首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fermentation (stoichiometric) equations are derived for anaerobic fermentations of propionic-acid bacteria (of both the Propionibacterium and acrylate pathways) and for production of various oxychemicals (butanol, acetone, isopropanol, butanediol, butyrate, acetate, propionate, succinate, lactate, and acrylate) from pentoses, hexoses, and cellobiose. The derivations of the equations are based on the fermentation biochemistries of the various bacterial classes. The validity of the equations is tested using fermentation data from the literature. The equations are shown to be valuable, among other uses, for calculating maximal yields and selectivities of the various fermentation products, as "gateway sensors" for monitoring of the fermentations, and for calculating the extents of the various intracellular reactions of the fermentation biochemistry.  相似文献   

2.
Equations and calculations for fermentations of butyric acid bacteria   总被引:7,自引:0,他引:7  
A stoichiometric equation has been derived which describes the interrelations among the various products and biomass in fermentations of butyric acid bacteria. The derivation of the equation is based on an assumed ATP yield, two biological regularities, and the biochemistry of product formation of the fermentations. The equation obeys the constraints imposed on growth and product formation by thermodynamics and the biochemical topology. The validity of the equation is tested using a variety of fermentation data from the literature. The uses, improvements, limitations, and extensions of the equation are also discussed in detail. For example, the fermentation equation is used to calculate the maximal possible yields of the main fermentation products.  相似文献   

3.
A stoichiometric equation has been derived which describes the interrelations among the various products and biomass in fermentations of butyric acid bacteria. The derivation of the equation is based on an assumed ATP yield, two biological regularities, and the biochemistry of product formation of the fermentations. The equation obeys the constraints imposed on growth and product formation by thermodynamics and the biochemical topology. The validity of the equation is tested using a variety of fermentation data from the literature. The uses, improvements, limitations, and extensions of the equation are also discussed in detail. For example, the fermentation equation is used to calculate the maximal possible yields of the main fermentation products.  相似文献   

4.

Xylose is the second most abundant sugar derived from lignocellulose; it is considered less desirable than glucose for fermentation, and strategies that specifically increase xylose utilization in wild type or engineered cells are goals for biofuel production. Issues arise with xylose utilization because of carbohydrate catabolite repression, which is the preferential utilization of glucose relative to xylose in fermentations with both pure and mixed cultures. Taken together the low substrate utilization rates and solvent yields with xylose compared to glucose, many industrial fermentations ignore the xylolytic portion of the reaction in lieu of methods to maintain high glucose. This is shortsighted given the massive potential for xylose generation from a number of sustainable biomass feedstocks, based on utilization of the hemicellulose fraction(s) that enter pretreatment. A number of strategies have been developed in recent years to address xylose utilization and solvent production from xylose in systems with just xylose, or in systems with mixtures of glucose plus xylose, which are more typical of pretreated lignocellulose. The approaches vary in terms of complexity, stability, and ease of introduction to existing fermentation infrastructure (i.e., so-called drop-in fermentation strategies). Some approaches can be considered traditional engineering approaches (e.g., change the reaction conditions), while others are more subtle cellular approaches to eliminate the impacts of catabolite repression. Finally, genetic engineering has been used to increase xylose utilization, although this can be considered a relatively nascent approach compared to manipulations completed to date for glucose utilization.

  相似文献   

5.
Relationships between the total rate of biomass growth and the rate of ammonia addition to a fermentor for pH control are presented. These equations make use of the concept of reaction invariants and provide the additional information needed for bioreactor identification. They are especially useful when the RQ measurement is not sufficient for this purpose, such as when sensitivities arise with the measured values of the respiratory quotient or when fermentation products are formed. The cases of batch, fed-batch and continuous fermentations, forming products with or without acidic/basic properties are considered. The derived relationships were successfully tested with nonbiological acid-base continuous flow reaction systems and subsequently applied to the identification of the continuous yeast fermentation of glucose to ethanol. Results of these experimental studies are also presented.  相似文献   

6.
Use of agricultural biomass, other than corn-starch, to produce fuel ethanol requires a microorganism that can ferment the mixture of sugars derived from hemicellulose. Escherichia coli metabolizes a wide range of substrates and has been engineered to produce ethanol in high yield from sugar mixtures. E. coli metabolizes glucose in preference to other sugars and, as a result, utilization of the pentoses in hemicellulose-derived sugar mixtures is delayed and may be incomplete. Residual sugar lowers the ethanol yield and is problematic for downstream processing of fermentation products. Therefore, a catabolite repression mutant that simultaneously utilizes glucose and pentoses would be useful for fermentation of complex substrate mixtures. We constructed ethanologenic E. coli strains with a glucose phosphotransferase (ptsG) mutation and used the mutants to ferment glucose, arabinose, and xylose, singly and in mixtures, to ethanol. Yields were 87-94% of theoretical for both the wild type and mutants, but the mutants had an altered pattern of mixed sugar utilization. Phosphotransferase mutants metabolized the pentoses simultaneously with glucose, rather than sequentially. Based upon fermentations of sugar mixtures, a catabolite-repression mutant of ethanologenic E. coli is expected to provide more efficient fermentation of hemicellulose hydrolysates by allowing direct utilization of pentoses.  相似文献   

7.
A fermentation system has been designed to demonstrate the use of gas chromatography (GC) for on-line monitoring of the butanol-acetone and other complex saccharolytic fermentations. Tangential flow ultrafiltration was used to sterilely and continuously obtain a cell-free filtrate from the fermentation broth for on-line GC analysis of butanol, butyrate, acetate, acetone, ethanol, and acetoin. The liquid injection system consists of a phosphoric acid contactor, a slider-type injection valve, and a heater to address the difficulties (ghosting) encountered in the analysis of carboxylic acids. The fermentation headspace gas was also analyzed by on-line GC for nitrogen and carbon dioxide, while hydrogen was measured by difference. Raw chromatographic data were analyzed by a chromatography data system. Both raw and processed data were transmitted to a VAX 11/750 computer for further processing (using the fermentation equation) and archiving. The fermentation equation, which has recently been derived and tested on completed fermentation data, was also found to be valid during transient fermentations and thus useful as a gateway sensor for calculating various fermentation parameters on-line. Such parameters include glucose concentration and gas composition, as well as a number of unobservable parameters (such as Y(ATP), excess ATP, and NAD reduced by FdH(2)), which characterize the state of the fermentation.  相似文献   

8.
The efficiency of conversion of the carbon-energy source to product is of primary importance in many fermentation processes. In order to assess the efficiency of a process, one must know how close the actual conversion yield is to the theoretical maximum. Theoretical conversion yields are useful, therefore, as guides in improving a process. This knowledge is particularly important today because the cost of raw materials is rapidly rising. In this study, the biochemical pathway of penicillin synthesis was used to estimate the theoretical yield of penicillin from glucose, ammonia, and sulfate. These values are compared with experimental data from the literature. An analysis of the role of glucose in the synthesis of cell mass and penicillin and in the maintenance of cells makes it possible to assess the efficiency of carbon-source utilization and to direct further advances in penicillin fermentations.  相似文献   

9.
Fermentation of corn starch to ethanol with genetically engineered yeast   总被引:1,自引:0,他引:1  
Expression of the glucoamylase gene from Aspergillus awamori by laboratory and distiller's strains of Saccharomyces cerevisiae allowed them to ferment soluble starch. Approximately 95% of the carbohydrates in the starch were utilized. Glycerol production was significantly decreased when soluble starch was used instead of glucose. Ethanol yield on soluble starch was higher than that on glucose. The rate of starch fermentation was directly related to the level of glucoamylase activity. Strains with higher levels of glucoamylase expression fermented starch faster. The decline in starch fermentation rates toward the end of the fermentation was associated with accumulation of disaccharides and limit dextrins, poor substrates for glucoamylase. The buildup of these products in continuous fermentations inhibited glucoamylase activity and complete utilization of the starch. Under these conditions maltose-fermenting strains had a significant advantage over nonfermenting strains. The synthesis and secretion of glucoamylase showed no deleterious effects on cell growth rates, fermetation rates, and fermentation products.  相似文献   

10.
The kinetics in fed-batch cultures of acetone butanol fermentation by Clostridium acetobutylicum is compared on glucose, xylose, and mixtures of both sugars. The final conversion yield of sugars into solvents always increases with the sugar feeding rate. At low feeding rates, the sugar concentration in the medium becomes limiting, which results in a slower cellular growth, a slower metabolic transition from an acid to a solvent fermentation and, thus, a higher accumulation of acids. It is only at sufficiently high feeding rates that fed-batch fermentations yield kinetic results comparable to those of batch fermentations. With mixtures of glucose and xylose, because of a maintained low glucose level, both sugars are taken up at the same rate during a first fermentation period. An earlier accumulation of xylose when the fermentation becomes inhibited suggest that xylose utilization is inhibited when the catabolic flux of glucose alone can satisfy the metabolic activity of the cell. Kinetic results with batch and fed-batch fermentations indicate several important features of the regulation of C. acetobutylicum metabolism: an early inhibition by the produced acids; an initiation of solvent formation between 4 and 6 g/L acetic and butyric acid depending on the metabolic activity of the cell; a metabolic transition from acids to solvents production at a rate closely related to the rate of sugar uptake; during solvent production, a reassimilation of acids above a minimal rate of sugar consumption of 0.2 h(-1); a final inhibition of the fermentation at a total butanol and acids concentration of ca. 20 g/L.  相似文献   

11.
Nitrate is one of the most abundant nitrogen sources in nature. Several yeast species have been shown to be able to assimilate nitrate and nitrite, but the metabolic pathway has been studied in very few of them. Dekkera bruxellensis can use nitrate as sole nitrogen source and this metabolic characteristic can render D. bruxellensis able to overcome S. cerevisiae populations in industrial bioethanol fermentations. In order to better characterize how nitrate utilization affects carbon metabolism and the yields of the fermentation products, we investigated this trait in defined media under well-controlled aerobic and anaerobic conditions. Our experiments showed that in D. bruxellensis, utilization of nitrate determines a different pattern of fermentation products. Acetic acid, instead of ethanol, became in fact the main product of glucose metabolism under aerobic conditions. We have also demonstrated that under anaerobic conditions, nitrate assimilation abolishes the “Custers effect”, in this way improving its fermentative metabolism. This can offer a new strategy, besides aeration, to sustain growth and ethanol production for the employment of this yeast in industrial processes.  相似文献   

12.
In order to understand the effect of pH on growth and ethanol production in ethanologenic Escherichia coli, we investigated the kinetic behavior of ethanologenic E. coli during alcoholic fermentation of glucose or xylose in a controlled pH environment and the fermentation of glucose, xylose, or their mixtures without pH control. Based on the Monod equation, an unstructured and unsegregated kinetic model was proposed as a function of the pH of the fermentation medium. The pH effects on cell growth, sugar consumption, and ethanol production were taken into account in the proposed model. Both cell growth and ethanol production were found to be significantly influenced by the pH of the fermentation medium. The optimal pH range for ethanol production by ethanologenic E. coli on either glucose or xylose was 6.0–6.5. The highest value of the maximum specific growth rate (μ m) was obtained at pH 7.0. In the kinetic model of the fermentations of the sugar mixture, two inhibition terms related to glucose concentrations were included in both the cell growth and ethanol production equations because of the strong inhibitions of glucose and glucose metabolites on xylose metabolism. A good fit was found between model predictions and experimental data for both single-sugar and mixed-sugar fermentations without pH control within the experimental domain.  相似文献   

13.
A rapid screening method for the evaluation of the major fermentation products of Saccharomyces wine yeasts was developed using Fourier transform infrared spectroscopy and principal component factor analysis. Calibration equations for the quantification of volatile acidity, glycerol, ethanol, reducing sugar and glucose concentrations in fermented Chenin blanc and synthetic musts were derived from the Fourier transform infrared spectra of small-scale fermentations. The accuracy of quantification of volatile acidity in both Chenin blanc and synthetic must was excellent, and the standard error of prediction was 0.07 g l(-1) and 0.08 g l(-1), respectively. The respective standard error of prediction in Chenin blanc and synthetic musts for ethanol was 0.32% v/v and 0.31% v/v, for glycerol was 0.38 g l(-1) and 0.32 g l(-1), for reducing sugar in Chenin blanc must was 0.56 g l(-1) and for glucose in synthetic must was 0.39 g l(-1). These values were in agreement with the accuracy obtained by the respective reference methods used for the quantification of the components. The screening method was applied to quantify the fermentation products of glycerol-overproducing hybrid yeasts and commercial wine yeasts. Principal component factor analysis of the fermentation data facilitated an overall comparison of the fermentation profiles (in terms of the components tested) of the strains. The potential of Fourier transform infrared spectroscopy as a tool to rapidly screen the fermentative properties of wine yeasts and to speed up the evaluation processes in the initial stages of yeast strain development programs is shown.  相似文献   

14.
Problematic fermentations are commonplace and cause wine industry producers substantial economic losses through wasted tank capacity and low value final products. Being able to predict such fermentations would enable enologists to take preventive actions. In this study we modeled sugar uptake kinetics and coupled them to a previously developed stoichiometric model, which describes the anaerobic metabolism of Saccharomyces cerevisiae. The resulting model was used to predict normal and slow fermentations under winemaking conditions. The effects of fermentation temperature and initial nitrogen concentration were modeled through an efficiency factor incorporated into the sugar uptake expressions. The model required few initial parameters to successfully reproduce glucose, fructose, and ethanol profiles of laboratory and industrial fermentations. Glycerol and biomass profiles were successfully predicted in nitrogen rich cultures. The time normal or slow wine fermentations needed to complete the process was predicted accurately, at different temperatures. Simulations with a model representing a genetically modified yeast fermentation, reproduced qualitatively well literature results regarding the formation of minor compounds involved in wine complexity and aroma. Therefore, the model also proves useful to explore the effects of genetic modifications on fermentation profiles.  相似文献   

15.
Hemicellulosic sugars, predominantly D-xylose, comprise about one-half the total carbohydrate that can be obtained from hardwoods and agricultural residues through dilute acid hydrolysis. Because rates and yields in the xylose fermentation are low, economic utilization of these materials as fermentation feedstocks is difficult. Pachysolen tannophilus formed 5.5% ethanol from 12% glucose but only 2% ethanol from 12% xylcose. Aeration doubled the specific rate of D-glucose fermentation by P. tannophilus, as compared to anaerobic fermentation, but the specific rate of the xylose fermentation remained unchanged. Periodic additions of 0.5% D-glucose to aerobic fermentations of 3% xylose increased the yield of ethanol from 0.28 g/g xylose to greater than 0.41 g/g xylose utilized. The rate of xylose utilization remained unchanged, and radiotracer studies showed that addition of 0.5% glucose did not inhibit xylose utilization under aerobic or anaerobic conditions. No enhancement was observed anaerobically, nor was enhancement observed with acid hydrolysates, apparently because of the presence of acetic acid which inhibited growth and fermentation.  相似文献   

16.
Simultaneous acetone butanol ethanol (ABE) fermentation by Clostridium beijerinckii P260 and in situ product recovery was investigated using a vacuum process operated in two modes: continuous and intermittent. Integrated batch fermentations and ABE recovery were conducted at 37 °C using a 14-L bioreactor (7.0 L fermentation volume) containing initial substrate (glucose) concentration of 60 g/L. The bioreactor was connected in series with a condensation system and vacuum pump. Vacuum was applied continuously or intermittently with 1.5 h vacuum sessions separated by 4, 6, and 8 h intervals. A control ABE fermentation experiment was characterized by incomplete glucose utilization due to butanol toxicity to C. beijerinckii P260, while fermentation coupled with in situ recovery by both continuous and intermittent vacuum modes resulted in complete utilization of glucose, greater productivity, improved cell growth, and concentrated recovered ABE stream. These results demonstrate that vacuum technology can be applied to integrated ABE fermentation and recovery even though the boiling point of butanol is greater than that of water.  相似文献   

17.
The rate of heat evolution (kcal/liter-hr) in mycelial fermentations for novobiocin and cellulase production with media containing noncellular solids was measured by an in situ dynamic calorimetric procedure. Thermal data so obtained have proved significant both in monitoring cell concentration during the trophophase (growth phase) and in serving as a physiological variable in the fermentation process. The validity of this technique has been demonstrated by closing the overall material and energy balances. The maintenance energy in a batch fermentation can also be calculated by integrating heat evolution data. This integration method is applicable to a fermentation lacking a precise cell growth curve. The maintenance coefficient, obtained for the novobiocin fermentation by Streptomyces niveus, is equal to 0.028 g glucose equivalent/g cell-hr. The production of novobiocin in the idio-phase (production phase) also correlates well with the amount of energy catabolixed for maintenance and this results in an observed conversion yield of glucose to novobiocin of 11.8 mg of novobiocin produced per gram of glucose catabolized. A new physiological variable, kilocalories of heat evolved per millimole of oxygen consumed, has been proposed to monitor the state of cells during the fermentation. This method may provide a simple way to monitor on-line shifts in the efficiency of cell respiration and changes in growth yields during a microbial process.  相似文献   

18.
Production of xylitol from xylose in batch fermentations of Candida mogii ATCC 18364 is discussed in the presence of glucose as the cosubstrate. Various initial ratios of glucose and xylose concentrations are assessed for their impact on yield and rate of production of xylitol. Supplementation with glucose at the beginning of the fermentation increased the specific growth rate, biomass yield and volumetric productivity of xylitol compared with fermentation that used xylose as the sole carbon source. A mathematical model is developed for eventual use in predicting the product formation rate and yield. The model parameters were estimated from experimental observations, using a genetic algorithm. Batch fermentations, which were carried out with xylose alone and a mixture of xylose and glucose, were used to validate the model. The model fitted well with the experimental data of cell growth, substrate consumption and xylitol production.  相似文献   

19.
An integrated metabolic model for the production of acetate by Escherichia coli growing on glucose under aerobic conditions was presented previously (Ko et al., 1993). The resulting model equations can be used to explain phenomena often observed with industrial fermentations, i.e., increased acetate production which follows from high glucose uptake rate, a low dissolved oxygen concentration, a high specific growth rate, or a combination of these conditions. However, several questions still need to be addressed. First, cell composition is growth rate and media dependent. Second, the macromolecular composition varied between E. coli strains. And finally, a model that represents the carbon fluxes between the Embden-Meyerhof-Parnas (EMP) and the hexose monophosphate (HMP) pathways when cells are subject to internal and/or external stresses is still not well defined. In the present work, we have made an effort to account for these effects, and the resulting model equations show good agreement for wild-type and recombinant E. coli experimental data for the acetate concentration, the onset of acetate secretion, and cell yield based on glucose. These results are useful for optimizing aerobic E. coli fermentation processes. More specifically, we have determined the EMP pathway carbon flux profiles required by the integrated metabolic model for an accurate fit of the acetic acid profile data from a wild-type E. coli strain ML308. These EMP carbon flux profiles were correlated with a dimensionless measurement of biomass and then used to predict the acetic acid profiles for E. coli strain F-122 expressing human immunodeficiency virus-(HIV(528)) beta-galactosidase fusion protein. The effect of different macromolecular compositions and growth rates between these two E. coli strains required a constant scaling factor for improved quantitative predictions.  相似文献   

20.
End product inhibition can be reduced by the in situ removal of inhibitory fermentation products as they form. Extractive fermentation, in which an immiscible organic solvent is added to the fermentor in order to extract inhibitory products, was applied to the acetone-butanol fermentation. Six solvents or solvent mixtures were tested in batch extractive fermentations: kerosene, 30 wt% tetradecanol in kerosene, 50 wt% dodecanol in kerosene, oleyl alcohol, 50 wt% oleyl alcohol in a decane fraction and 50 wt% oleyl alcohol in benzyl benzoate. The best results were obtained with oleyl alcohol or a mixture of oleyl alcohol and benzyl benzoate. In normal batch fermentation of Clostridium acetobutylicum, glucose consumption is limited to about 80 kg/m3 due to the accumulation of butanol in the broth. In extractive fermentation using oleyl alcohol or a mixture of oleyl alcohol and benzyl benzoate, over 100 kg/m3 of glucose can be fermented. Removal of butanol from the broth as it formed also increased the rate of butanol production. Maximum volumetric butanol productivity was increased by as much as 60% in extractive fermentation compared to batch fermentation. Butanol productivities obtained in extractive fermentation compare favorably with other in situ product removal fermentations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号