首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The circular dichroism of Ac-(Ala)x-OMe and H-Lys-(Lys)x-OH with x = 1, 2, 3, and 4 has been measured in aqueous solutions. The oligomers with x = 4 show similar circular dichroism spectra in water when the lysyl amino groups are protonated, and they respond in similar fashion to heating and to sodium perchlorate. Both oligomers at 15°C exhibit a positive circular dichroism band at 217–218 nm, which is eliminated by the isothermal addition of 4 M sodium perchlorate or by heating. The positive circular dichroism of the lysine oligomer is also eliminated when the pH is elevated to deprotonate the amino groups. Positive circular dichroism is still observed for Ac-(Ala)4-OMe at elevated pH. Circular dichroism spectra have been estimated for poly(L -alanine) and poly(L -lysine) as statistical coils under the above conditions, based on the trends established with the oligomers. Poly(L -lysine) and poly(L -alanine) are predicted to exhibit similar circular dichroism behavior in aqueous solution so long as the lysyl amino groups are protonated. The circular dichroism of the statistical coil of poly(L -lysine), but not poly(L -alanine), is predicted to change when the pH is elevated sufficiently to deprotonate the lysyl amino groups. These results suggest that the unionized lysyl side chains participate in interactions that are not available to poly(L -alanine). Hydrophobic interactions may occur between the unionized lysyl side chains. Protonation of the lysyl amino groups is proposed to disrupt these interactions, causing poly(L -alanine) and protonated poly(L -lysine) to have similar circular dichroism properties.  相似文献   

2.
The fixation of trans-(NH3)2Cl2 Pt(II) to poly(I)·poly(C) at low rb (< 0.05) leads to the formation of two complexed species. The major species (ca. 82% of bound platinum) involves coordination of platinum to a single hypoxanthine base, while the other species involves coordination of two hypoxanthine bases, which are either far apart on the same strand or on separate poly(I) strands, to the platinum. These same two species are found after reaction with poly(I), as are two other species throughout the entire rb range studied (rb = 0–0.30). The latter two species are assigned to trans-Pt bound to two bases on a poly(I) strand with (a) one or (b) two free bases between the two bound bases. These two species, (a) and (b), account for ca. 35% of the bound platinum, although the 1:1 species remains dominant (ca. 55%). These two additional species are observed at high rb (>0.075) after reaction with poly(I)·poly(C) but as very minor species. They are formed by reaction with melted poly(I) loops. Also at high rb, we have observed a shifted cytidine H5 resonance arising from interaction of trans-Pt with a melted loop of poly(C). Most probably, this arises from an intramolecular poly(I) to poly(C) crosslink. Results from the reaction of trans-Pt with poly(C) are presented for comparison.  相似文献   

3.
The present study was undertaken to examine the influence of the reversal of the sidechain sequential order on the conformation of branched polypeptides. At the same time, the influence of the optically active amino acid joined directly to the poly (L -Lys) backbone and the DL -Ala oligomer grafted as chain-terminating fragment were separately analyzed. Therefore two sets of polypeptides were synthesized corresponding to the general formula poly [Lys-(Xi,)] (XK) and poly[Lys-(DL -Alam-Xi)] (AXK) when X = Ala, D -Ala, Leu, D -Leu, Phe, D -Phe, Ile, Pro, Glu.,D -Glu, or His. For coupling amino acid X to polylysine, three types of active ester methods were compared: the use of pentafluorophenyl or pentachlorophenyl ester, and the effect of the addition of an equimolar amount of 1-hydroxybenzotriazole. After cleavage of protecting groups, AXK polypeptides were synthesized by grafting short oligo (DL -Ala) chains to XK by using N-carboxy-DL -Ala anhydride. The CD measurements performed in water solutions of various pH values and ionic strengths were used for classification of the polypeptide conformations as either ordered (helical) or unordered. Different from what was observed with the unsubstituted poly (L -Lys), poly[Lys-(Xi)] type polypeptides can adopt ordered structure even under nearly physiological conditions (pH 7.3, 0.2M NaCl). These data suggest that the introduction of amino acid residue with either (ar) alkyl side chain (Ala, Leu, Phe) or negatively charged side chain (Glu) promotes markedly the formation of ordered structure. Comparison of chiroptical properties of poly [Lys- (DL -Alam-Xi)] and of poly [Lys- (Xi)] reveals that side-chain interactions play an important role in the stabilization of ordered solution conformation of AXK type branched polypeptides. The results give rather conclusive evidence that not only hydrophobic interactions, but also ionic attraction, can be involved in the formation and stabilization of helical conformation of branched polypeptides. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
Abstract

Thermodynamic parameters of melting process (δHm, Tm, δTm) of calf thymus DNA, poly(dA)poly(dT) and poly(d(A-C))·poly(d(G-T)) were determined in the presence of various concentrations of TOEPyP(4) and its Zn complex. The investigated porphyrins caused serious stabilization of calf thymus DNA and poly poly(dA)poly(dT), but not poly(d(A-C))poly(d(G-T)). It was shown that TOEpyp(4) revealed GC specificity, it increased Tm of satellite fraction by 24°C, but ZnTOEpyp(4), on the contrary, predominately bound with AT-rich sites and increased DNA main stage Tm by 18°C, and Tm of poly(dA)poly(dT) increased by 40 °C, in comparison with the same polymers without porphyrin. ZnTOEpyp(4) binds with DNA and poly(dA)poly(dT) in two modes—strong and weak ones. In the range of r from 0.005 to 0.08 both modes were fulfilled, and in the range of r from 0.165 to 0.25 only one mode—strong binding—took place. The weak binding is characterized with shifting of Tm by some grades, and for the strong binding Tm shifts by ~ 30–40°C. Invariability of ΔHm of DNA and poly(dA)poly(dT), and sharp increase of Tm in the range of r from 0.08 to 0.25 for thymus DNA and 0.01–0.2 for poly(dA)poly(dT) we interpret as entropic character of these complexes melting. It was suggested that this entropic character of melting is connected with forcing out of H2O molecules from AT sites by ZnTOEpyp(4) and with formation of outside stacking at the sites of binding. Four-fold decrease of calf thymus DNA melting range width ΔTm caused by increase of added ZnTO- Epyp(4) concentration is explained by rapprochement of AT and GC pairs thermal stability, and it is in agreement with a well-known dependence, according to which ΔT~TGC-TAT for DNA obtained from higher organisms (L. V. Berestetskaya, M. D. Frank-Kamenetskii, and Yu. S. Lazurkin. Biopolymers 13, 193–205 (1974)). Poly (d(A-C))poly(d(G-T)) in the presence of ZnTOEpyp(4) gives only one mode of weak binding. The conclusion is that binding of ZnTOEpyp(4) with DNA depends on its nucleotide sequence.  相似文献   

5.
6.
The fixation of dien-Pt on poly(I)·poly(C) leads to only minor changes in the uv and CD spectra at ambient temperature, showing that there is little perturbation of the secondary structure in the rb range studied (up to 0.30). However, the melting profiles show two steps. The Tm for strand separation increases linearly from 61°C (rb = 0) to 80°C (rb = 0.18), after which it declines on further increasing the rb. The second melting step is not complete at 100°C, and the magnitude of the absorbance change in this second step also appears to be at a maximum at rb = 0.18. Although dien-Pt can only coordinate to one base, the nmr spectra at 80°C also show a second type of interaction with the adjacent bases, which is only destroyed in the presence of a strong denaturing agent, 5M guanidinium hydrochloride. From these results and the spectrophotometric data, we observe that dien-Pt forms a triple sandwich by hydrogen bonding of the platinum amino groups to the adjacent hypoxanthine bases (N7). The presence of these hydrogen bonds accounts for the increased stability (maximal at one Pt to three hypoxanthine bases) and their rupture is seen in the second melting step. No interaction has been observed with poly(C) strand. Reaction of dien-Pt with poly(I) shows the formation of the same triple sandwich structure in the nmr spectra.  相似文献   

7.
Interactions of cationic porphyrins bearing five-membered rings at the meso position, meso-tetrakis(1,2-dimethylpyrazolium-4-yl)porphyrin (MPzP; M is H2, CuII or ZnII), with synthetic polynucleotides poly(dG-dC)2 and poly(dA-dT)2 have been characterized by viscometric, visible absorption, circular dichroisim and magnetic circular dichroism spectroscopic and melting temperature measurements. Both H2PzP and CuPzP are intercalated into poly(dG-dC)2 and are outside-bound to the major groove of poly(dA-dT)2, while ZnPzP is outside-bound to the minor groove of poly(dA-dT)2 and surprisingly is intercalated into poly(dG-dC)2. The binding constants of the porphyrin and poly(dG-dC)2 and poly(dA-dT)2 are on the order of 106 M−1 and are comparable to those of other cationic porphyrins so far reported. The process of the binding of the porphyrin to poly(dG-dC)2 and poly(dA-dT)2 is exothermic and enthalpically driven for H2PzP, whereas it is endothermic and entropically driven for CuPzP and ZnPzP. These results have revealed that the kind of the central metal ion of metalloporphyrins influences the characteristics of the binding of the porphyrins to DNA.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

8.
The covalent binding of trans-Pt (NH3)2Cl2 to the double-stranded poly(I)·poly(C) follows three types of reactions, depending on rb and the concentration of polynucleotide in the reaction mixture. At rb ? 0.1, the principal reaction is coordination to poly(I), giving rise to some destabilization of the double strand, as shown by uv and CD spectra, and a decrease in Tm values, giving rise to free loops of poly(C). At higher rb and low polynucleotide concentration, the free cytidine bases react with platinum bound on the complementary strand to form intramolecular (interstrand) crosslinks that restabilize the double-stranded structure. At high rb and high polynucleotide concentration, while the above reaction still occurs, the predominant one is the formation of intermolecular crosslinks. Under no conditions has strand separation been observed.  相似文献   

9.
The interaction of CuCl2 with poly(S-carboxymethyl-L -cysteine) (poly[Cys(CH2COOH)]) and poly(S-carboxyethyl-L -cysteine) (poly[Cys(C2H4COOH)]) were studied by absorption spectra and circular dichroism (CD). On mixing CuCl2 with polypeptide solutions, absorption bands appeared at 320–325 nm in both polypeptides, and at 255–260 nm in the case of poly[Cys(CH2COOH)]. A stable bound species was formed in the case of poly[Cys(CH2COOH)], since the apparent molar absorption coefficient of the bound species did not depend on the mixing ratio. From the absorption data, it was inferred that Cu2+ ions were complexed with the side chains, most probably with sulfur atoms and carboxyl groups. Induced optical activities were observed for the two polypeptides. The CD spectra of poly[Cys(CH2COOH)] + CuCl2 gave simpler aspects than those of poly[Cys(C2H4COOH)] + CuCl2.  相似文献   

10.
S K Podder 《Biopolymers》1972,11(7):1395-1410
The interaction between poly C and (Gp)nG(n = 1,2) in dilute solution was investigated spectrophotometrically in 0.1M phosphate buffer pH 7.2 under conditions unfavorable for the formation of self-associated complexes of oligoguanylic acids. Two isosbestic points were observed when poly C was titrated gradually with GpGpG, one at 232–233 mμ(in the range of 0–33% poly C) and one around 238 mμ (in the range of 50–100% poly C). The melting temperature (Tm) of the 1:1 poly C: (Gp)nG complexes (n = 1,2) of varying concentration were determined. The equilibrium properties of the 1:1 complexes can be described by two interaction parameters, namely, (i) cooperative stacking interaction between the first nearest neighbor of the adsorbed oligomer, and (ii) intrinsic association constant of the adsorbed oligomer with its polymeric site, since the cooperative helix–coil transition particularly in the smaller oligonucleotide can be described by an “all or none” model. Based on such a model the enthalpy of stacking inteaction-dependent Tm values yielded directly the sum of the enthalpy of stacking interaction and of basepairing (which is dependent on the chain length of the oligomer) and the value of S, the stability constant of a G–C pair within a helix. The enthalpy of formation of G–C pair is then calculated as ?6.3 kcal/base pair either from the chain length dependent enthalpy term or from the temperature coefficient of S values. From the S value and the association constant of 1:1 GpGpGpC:GpCpCpC complex, other thermodynamic parameters such as nucleation parameter (β) and free energy of stacking interaction can be obtained.  相似文献   

11.
By use of a polycondensation procedure free of racemization, stereoregular polymethionines have been synthesized from C-activated D -methionyl-L -methionine and L -methionyl-D -methionyl-L -methionine. The poly(D -methionyl-L -methionine) and poly(L -methionyl-D -methionyl-L -methionine) so prepared are soluble in chloroform and can be purified through dissolution in this solvent and precipitation by ligroin. Poly(D -Met-L -Met)which is obtained in a 25% yield, is about 5000 in average molecular weight. It has no discernible optical activity when examined between 400 and 600 nm in a trifluoroacetic acid solution. Poly(L -Met-D -Met-L -Met) (40% yield, M. W. = 10,000) is an optically active polymer. [α]43624 ≈ + 170° for a chloroformic solution (c = 0.2 CHCl3).  相似文献   

12.
The fixation of cis (NH3)2Cl2Pt(II) to poly(I)·poly(C) leads to the formation of two complexed species. One involves coordination to a single base (accounting for about 70% of the total platinum bound over the rb range 0.07–0.25) and the other to two bases which are not adjacent to each other but may be on the same strand and separated by a loop. Reaction of the platinum compound with poly(I) gives in addition to the above two species a minor one (about 15%, independent of rb over the range 0.05–0.30) in which the platinum is bound to two adjacent bases. The availability of such coordination reduces the dominance of the 1:1 species, which, however, remains the major one (ca. 55%).  相似文献   

13.
Infrared spectroscopy, X-ray diffraction, and nuclear magnetic resonance spectroscopy have been used in investigating the conformation of two stereoregular polymethionines, poly(D -methionyl-L -methionine) and poly(L -methionyl-D -methionyl-L -methionine). When dissolved in a helicogenic solvent, such as chloroform and hexafluoroisopropanol, the polytripeptide is in an α-helical conformation. A helix-to-coil transition can then be induced by addition of trifluoroacetic acid. On the other hand, it appears that the most stable conformation of poly(D -Met-L -Met) is a β antiparallel folded structure in which the linear polypeptide segments are near to the planar extension. This structure has been evidenced through X-ray examination of oriented films, casted from solutions in chloroform. It has also been identified in solution in the same solvent, by use of infrared spectroscopy and by measuring the δHα chemical shift which characterizes the Hα proton in the peptide units. This δHα value is found equal to 5.4 ppm and differs significantly from those which are usually attributed to the α-helical conformation (δHα = 4.2 ppm) and to the random coil (δHα = 4.6 ppm). The β folded conformation of the poly(D -Met-L -Met) appears to be comparatively less stable than the α-helical one for the poly(L -Met) macromolecular stereoisomer since hexafluoroisopropanol is a helicogenic solvent for this last solute and a destabilizing one for the poly(D -Met-L -Met) β folded conformer. X-ray examinations carried out with stretched films, casted from a solution of poly(D -Met-L -Met) in chloroform, result in several data concering the cross β structure of this stereoregular polypeptide in the solid state.  相似文献   

14.
Use of poly(vinylpyrrolidone) and poly(vinyl alcohol) for cryoultramicrotomy   总被引:41,自引:0,他引:41  
Summary Specimens infused with or suspended in a mixture of 10–30% poly(vinylpyrrolidone) and 2.07–1.61m sucrose can often be more easily frozen-sectioned than those infused with sucrose alone. The pH of such a mixture can be efficiently adjusted to neutrality by using Na2CO3. Use of poly(vinylpyrrolidone) causes little or no increase in the background level of immunolabelling. Adsorption staining of ultrathin frozen sections with a mixture of uranyl acetate and poly(vinyl alcohol), i.e. a simple thin-embedding of the sections in such a mixture, produces positive staining effects that are often enough to delineate structures of many organelles. When OsO4-treated frozen sections are stained with uranyl acetate and further adsorption-stained with a mixture of lead citrate and poly(vinyl alcohol), the overall staining effects are similar to those observed in double-stained conventional sections.A large portion of the findings was reported as a part of the author's presentation in the 11th International Congress on Electron Microscopy, held in Kyoto, Japan, in 1986.  相似文献   

15.
The cupric complexes of poly(Nε-acetoacetyl-L -lysine), [Lys(Acac)]n′ poly(Nδ-acetoacetyl-L -ornithine), [Orn(Acac)]n′ and poly(Nγ-acetoacetyl-L -diaminobutyric acid), [A2bu-(Acac)]n, as well as of the model compound n-hexyl acetoacetamide, have been investigated by means of absorption, potentiometric, equilibrium dialysis, and CD measurements. While in the complex of the model compound, one chelating group is bound to one cupric ion, in the polymeric complexes two β-ketoamide groups are bound to Cu(II) under the same experimental conditions. The binding constant of cupric ions to the three polymers and the formation constant of the Cu(II)-nhexylacetoacetamide complex have been evluated. Investigation on the chiroptical properties of the three polymeric complexes shows that the peptide backbone does not undergo conformational transitions, remaining α-helical when up to 20% of the side chains are bound to Cu(II). The optical activity of the β-ketoamide chromophores is substantially affected by complex formation and is discussed in terms of asymmetric induction from the chiral backbone.  相似文献   

16.
M J Behe 《Biopolymers》1986,25(3):519-523
The vacuum CD spectra of poly(rG-dC)·poly(rG-dC) and poly(dG-m5dC)·poly(dG-m5dC) have been obtained for the low-salt Z-conformations of both polymers. The spectra are very similar to those for the high-salt Z-forms. This behavior is consistent with the suggestion that the low- and high-salt Z-forms are comprised of different proportions of ZI- and ZII-conformations.  相似文献   

17.
A novel zig-zag (Z) structure is proposed for poly d(GC).poly d(GC). The proposed model closely resembles the crystal structure of d(CG)3.  相似文献   

18.
The enzyme catalyzing the synthesis of poly (adenosine diphosphate-ribose) with an average of eight repetitions of ADP-ribose was purified 10-fold from rat liver nuclei in 15% yield. The enzyme required DNA, histone, MgCl2, and dithiothreitol for activity. DNA could not be replaced by polyanions such as poly (U), poly (A), poly (C), RNA, polyvinyl sulfate, methyl dextran sulfate, or heparin. The enzyme was as active on native DNA as on heat-denatured DNA and on poly [d (A-T)], but less active on poly(dG)·poly(dC) and on acid-soluble oligodeoxyribonucleotide. Whole histones of calf thymus or of rat liver, lysine-rich histone of calf thymus, and arginine-rich histone were similarly effective in stimulating the reaction. Casein, bovine serum albumin, cytochrome c, and spermidine did not replace lysine-rich histone. CaCl2 or MnCl2 was as effective for the reaction as MgCl2. Dithiothreitol could be replaced by 2-mercaptoethanol and by glutathione. Polyanions, such as RNA, poly(U), poly(C), poly(A), and polyvinyl sulfate inhibited the enzyme activity. The molecular weight of the enzyme was determined to be 78,000 by sucrose density gradient centrifugation.  相似文献   

19.
Isotherms of the EtBr adsorption on native and denatured poly(dA)poly(dT) in the temperature interval 20–70°C were obtained. The EtBr binding constants and the number of binding sites were determined. The thermodynamic parameters of the EtBr intercalation complex upon changes of solution temperature 20–48°C were calculated: 1.0·106 M−1K≤1.4·106 M−1, free energy ΔG o=−8.7±0.3 kcal/mol, enthalpy ΔH o≅0, and entropy ΔS o=28±0.5 cal/(mol deg). UV melting has shown that the melting temperature (T m) of EtBr-poly(dA)poly(dT) complexes (μ=0.022,4.16·10−5 M EtBr) increased by 17°C as compared with the ΔT m of free homopolymer, whereas the half-width of the transition (T m) is not changed. It was shown for the first time that EtBr forms complexes of two types on single-stranded regions of poly(dA)poly(dT) denatured at 70°C: strong (K 1=1.7·105 M−1; ΔG o=−8.10±0.03 kcal/mol) and weak (K 2=2.9·103 M−1; ΔG o=−6.0±0.3 kcal/mol).The ΔG o of the strong and weak complexes was independent of the solution ionic strength, 0.0022≤μ≤0.022. A model of EtBr binding with single-stranded regions of poly(dA)poly(dT) is discussed.  相似文献   

20.
Heat capacities of polyglycine, poly(L -alanine), and poly(L -valine) were analyzed using approximate group vibrations and fitting of the skeletal vibrations to a two-parameter (Θ1, Θ3) Tarasov function. New experimental data were measured by differential scanning calorimetry in the temperature range of 230–390 K. Good agreement between our experimental data and the calculated data was observed for all three poly(amino acids). Previous investigations showed agreement between calculation and reported experimental data for only limited low temperature ranges. At higher temperatures, discrepancies of up to 55% existed between experiment and calculation. The cause of this discrepancy must be assumed to be experimental error. Recommended experimental data are revised on the basis of this investigation. Computed heat capacities are available for the three biopolymers in the solid state from 0 to 1000 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号