首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hubbs AE  Roy H 《Plant physiology》1993,101(2):523-533
In higher plants, ribulose bisphosphate carboxylase/oxygenase (Rubisco) consists of eight large "L" subunits, synthesized in chloroplasts, and eight small "S" subunits, synthesized as precursors in the cytosol. Assembly of these into holoenzyme occurs in the chloroplast stroma after import and processing of the S subunits. A chloroplast chaperonin interacts with the L subunits, which dissociate from the chaperonin before they assemble into holoenzyme. Our laboratory has reported L subunit assembly into Rubisco in chloroplast extracts after protein synthesis in leaves, intact chloroplasts, and most recently in membrane-free chloroplast extracts. We report here that the incorporation of in vitro-synthesized L subunits into holoenzyme depends on the conditions of L subunit synthesis. Rubisco assembly did not occur after L subunit synthesis at 160 mM KCI. When L subunit synthesis occurred at approximately 70 mM KCI, assembly depended on the temperature at which L subunit synthesis took place. These phenomena were the result of postsynthetic events taking place during incubation for protein synthesis. We separated these events from protein synthesis by lowering the temperature during protein synthesis. Lower temperatures supported the synthesis of full-length Rubisco L subunits. The assembly of these completed L subunits into Rubisco required intervening incubation with ATP, before addition of S subunits. ATP treatment mobilized L subunits from a complex with the chloroplast chaperonin 60 oligomer. Addition of 130 mM KCI at the beginning of the intervening incubation with ATP blocked the incorporation of L subunits into Rubisco. The inhibitory effect of high KCI was due to CI- and came after association of newly synthesized L subunits with chaperonin 60, but before S subunit addition. It is interesting that L subunits synthesized at [greater than or equal to]32[deg]C failed to assemble into Rubisco under any conditions. These results agree with previous results obtained in this laboratory using newly synthesized L subunits made in intact chloroplasts. They also show that assembly of in vitro-synthesized L subunits into Rubisco requires ATP, that CI- inhibits Rubisco assembly, and that synthesis temperature affects subsequent assembly competence of L subunits.  相似文献   

2.
Assembly of Rubisco from native subunits   总被引:2,自引:0,他引:2  
  相似文献   

3.
The import of cytoplasmically synthesized proteins into chloroplasts involves an interaction between at least two components; the precursor protein, and the import apparatus in the chloroplast envelope membrane. This review summarizes the information available about each of these components. Precursor proteins consist of an amino terminal transit peptide attached to a passenger protein. Transit peptides from various precurosrs are diverse with respect to length and amino acid sequence; analysis of their sequences has not revealed insight into their mode of action. A variety of foreign passenger proteins can be imported into chloroplasts when a transit peptide is present at the amino terminus. However, foreign passenger proteins are not imported as efficiently as natural passenger proteins, and some chimeric precursor proteins are not imported into chloroplasts at all. Therefore, the passenger protein, as well as the transit peptide, influences the import process. Import begins by binding of the precursor to the chloroplast surface. It has been suggested that this binding is mediated by a receptor, but evidence to support this hypothesis remains incomplete and a receptor protein has not yet been characterized. Protein translocation requires energy derived from ATP hydrolysis, although there are conflicting reports as to where hydrolysis occurs and it is unclear how this energy is utilized. The mechanism(s) whereby proteins are translocated across either the two envelope membranes or the thylakoid membrane is not known.Abbreviations EPSP 5-enolpyruvyulshikimate-3-phosphate - LHCP Chlorophyll a/b binding protein of the light-harvesting complex - NPT-II Neomycin phosphotransferase II - PC Plastocyanin - Pr Precursor - Rubisco Ribulose-1,5,-bisphosphate carboxylase/oxygenase - SS Small subunit of Rubisco  相似文献   

4.
In order to ascertain whether there is one site for the import of precursor proteins into chloroplasts or whether different precursor proteins are imported via different import machineries, chloroplasts were incubated with large quantities of the precursor of the 33 kDa subunit of the oxygen-evolving complex (pOE33) or the precursor of the light-harvesting chlorophyll a/b-binding protein (pLHCP) and tested for their ability to import a wide range of other chloroplast precursor proteins. Both pOE33 and pLHCP competed for import into chloroplasts with precursors of the stromally-targeted small subunit of Rubisco (pSSu), ferredoxin NADP(+) reductase (pFNR) and porphobilinogen deaminase; the thylakoid membrane proteins LHCP and the Rieske iron-sulphur protein (pRieske protein); ferrochelatase and the gamma subunit of the ATP synthase (which are both associated with the thylakoid membrane); the thylakoid lumenal protein plastocyanin and the phosphate translocator, an integral membrane protein of the inner envelope. The concentrations of pOE33 or pLHCP required to cause half-maximal inhibition of import ranged between 0.2 and 4.9 microM. These results indicate that all of these proteins are imported into the chloroplast by a common import machinery. Incubation of chloroplasts with pOE33 inhibited the formation of early import intermediates of pSSu, pFNR and pRieske protein.  相似文献   

5.
The incorporation of newly synthesized large subunits into ribulose bisphosphate carboxylase/oxygenase (RuBisCO) in pea chloroplast extracts occurs at the expense of intermediate forms of the large subunit which are complexed with a binding protein. Most subunits of this binding protein are found in dodecameric complexes in chloroplast extracts. Addition of small subunits to these extracts results in approximately 40 to 60% increased incorporation of newly made large subunits into RuBisCO at low or zero concentrations of ATP, but is without significant effect at high concentrations of ATP, a condition in which the dodecameric binding protein complex is dissociated into subunits. Overall, these data support the assumption that the incorporation of large subunits into RuBisCO in chloroplast extracts reflects de novo assembly rather than `mere' exchange of subunits. The in vitro assembly of large subunits into RuBisCO is a function of the conditions under which the large subunits are synthesized in organello. When the large subunits are made in chloroplasts suspended in 188 millimolar sorbitol, they are approximately 2- to 3-fold better able to assemble into RuBisCO when subsequently incubated in vitro than when they are synthesized in chloroplasts suspended in 375 millimolar sorbitol. This observation indicates that mere synthesis of large subunits is not sufficient to confer maximal assembly competence on large subunits.  相似文献   

6.
We have examined the assembly of the nuclear-encoded subunits of the oxygen-evolving complex (OEC) after their import into isolated intact chloroplasts. We showed that all three subunits examined (OE33, OE23, and OE17) partition between the thylakoid lumen and a site on the inner surface of the thylakoid membrane after import in a homologous system (e.g., pea or spinach subunits into pea or spinach chloroplasts, respectively). Although some interspecies protein import experiments resulted in OEC subunit binding, maize OE17 did not bind thylakoid membranes in chloroplasts isolated from peas. Newly imported OE33 and OE23 were washed from the membranes at the same concentrations of urea and NaCl as the native, indigenous proteins; this observation suggests that the former subunits are bound productively within the OEC. Inhibition of neither chloroplast protein synthesis nor light- or ATP-dependent energization of the thylakoid membrane significantly affected these assembly reactions, and we present evidence suggesting that incoming subunits actively displace those already bound to the thylakoid membrane. Transport of OE33 took place primarily in the stromal-exposed membranes and proceeded through a protease-sensitive, mature intermediate. Initial binding of OE33 to the thylakoid membrane occurred primarily in the stromal-exposed membranes, from where it migrated with measurable kinetics to the granal region. In contrast, OE23 assembly occurred in the granal membrane regions. This information is incorporated into a model of the stepwise assembly of oxygen-evolving photosystem II.  相似文献   

7.
A mutant of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), in which Arg53 is replaced by Glu, was synthesized and imported into isolated chloroplasts. The mutant protein was efficiently imported into the chloroplast and correctly processed to the mature size. Like the wild type protein, it was stable over a period of at least 2 h. Unlike the wilk-type protein however, most of the mutant protein was not assembled with holo-Rubisco at the end of a 10-min import reaction. It migrated instead as a diffused band on a non-denaturing gel, slower than the precursor protein, but faster than the holoenzyme. The level of the unassembled mutant protein in the stroma decreased with time, while its level in the assembled fraction has increased, indicating that this protein is a slowly-assembled, rather than a non-assembled, mutant of the small suubunit of Rubisco. Accumulation of the mutant protein in the holoenzyme fraction was dependent on ATP and light. The transient species, migrating faster than the holoenzyme but slower than the precursor protein, may represent an intermediate in the assembly process of the small subunit of RubiscoAbbreviations LSU large subunit of Rubisco - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - SSU small subunit of Rubisco  相似文献   

8.
9.
The large subunit of ribulose bisphosphate carboxylase from Anacystis nidulans 6301, and the β subunit of chloroplast ATP synthase from maize, were fused to the transit peptide of the small subunit of ribulose bisphosphate carboxylase from soybean. These proteins were assayed for post-translational import into isolated pea chloroplasts. Both proteins were imported into chloroplasts. Imported large subunits were associated with two distinct macromolecular structures. The smaller of these structures was a hybrid ribulose bisphosphate carboxylase holoenzyme, and the larger was the binding protein oligomer. Time-course experiments following import of the large subunit revealed that the amount of large subunit associated with the binding protein oligomer decreased over time, and that the amount of large subunit present in the assembled holoenzyme increased. We also observed that imported small subunits of ribulose bisphosphate carboxylase, although predominantly present in the holoenzyme, were also found associated with the binding protein oligomer. In contrast, the imported β subunit of chloroplast ATP synthase did not assemble into a thylakoid-bound coupling factor complex.  相似文献   

10.
Most chloroplast and mitochondrial precursor proteins are targeted specifically to either chloroplasts or mitochondria. However, there is a group of proteins that are dual targeted to both organelles. We have developed a novel in vitro system for simultaneous import of precursor proteins into mitochondria and chloroplasts (dual import system). The mitochondrial precursor of alternative oxidase, AOX was specifically targeted only to mitochondria. The chloroplastic precursor of small subunit of pea ribulose bisphosphate carboxylase/oxygenase, Rubisco, was mistargeted to pea mitochondria in a single import system, but was imported only into chloroplasts in the dual import system. The dual targeted glutathione reductase GR precursor was targeted to both mitochondria and chloroplasts in both systems. The GR pre-sequence could support import of the mature Rubisco protein into mitochondria and chloroplasts in the single import system but only into chloroplasts in the dual import system. Although the GR pre-sequence could support import of the mature portion of the mitochondrial FAd subunit of the ATP synthase into mitochondria and chloroplasts, mature AOX protein was only imported into mitochondria under the control of the GR pre-sequence in both systems. These results show that the novel dual import system is superior to the single import system as it abolishes mistargeting of chloroplast precursors into pea mitochondria observed in a single organelle import system. The results clearly show that although the GR pre-sequence has dual targeting ability, this ability is dependent on the nature of the mature protein.  相似文献   

11.
Hubbs A  Roy H 《Plant physiology》1992,100(1):272-281
We have developed a new system for the in vitro synthesis of large subunits and their assembly into ribulose bisphosphate carboxylase oxygenase (Rubisco) holoenzyme in extracts of higher plant chloroplasts. This differs from previously described Rubisco assembly systems because the translation of the large subunits occurs in chloroplast extracts as opposed to isolated intact chloroplasts, and the subsequent assembly of large subunits into holoenzyme is completely dependent upon added small subunits. Amino acid incorporation in this system displayed the characteristics previously reported for chloroplast-based translation systems. Incorporation was sensitive to chloramphenicol or RNase but resistant to cycloheximide, required magnesium, and was stimulated by nucleotides. The primary product of this system was the large subunit of Rubisco. However, several lower molecular weight polypeptides were formed. These were structurally related to the Rubisco large subunit. The initiation inhibitor aurintricarboxylic acid (ATA) decreased the amount of lower molecular weight products accumulated. The accumulation of completed large subunits was only marginally reduced in the presence of ATA. The incorporation of newly synthesized large subunits into Rubisco holoenzyme occurred under conditions previously identified as optimal for the assembly of in organello-synthesized large subunits and required the addition of purified small subunits.  相似文献   

12.
The synthesis and assembly of chloroplast H+-ATPase complex were studied by analyzing the incorporation of [35S]methionine into the constituent subunits with isolated intact chloroplasts and with thylakoid membranes that had been prepared from the chloroplasts so that they would retain ribosomes. The complex was isolated from thylakoids after labeling and identified by immunoprecipitation with an antiserum specific to CF1. The mechanism for the assembly of the complex was demonstrated to be active in the isolated chloroplasts by the following observations: the plastid genome-regulated subunits (alpha, beta, epsilon, I, and III) were labeled by in organello translation and recovered with the complex, and three other subunits (gamma, delta, and II) were labeled when intact chloroplasts were incubated with translation products from polyadenylated RNA. The two largest subunits, alpha and beta, were translated on thylakoid-bound ribosomes when the thylakoid membranes were incubated with soluble factors from Escherichia coli. They were recovered with the H+-ATPase complex, suggesting that they are translated on the bound ribosomes in the chloroplast, and that the isolated membranes retain the ability to assemble a complete complex. Provided that these observations are the result of de novo assembly of the complex, the imported and processed nuclear-coded subunits are presumed to be pooled not in stroma but on the membrane.  相似文献   

13.
Precursor forms of chloroplast proteins synthesized in cell-free translation systems can be imported posttranslationally into isolated, intact chloroplasts. Radiochemically pure precursors to the small subunit of ribulose-1,5-bisphosphate carboxylase and to the light-harvesting chlorophyll a/b protein have been prepared by in vitro translation of hybrid-selected mRNA and used to study this import process. If chloroplasts are pretreated with the uncoupler nigericin, import does not occur, but the precursors bind to the chloroplast surface. Reincubation of the precursor-chloroplast complex in the presence of ATP results in import of bound precursors. The binding appears to be mediated by proteins of the outer chloroplast envelope membrane because pretreatment of chloroplasts with protease inhibits their ability to bind as well as to import precursors. These results indicate that at least a portion of the observed binding is to functional receptor proteins involved in the import process.  相似文献   

14.
We have developed an assay to monitor in vitro the posttranslational assembly of the chloroplast protein, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Most of the newly synthesized 55-kD catalytic ("large") subunits of this enzyme occur in a 29S complex together with 60- and 61-kD "binding" proteins. When the 29S complex is incubated with ATP and MgCl2 it dissociates into subunits, and the formerly bound large subunits now sediment at 7S (still faster than expected for a monomer). Upon incubation at 24 degrees C, these large subunits assemble into RuBisCO. The minority of newly made large subunits which are not bound to the 29S complex also sediment at 7S. When endogenous ATP was removed by addition of hexokinase and glucose, the dissociation of the 29S complex was inhibited. Nevertheless, the 7S large subunits assembled into RuBisCO, and did so to a greater extent than in controls retaining endogenous ATP. Thus the 7S large subunits are also assembly competent, at least when ATP is removed. Apparently, in chloroplast extracts, ATP can have a dual effect on the assembly of RuBisCO: on the one hand, even at low concentrations it can inhibit incorporation of 7S large subunits RuBisCO; on the other hand, at higher concentrations it can lead to substantial buildup of the 7S large subunit pool by causing dissociation of the 29S complex, and stimulate overall assembly. At both high and zero concentrations of ATP, however, antibody to the binding protein inhibited the assembly of endogenous large subunits into RuBisCO. Thus it appears that all assembly-competent large subunits are associated with the binding protein, either in the 7S complex or in the 29S complex. The involvement of the binding protein in RuBisCO assembly may represent the first example of non-autonomous protein assembly in higher plants and may pose problems for the genetic engineering of RuBisCO from these organisms.  相似文献   

15.
J E Oblong  G K Lamppa 《The EMBO journal》1992,11(12):4401-4409
Two proteins of 145 and 143 kDa were identified in pea which co-purify with a chloroplast processing activity that cleaves the precursor for the major light-harvesting chlorophyll binding protein (preLHCP). Antiserum generated against the 145/143 kDa doublet recognizes only these two polypeptides in a chloroplast soluble extract. In immunodepletion experiments the antiserum removed the doublet, and there was a concomitant loss of cleavage of preLHCP as well as of precursors for the small subunit of Rubisco and the acyl carrier protein. The 145 and 143 kDa proteins co-eluted in parallel with the peak of processing activity during all fractionation procedures, but they were not detectable as a homo- or heterodimeric complex. The 145 and 143 kDa proteins were used separately to affinity purify immunoglobulins; each preparation recognized both polypeptides, indicating that they are antigenically related. Wheat chloroplasts contain a soluble species similar in size to the 145/143 kDa doublet.  相似文献   

16.
A homologue of the 70-kDa heat-shock protein (Hsp70) was purified from pumpkin chloroplasts. The molecular mass of the purified protein was approximately 75 kDa and its N-terminal amino acid sequence was very similar to those of homologues of Hsp70 from bacterial cells and from the mitochondrial matrix and stroma of pea chloroplasts. The purified homologue of Hsp70 was found in the stroma of chloroplasts. To investigate the role(s) of the homologue of Hsp70 in the chloroplast stroma, we examined the possibility that the homologue of Hsp70 might interact with newly imported proteins to assist in their maturation (for example, in their folding and assembly). Ferredoxin NADP+ reductase (FNR) imported into chloroplasts in vitro could be immunoprecipitated with antisera raised against the homologue of Hsp70 from pumpkin chloroplasts and against GroEL from Escherichia coli, which is a bacterial homologue of chaperonin 60 (Cpn60), in an ATP-dependent manner, an indication that newly imported FNR interacts physically with homologues of Hsp70 and Cpn60 in chloroplasts. Time-course analysis of the import of FNR showed that imported FNR interacts transiently with the homologue of Hsp70 and that the association of FNR with the homologue of Hsp70 precedes that with the homologue of Cpn60. These results suggest that homologues of Hsp70 and Cpn60 in chloroplasts might sequentially assist in the maturation of newly imported FNR in an ATP-dependent manner.  相似文献   

17.
To assess the extent to which a nuclear gene for a chloroplast protein retained the ability to be expressed in its presumed preendosymbiotic location, we relocated the RbcS gene for the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) to the tobacco plastid genome. Plastid RbcS transgenes, both with and without the transit presequence, were equipped with 3' hepta-histidine-encoding sequences and psbA promoter and terminator elements. Both transgenes were transcribed abundantly, and their products were translated into small subunit polypeptides that folded correctly and assembled into the Rubisco hexadecamer. When present, either the transit presequence was not translated or the transit peptide was cleaved completely. After assembly into Rubisco, transplastomic small subunits were relatively stable. The hepta-histidine sequence fused to the C terminus of a single small subunit was sufficient for isolation of the whole Rubisco hexadecamer by Ni(2)+ chelation. Small subunits produced by the plastid transgenes were not abundant, never exceeding approximately 1% of the total small subunits, and they differed from cytoplasmically synthesized small subunits in their N-terminal modifications. The scarcity of transplastomic small subunits might be caused by inefficient translation or assembly.  相似文献   

18.
Protein import into chloroplasts occurs post-translationally in vitro. The precursor proteins are generally synthesised in a reticulocyte lysate- or wheat germ lysate-derived system and imported out of this system into chloroplast. These complex soluble protein mixtures are likely to contain factors, which influence somehow the import competence and import efficiency. Here we describe a heat-stable soluble proteinaceaous factor, which inhibits protein import into chloroplasts in vitro. The inhibitor interacts directly with the precursor protein and renders it import incompetent. This mode of action is supported by two observations: firstly, binding of the precursor to the chloroplast surface is diminished in the presence of the inhibitor. Secondly, when chloroplasts were loaded with precursor proteins under conditions, which allow only binding but not import the inhibitor was unable to abolish the subsequent translocation step.  相似文献   

19.
Radioactive amino acids, when added to isolated pea chloroplasts or chloroplast extracts engaged in protein synthesis, are incorporated into Rubisco large subunits that co-migrate with native Rubisco during nondenaturing electrophoresis. We have added the transition state analog 2′-carboxyarabinitol bisphosphate (CABP) to chloroplast extracts after in organello or in vitro incorporation of radioactive amino acids into Rubisco large subunits. Upon addition of CABP the radioactive bands co-migrating with native Rubisco undergo a readily detected shift in electrophoretic mobility just as the native enzyme, thus demonstrating the ability of the newly assembled molecules to interact with this transition state analog.  相似文献   

20.
Chaperonins are involved in protein-folding. The rice genome encodes six plastid chaperonin subunits (Cpn60) — three α and three β. Our study showed that they were differentially expressed during normal plant development. Moreover, five were induced by heat stress (42°C) but not by cold (10°C). The oscpn60α1 mutant had a pale-green phenotype at the seedling stage and development ceased after the fourth leaf appeared. Transiently expressed OsCpn60α1:GFP fusion protein was localized to the chloroplast stroma. Immuno-blot analysis indicated that the level of Rubisco large subunit (rbcL) was severely reduced in the mutant while levels were unchanged for some imported proteins, e.g., stromal heat shock protein 70 (Hsp70) and chlorophyll a/b binding protein 1 (Lhcb1). This demonstrated that OsCpn60α1 is required for the folding of rbcL and that failure of that process is seedling-lethal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号