niedel, J. E., and Bell, R. M. (1986) J. Biol. Chem. 261, 8597-8600) to characterize the diacylglycerol response of normal human neutrophils stimulated with N-formyl-methionyl-leucyl-phenylalanine (fMLP) and other formyl peptides. fMLP alone stimulated a slow, prolonged 36% rise in diacylglycerol levels above basal levels. Cytochalasin B enhances several fMLP-stimulated neutrophil responses, including aggregation, superoxide production, and degranulation. Pretreatment of neutrophils with cytochalasin B markedly increased the rate and extent of the diacylglycerol response to fMLP stimulation. Diacylglycerol peaked at 5 min at 206 +/- 21% above basal levels with a t1/2 of 45 s. The diacylglycerol response was time- and fMLP and cytochalasin B concentration-dependent, appropriate for the known biological activities of several peptide analogues, and completely inhibited by pretreatment with pertussis toxin. These data demonstrate that diacylglycerol may function as a second messenger for neutrophil activation and suggest that cytochalasin B enhancement of neutrophil biology may be the result of an enhanced diacylglycerol response.  相似文献   

14.
The potential involvement of vicinal dithiols in the expression of platelet-activating factor (AGEPC)- and A23187-induced alterations in rabbit platelets was explored through the use of phenylarsine oxide (PhAsO) and certain analogous derivatives. PhAsO (As3+) but not phenylarsonic acid (As5+) inhibited markedly at 1 microM concentration the release of arachidonic acid initiated by AGEPC and the ionophore A23187. In contrast, AGEPC-induced phosphatidic acid formation, phosphorylation of 40- and 20-kDa proteins, and Ca2+ uptake from external medium were not inhibited substantially by 1 microM PhAsO. However, these latter metabolic responses to AGEPC were inhibited by PhAsO at higher doses (10 microM). AGEPC- and thrombin-induced platelet aggregation and serotonin secretion also were prevented by PhAsO. The IC50 value of PhAsO was 2.7 +/- 1.2 microM toward AGEPC (5 X 10(-10) M)-induced serotonin release. Further, ATP and cAMP levels in PhAsO-treated platelets were not changed from controls. Interestingly, addition of Ca2+ to platelet sonicates (prepared in EDTA) caused diacylglycerol production and free arachidonic acid formation, even in the presence of 133 microM PhAsO. This would suggest that in the intact platelets PhAsO acted indirectly on phospholipase A2 and/or phospholipase C activities. Finally, a dithiol compound, 2,3-dimercaptopropanol, reversed the inhibition of platelet aggregation and arachidonic acid release effected by PhAsO. On the other hand, a monothiol compound, 2-mercaptoethanol, was not effective in preventing or in reversing the action of PhAsO. These observations suggest that vicinal sulfhydryl residues may be involved in stimulus-induced platelet activation.  相似文献   

15.
Low concentrations of Ca2+-mobilizing agonists such as vasopressin, platelet-activating factor, ADP, the endoperoxide analogue U44069 and the Ca2+ ionophore A23187 enhance the binding of [3H]phorbol 12,13-dibutyrate (PdBu) to intact human platelets. This effect is prevented by preincubation of platelets with prostacyclin (except for A23187). Adrenaline, which does not increase Ca2+ in the platelet cytosol, does not enhance the binding of [3H]PdBu to platelets. In addition, all platelet agonists except adrenaline potentiate the phosphorylation of the substrate of protein kinase C (40 kDa protein) induced by PdBu. Potentiation of protein kinase C activation is associated with increased platelet aggregation and secretion. Stimulus-induced myosin light-chain phosphorylation and shape change are not significantly affected, but formation of phosphatidic acid is decreased in the presence of PdBu. The results may indicate that low concentrations of agonists induce in intact platelets the translocation of protein kinase C to the plasma membrane by eliciting mobilization of Ca2+, and thereby place the enzyme in a strategic position for activation by phorbol ester. Such activation enhances platelet aggregation and secretion, but at the same time suppresses activation of phospholipase C. Therefore, at least part of the synergism evoked by Ca2+ and phorbol ester is mediated through a single pathway which involves protein kinase C. It is likely that the priming of protein kinase C by prior Ca2+ mobilization occurs physiologically in activated platelets.  相似文献   

16.
A biochemical pathway to platelet activation involving protein kinase C has been deemed "Ca2+-independent", because the intracellular fluorophore quin2 indicates no rise in cytoplasmic [Ca2+] in platelets stimulated by certain agonists. However, unlike quin2, the Ca2+-sensitive photoprotein aequorin demonstrates a rise in [Ca2+] when platelet aggregation is induced by phorbol ester or diacylglycerol. Aequorin and quin2 appear to report different aspects of Ca2+ homeostasis, and the absence of a quin2 signal may not be sufficient to establish that a metabolic pathway is "Ca2+-independent".  相似文献   

17.
The Saccharomyces cerevisiae DGK1 gene encodes a diacylglycerol kinase enzyme that catalyzes the formation of phosphatidate from diacylglycerol. Unlike the diacylglycerol kinases from bacteria, plants, and animals, the yeast enzyme utilizes CTP, instead of ATP, as the phosphate donor in the reaction. Dgk1p contains a CTP transferase domain that is present in the SEC59-encoded dolichol kinase and CDS1-encoded CDP-diacylglycerol synthase enzymes. Deletion analysis showed that the CTP transferase domain was sufficient for diacylglycerol kinase activity. Point mutations (R76A, K77A, D177A, and G184A) of conserved residues within the CTP transferase domain caused a loss of diacylglycerol kinase activity. Analysis of DGK1 alleles showed that the in vivo functions of Dgk1p were specifically due to its diacylglycerol kinase activity. The DGK1-encoded enzyme had a pH optimum at 7.0-7.5, required Ca(2+) or Mg(2+) ions for activity, was potently inhibited by N-ethylmaleimide, and was labile at temperatures above 40 degrees C. The enzyme exhibited positive cooperative (Hill number = 2.5) kinetics with respect to diacylglycerol (apparent K(m) = 6.5 mol %) and saturation kinetics with respect to CTP (apparent K(m) = 0.3 mm). dCTP was both a substrate (apparent K(m) = 0.4 mm) and competitive inhibitor (apparent K(i) = 0.4 mm) of the enzyme. Diacylglycerol kinase activity was stimulated by major membrane phospholipids and was inhibited by CDP-diacylglycerol and sphingoid bases.  相似文献   

18.
Sphingosine is a potent inhibitor of [3H]phorbol dibutyrate binding and protein kinase C activity in vitro and in human platelets (Hannun, Y., Loomis, C., Merrill, A., and Bell, R. (1986) J. Biol. Chem. 261, 12604-12609). Preincubation of platelets with sphingosine resulted in the inhibition of platelet secretion and second phase aggregation in response to ADP, gamma-thrombin, collagen, arachidonic acid, and platelet activating factor. Sphingosine did not affect the initial shape change of platelets or the first phase of aggregation in response to these agonists. Ristocetin-induced platelet agglutination was not affected by sphingosine. Sphingosine inhibition of secondary aggregation (secretion and second phase aggregation) was overcome by phorbol dibutyrate and by the cell-permeable protein kinase C activator, dioctanoylglycerol. Furthermore, platelet secretion and irreversible aggregation were induced by protein kinase C activators in platelets that had been "primed" to undergo initial shape change and first phase aggregation by low concentrations of agonists. These results suggest that protein kinase C activation is a necessary component in the signal transducing pathways that lead to platelet activation. Higher concentrations of agonists, however, induced irreversible aggregation and partial secretion in the presence of sphingosine, suggesting the existence of protein kinase C-independent pathways for platelet activation. These results demonstrate the utility of sphingosine as a pharmacologic tool in probing the role of protein kinase C in signal transduction.  相似文献   

19.
ADP-induced platelet responses play an important role in the maintenance of hemostasis. There has been disagreement concerning the identity of an ADP receptor on the platelet surface. The chemical structure of 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl) shows considerable resemblance to that of the adenine moiety of adenine-based nucleotides. The reagent has been previously used by other investigators as an affinity label for adenine nucleotide-requiring enzymes, such as mitochondrial ATPase and the catalytic subunit of cAMP-dependent protein kinase. Since ADP-induced platelet responses depend on the binding of ADP to its receptor, we investigated the effect on ADP-induced platelet responses and the nature of ADP-binding protein modified by NBD-Cl. NBD-Cl inhibited ADP-induced shape change and aggregation of platelets in platelet-rich plasma in a concentration- and time-dependent manner. NBD-Cl also inhibited ADP-induced shape change, aggregation, exposure of fibrinogen binding sites, secretion, and calcium mobilization in washed platelets. NBD-Cl did not act as an agonist for platelet shape change and aggregation. Covalent modification of platelets by NBD-Cl blocked the ability of ADP to antagonize the increase in intracellular levels of cAMP mediated by iloprost (a stable analogue of prostaglandin I2). NBD-Cl was quite specific in inhibiting platelet aggregation by those agonists, e.g., ADP, collagen, and U44619 (a thromboxane mimetic), that completely or partially depend on the binding of ADP to its receptor. Autoradiogram of the gel obtained by SDS-PAGE of solubilized platelets modified by [14C]-NBD-Cl showed the presence of a predominant radiolabeled protein band at 100 kDa corresponding to aggregin, a putative ADP receptor. The intensity of this band was considerably decreased when platelets were either preincubated with ADP and ATP or covalently modified by a sulfhydryl group modifying reagent before modification by [14C]-NBD-Cl. These results (1) indicate that covalent modification of aggregin by NBD-Cl contributed to loss of the ADP-induced platelet responses, and (2) suggest that there is a sulfhydryl group in the ADP-binding domain of aggregin. © 1996 Wiley-Liss, Inc.  相似文献   

20.
In platelets, and in several other cell systems, pre-treatment with protein kinase C activators such as phorbol 12-myristate 13-acetate (PMA) results in the inhibition of receptor-mediated responses, suggesting that protein kinase C may play an important role in the termination of signal transduction. In the present study, we have attempted to locate the site of action of phorbol ester by comparing thrombin-induced (i.e. receptor-mediated) platelet activation with that induced by guanosine 5'-[gamma-thio]triphosphate (GTP[S]) and NaF, two agents which by-pass the receptor and initiate platelet responses by directly modulating G-protein function. After a 10 s pre-treatment with PMA (16 nM), dense-granule secretion induced by thrombin (0.2 unit/ml), GTP[S] (40 microM) and NaF (30 mM) was potentiated, resulting in a greater than additive response to agent plus PMA. However, after a 5 min pre-treatment, thrombin-induced secretion alone was inhibited, whereas PMA plus GTP[S]/NaF-induced release remained greater than additive. [32P]Phosphatidate formation in response to all three agents, in contrast, was inhibited by 50-70% in PMA (5 min)-treated platelets. That secretion induced by these agents is a protein kinase C-dependent event was demonstrable by using staurosporine, a protein kinase C inhibitor which at concentrations of 1-10 nM inhibited (70-90%) PMA-induced as well as thrombin- and NaF-induced secretion and protein phosphorylation. In membranes from PMA-treated platelets, thrombin-stimulated GTPase activity was significantly enhanced compared with that in untreated membranes (59% versus 82% increase over basal activity). The results suggest that inhibition of receptor-mediated responses by PMA may be directed towards two sites relating to G-protein activation: (i) receptor-stimulated GTPase activity and (ii) G-protein-phospholipase C coupling. Furthermore, the lack of inhibition of NaF- and GTP[S]-induced secretion by PMA suggests that different mechanisms may be involved in thrombin-induced and G-protein-activator-induced secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号