首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of silk formation inApis mellifera salivary glands, during the 5th instar, was studied. Larval salivary glands were dissected and prepared for light and polarized light microscopy, as well as for scanning and transmission electron microscopy. The results showed that silk formation starts at the middle of the 5th instar and finishes at the end of the same instar. This process begins in the distal secretory portion of the gland, going towards the proximal secretory portion; and from the periphery to the center of the gland lumen. The silk proteins are released from the secretory cells as a homogeneous substance that polymerizes in the lumen to form compact birefringent tactoids. Secondly, the water absorption from the lumen secretion, carried out by secretory and duct cells, promotes aggregation of the tactoids that form a spiral-shape filament with a zigzag pattern. This pattern is also the results of the silk compression in the gland lumen and represents a high concentration of macromolecularly well-oriented silk proteins.  相似文献   

2.
The unusual idiosomal glands of a water mite Teutonia cometes (Koch 1837) were examined by means of transmission and scanning electron microscopy as well as on semi-thin sections. One pair of these glands is situated ventrally in the body cavity of the idiosoma. They run posteriorly from the terminal opening (distal end) on epimeres IV and gradually dilate to their proximal blind end. The terminal opening of each gland is armed with the two fine hair-like mechanoreceptive sensilla (‘pre-anal external’ setae). The proximal part of the glands is formed of columnar secretory epithelium with a voluminous central lumen containing a large single ‘globule’ of electron-dense secretory material. The secretory gland cells contain large nuclei and intensively developed rough endoplasmic reticulum. Secretory granules of Golgi origin are scattered throughout the cell volume in small groups and are discharged from the cells into the lumen between the scarce apical microvilli. The distal part of the glands is formed of another cell type that is not secretory. These cells are composed of narrow strips of the cytoplasm leaving the large intracellular vacuoles. A short excretory cuticular duct formed by special excretory duct cells connects the glands with the external medium. At the base of the terminal opening a cuticular funnel strengthens the gland termination. At the apex of this funnel a valve prevents back-flow of the extruded secretion. These glands, as other dermal glands of water mites, are thought to play a protective role and react to external stimuli with the help of the hair-like sensilla.  相似文献   

3.
This study details the gross and microscopic anatomy of the pelvic kidney in male Ambystoma maculatum. The nephron of male Ambystoma maculatum is divided into six distinct regions leading sequentially away from a renal corpuscle: (1) neck segment, which communicates with the coelomic cavity via a ventrally positioned pleuroperitoneal funnel, (2) proximal tubule, (3) intermediate segment, (4) distal tubule, (5) collecting tubule, and (6) collecting duct. The proximal tubule is divided into a vacuolated proximal region and a distal lysosomic region. The basal plasma membrane is modified into intertwining microvillus lamellae. The epithelium of the distal tubule varies little along its length and is demarcated by columns of mitochondria with their long axes oriented perpendicular to the basal lamina. The distal tubule possesses highly interdigitating microvillus lamellae from the lateral membranes and pronounced foot processes of the basal membrane that are not intertwined, but perpendicular to the basal lamina. The collecting tubule is lined by an epithelium with dark and light cells. Light cells are similar to those observed in the distal tuble except with less mitochondria and microvillus lamellae of the lateral and basal plasma membrane. Dark cells possess dark euchromatic nuclei and are filled with numerous small mitochondria. The epithelium of the neck segment, pleuroperitoneal funnel, and intermediate segment is composed entirely of ciliated cells with cilia protruding from only the central portion of the apical plasma membrane. The collecting duct is lined by a highly secretory epithelium that produces numerous membrane bound granules that stain positively for neutral carbohydrates and proteins. Apically positioned ciliated cells are intercalated between secretory cells. The collecting ducts anastomose caudally and unite with the Wolffian duct via a common collecting duct. The Wolffian duct is secretory, but not to the extent of the collecting duct, synthesizes neutral carbohydrates and proteins, and is also lined by apical ciliated cells intercalated between secretory cells. Although functional aspects associated with the morphological variation along the length of the proximal portions of the nephron have been investigated, the role of a highly secretory collecting duct has not. Historical data that implicated secretory activity concordant with mating activity, and similarity of structure and chemistry to sexual segments of the kidneys in other vertebrates, lead us to believe that the collecting duct functions as a secondary sexual organ in Ambystoma maculatum. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
Summary The glycoconjugate composition of mouse intercalated duct and acinar cells of parotid gland has been compared. Mucins containing 1,2-glycols were demonstrated by the tannic acid-uranyl acetate technique. Hexose residues of glycoconjugates were identified using ferritin conjugated withCanavalia ensiformis agglutinin (Con A),Triticum vulgare or wheat germ agglutinin (WGA),Ricinus communis I agglutinin (RCA-I),Phaseolus vulgaris agglutinin (PHA-E) andArachis hypogaea agglutinin (PNA). Whereas qualitative and quantitative differences were observed in sugar residues of secretory granules in intercalated duct and acinar cells, apical plasmalemmae were labelled sparsely and similarly. This indicates that the glycocalyx composition of apical plasma minae in the parotid acinar and intercalated duct cells is little influenced by secretory granule composition.  相似文献   

5.
The cement gland of Rhodnius prolixus is an epidermally derived tubular gland consisting of a distal synthetic region and a proximal muscular duct region. The synthetic region consists of numerous secretory units joined to a central chitinous duct via cuticular ductules. Proteinaceous secretion, synthesized by the goblet-shaped secretory cell, passes through the delicate cuticular lattice of a ductule-end apparatus and out through fine ductules to the central duct. Secretory cells are rich in rough endoplasmic reticulum and mitochondria. Light microscopy, SEM and TEM reveal the delicate lattice-like end apparatus structure, its formation and relationship to the secretory cell. The secretory cell associates via septate junctions with a tubular ductule cell that encloses a cuticle-lined ductule by forming an elaborate septate junction with itself. The ductules are continuous with the cuticle lining of the large central duct that conveys secretion to the proximal area. The proximal muscular duct has a corrugated cuticular lining, a thin epithelium rich in microtubules and thick longitudinal, striated muscles which contract during oviposition, forcing the secretion out. Histochemistry and electrophoresis reveal the secretion as proteinaceous.  相似文献   

6.
The specialized cell types and two distinct regions of the adult Rhodnius prolixus cement gland develop from a simple pseudostratified epithelial tube during the 20–22 days of the fifth stadium. Feeding initiates the first phase, proliferation. Cells round up and divide tangentially to the lumen. Following the proliferation phase, differentiative mitoses occur and differentiation, resulting in secretory units (consisting of a ductule, gland cell and cuticular lining), ensues in the distal region. Ductule morphogenesis occurs without pseudocilia, thus differing from other insect glands. The complex changes in cell shape and interaction occur during development of the secretory unit. The secretory cell and end-apparatus develop from a double cell unit at the base of elongating ductules. The inner cell produces a complex end-apparatus of epicuticle that mirrors the microvillar pattern and then it degenerates. The ductules are lined by cuticulin and inner epicuticle while the central gland lumen has a layer of endocuticle as well. The epithelium of the proximal region remains simple producing the thick corrugated cuticle characteristic of the adult secretory duct. The mesodermal covering forms a thick longitudinal striated muscle layer that adheres to the epithelium via desmosomes.  相似文献   

7.
The ampullate silk gland of the spider, Araneus sericatus, produces the silk fiber for the scaffolding of the web. The fine structure of the various parts of the gland is described. The distal portion of the duct consist of a tube of epithelial cells which appear to secrete a substance which forms the tunica intima of the duct wall. At the proximal end of the duct there is a region of secretory cells. The epithelium of the sac portion contains five morphologically distinct types of granules. The bulk of the synthesis of silk occurs in the tail of the gland, and in this region only a single type of secretory droplet is seen in the epithelium. Protein synthesis can be stimulated by the injection of 1 mg/kg acetylcholine into the body fluids. 10 min after injection, much of the protein stored in the cytoplasm of the epithelial cells has been secreted into the lumen. 20 min after stimulation, the ergastoplasmic sacs form large whorls in the cytoplasm. Protein, similar in electron-opacity to protein found in the lumen, begins to form in that portion of the cytoplasm which is enclosed by the whorls. The limiting membrane of these droplets is formed by ergastoplasmic membranes which lose their ribosomes. No Golgi material has been found in these cells. Protein appears to be manufactured in the cytoplasm of the tail cells in a form which is ready for secretion.  相似文献   

8.
Summary The structure of thezonula occludens in the secretory epithelium of the salt gland of the domestic duck was determined by thin section and freeze-fracture electron microscopy. These glands secrete an effluent with a NaCl concentration four times that of plasma, and thus maintain a steep ionic gradient across their secretory epithelium. Freezefracture replicas from salt stressed ducks demonstrate that thezonula occludens is surprisingly shallow in depth (20–25 nm) and generally consists of two parallel junctional strands which are juxaposed along their entire length. In addition to the simplicity of the junction separating mucosal and serosal compartments, the ratio of junctional length to apical surface area is large since luminal surfaces of secretory cells are narrow and intermesh with one another. Thezonula occludens in nonsecreting fresh water-adapted birds is similar to the salt stressed group except that two sets of double strand junctions are seen in addition to junctions consisting of a single set. Based on previous ultrastructural, cytochemical and physiological studies in salt glands and in other epithelia, a model for salt secretion was suggested in which intercellular space Na+, generated by basolateral ouabain-sensitive Na+ pumps, reaches the lumen via a paracellular route (Ernst & Mills, 1977,J. Cell Biol. 75:74). The simplicity of the morphological appearance of thezonula occludens in the salt gland, which resembles that described for several epithelia known to be leaky to ions, is consistent with this hypothesis.  相似文献   

9.
Summary The renal tubules of the paired pronephros in early larvae (ammocoetes) of two lamprey species, Lampetra fluviatilis and Petromyzon marinus, were studied by use of light-, scanning- and transmission electron microscopy. They consist of (1) a variable number of pronephric tubules (3 to 6), and (2) an excretory duct. By fine-structural criteria, the renal tubules can be divided into 6 segments. Each pronephric tubule is divided into (1) the nephrostome and (2) the proximal tubule, the excretory duct consisting of (3) a common proximal tubule followed by (4) a short intermediate segment, and then by a pronephric duct composed of (5) a cranial and (6) a caudal section. The epithelium of the nephrostome displays bundles of cilia. The cells of the proximal tubule possess a brush border, many endocytotic organelles and a system of canaliculi (tubular invaginations of the basolateral plasmalemma). The same characteristics are encountered in the epithelium of the common proximal tubule; however, the number of these specific organelles decreases along the course of this segment in a posterior direction. In the intermediate segment, the epithelium appears structurally nonspecialized. The cells of the cranial pronephric duct lack a brush border; they have an extensive system of canaliculi and numerous mitochondria. The caudal pronephric duct is lined by an epithelium composed of light and dark cells; the latter are filled with mitochondria and the former contain mucus granules beneath the luminal plasmalemma. The tubular segments found in the pronephros are the same in structure and sequence as in the lamprey opisthonephroi. However, only the nephrostomes and proximal tubules occur serially in the pronephros, while the common proximal tubule, the intermediate segment and the cranial pronephric duct form portions of a single excretory duct.This paper is dedicated to the memory of Professor W. Bargmann, long-time editor of Cell and Tissue Research, the author of a splendid review on the structure of the vertebrate kidney and a master of German scientific writing.  相似文献   

10.
The mandibular glands of the Japanese field vole were examined by light microscopy, and transmission and scanning electron microscopies. The acinar cells contained light and coarse secretory granules, and reacted with PAS and stained slightly with AB; they were considered to be seromucous in nature. The acinar epithelium was composed of light and dark cells containing many secretory granules. The intercalated duct cells consisted of light cells possessing a few dense granules. A few cytoplasmic crystalloides of moderate density were observed in occasional light cells. The striated ducts were comprized of two distinct portions, a secretory portion and a typical striated portion without secretory granules. The epithelium secretory portion consisted of light and dark cells containing acidophilic granules and exhibited a sexual dimorphism in these granules: The male epithelia contained the granules of low to high densities, while the female epithelia had only dense granules being smaller than those in the males. The epithelium of typical striated portion was composed of light and dark cells containing fine vacuoles and vesicles.  相似文献   

11.
The murine caput epididymidis responded to deprivation of luminal fluid from the testis by regression of the initial segment but maintenance of the adjacent proximal and distal caput regions, as judged by immuno-histochemical staining of the glutamate transporter EAAC1 and the lipocalin MEP17 and enzymatic activity of -galactosidase (-Gal). Additional removal of circulating androgens by bilateral castration similarly led to loss of the initial segment and of the proximal caput but the distal caput was transformed into an epithelium containing more apical than principal cells staining for EAAC1; this epithelium resembled the precursor epithelium usually only seen in prepubertal juveniles. Administration of dihydrotestosterone (DHT) to the castrates maintained the proximal and distal caput epithelia and induced a proximal epithelium, which resembled the initial segment in its prominent staining for Golgi, EAAC1 and -Gal activity, although it was short and exhibited no MEP17 expression. DHT was present in the c-ros knockout caput epididymidis lacking the initial segment and in the heterozygous organ but the DHT concentration was lower in the knockout corpus. The maintenance of the full complement of epithelia in the murine caput epididymidis in the adult thus requires a combination of luminal fluid from the testis, tissue DHT and the presence of the c-ros oncogene.  相似文献   

12.
Each silk gland of Calpodes ethlius consists of five distinct regions: the duct, the green, anterior, middle and posterior regions. Although the gland increases approximately tenfold in length during the larval life, the number of cells remains constant with a concomitant increase in ploidy which is not constant either throughout larval life or in the different regions of the gland. Histochemistry on the glands of the mid-fifth instar larva shows that progressively more mucosubstances are deposited in the lumen, so that while in the distal regions there is only one weakly acidic deposit, this is increased to three more acidic bands in the proximal regions. These bands can be correlated with materials of different electron density. All five regions have characteristic secretory ultrastructure, with prominent secretory vesicles or granules and microvilli. However, the posterior and middle regions have electron-translucent vesicles and relatively short microvilli, while the other three regions have electron dense granules and a more complex, microvillate apical surface. This complexity is greatest in the duct which suggests that it may function in water reabsorption.  相似文献   

13.
The Dufour gland is crucially involved in main aspects of the parasite habit of the slave-making ant Polyergus rufescens, i.e. slave-raids and host colony usurpation. Workers use chemicals from this gland as recruitment signals during raid organization, while newly-mated queens use its secretion to appease residents during host nest invasion. Here, we report a comparison of the general morphology and fine structure of the Dufour gland in the female castes of P. rufescens: queens, ergatogynes (intermediate forms), and workers. The analysis clearly shows the link between gland structure and its behavioural role in queens and workers. In particular, queens present a hypertrophied gland with an extended lumen and a thin epithelium no more active in secretory function. This is consistent with the fact that usurper queens use the Dufour gland contents only during the short phase of host nest penetration. Contrary to adult queens, the cytoplasmic organization of the Dufour gland epithelium of raiders is typical for a tissue with secretory activity (abundance of mitochondria, free ribosomes, strands of smooth endoplasmic reticulum and a Golgi apparatus). This is consistent with the continuous raiding activity performed by workers throughout their adult life. The biology of ergatogynes is still an enigmatic matter. Their Dufour gland is intermediate in shape and size between that of queens and workers. It presents a fairly thick epithelium with features that are typical of a quite active secretory tissue.  相似文献   

14.
Male salamanders use nephrons from the genital kidney to transport sperm from the testicular lobules to the Wolffian duct. The microstructure of the epithelia of the genital kidney proximal tubule and distal tubule was studied over 1 year in a population of Notophthalmus viridescens from Crawford and Pike counties in central Missouri. Through ultrastructural analysis, we were able to support the hypothesis that the genital kidney nephrons are modified to aid in the transportation of sperm. A lack of folding of the basal plasma membrane, in both the genital kidney proximal and distal tubules when compared to the pelvic kidney proximal and distal tubules, reduces the surface area and thus likely decreases the efficiency of reabsorption in these nephron regions of the genital kidney. Ciliated epithelial cells are also present along the entire length of the genital kidney proximal tubule, but are lacking in the epithelium of the pelvic kidney proximal tubule. The exact function of these cilia remains unknown, but they may aid in mixing of seminal fluids or the transportation of immature sperm through the genital kidney nephrons. Ultrastructural analysis of proximal and distal tubules of the genital kidney revealed no seasonal variation in cellular activity and no mass production of seminal fluids throughout the reproductive cycle. Thus, we failed to support the hypothesis that the cellular activity of the epithelia lining the genital kidney nephrons is correlated to specific events in the reproductive cycle. The cytoplasmic contents and overall structure of the genital and pelvic kidney epithelial cells were similar to recent observations in Ambystoma maculatum, with the absence of abundant dense bodies apically in the epithelial cells lining the genital kidney distal tubule. J. Morphol. 275:914–922, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
The fine structure of the reproductive accessory gland of the parthenogenetic thrips Heliothrips haemorrhoidalis (Thysanoptera : Thripidae) is reported. It consists of an apical bulb and a fine gland duct. The former consists of an epithelium with secretory and duct-forming cells surrounding a large gland lumen lined with a thin cuticle and filled with dense secretion. Spent secretory cells degenerate and are eliminated from the epithelium. The gland duct is characterized by an irregular, branched lumen surrounded by a very flat epithelium. A valve controls the opening of the duct lumen. The proximal gland duct runs through a cuticular papilla that opens between the dorsal ovipositor valves. The secretions may serve for ovipositor valve lubrication and possibly to protect laid eggs. Observations of serial sections through the vagina exclude the presence of a spermatheca in this species.  相似文献   

16.
The ultrastructural organization of the proboscis in two species of free-living Platyhelminthes, Psammorhynchus tubulipenis and Cytocystis clitellatus is very alike but differs from previously described species. Both sheath and cone epithelium are composed of two circumferential belts. Only the basal cone epithelium is syncytial, while no nuclei were found in the distal belt of the sheath epithelium. The sheath epithelium is characterized by numerous infoldings of the basal plasma membrane. The nuclei present in the bulb belong to the proximal belt of the sheath epithelium and the apical cone epithelium. Nuclei of the basal cone epithelium are located insunk behind the proboscis bulb. The insunk cell parts pierce the septum of the bulb laterally near the proximal end. Different types of gland necks and sensory cells pierce the epithelia. Associated with the distal belt of the sheath epithelium, two sensory organs are found, containing multiciliary receptors with modified axonemata. Differences in organization of the proboscis musculature are described and compared with the organization in other species. The systematic position of both species is discussed in the light of the new findings.  相似文献   

17.
We described the ultrastructure and histochemistry of the reproductive system of five Callinectes species, and evaluate the seasonal variation in weight of the reproductive system and hepatopancreas by comparing annual changes of somatic indices. The somatic indices changed little throughout the year. In Callinectes, spermatogenesis occurs inside the lobular testes and, within each lobule, the cells are at the same developmental stage. Spermatogenesis and spermiogenesis follow the same development pattern in all Callinectes studied. Mature spermatozoa are released into the seminiferous ducts through the collecting ducts. Cells of the vas deferens are secretory as evidenced by rough endoplasmic reticulum, Golgi complex, and secretory vesicles that produce the seminal fluid. The anterior vas deferens shows two portions: proximal and distal. In proximal portion (AVDp), spermatozoa are clustered and embedded in an electron-dense, basophilic glycoproteinaceous secretion Type I. In the distal portion (AVDd), the spermatophore wall is formed by incorporation of a less electron-dense glycoproteinaceous secretion Type II. The secretion Type I change to an acid polysaccharide-rich matrix that separates the spermatophores from each other. The median vas deferens (MVD) stores the spermatophores and produces the granular glycoproteinaceous seminal fluid. The posterior vas deferens (PVD) has few spermatophores. Its epithelium has many mitochondria and the PVD seminal fluid changes into a liquid and homogeneous glycoprotein. Many outpocketings in the PVD and MVD help to increase the fluid production. Overall, the reproductive pattern of Callinectes is similar to other species that produce sperm plugs. The secretions of AVD, MVD, and PVD are responsible for the polymerization that forms the solid, waxy plug in the seminal receptacle. The traits identified here are common to all Portunidae species studied so far.  相似文献   

18.
We investigated the female reproductive system of Platygaster diplosisae (Hymenoptera: Platygastridae) and Aprostocetus procerae (= Tetrastichus pachydiplosisae) (Hymenoptera: Eulophidae), two parasitoids associated with the African rice gall midge, Orseolia oryzivora (Diptera: Cecidomyiidae). Both optical and electron microscopy were used. The female reproductive system of P. diplosisae includes two large ovaries of the meristic polytrophic‐type, each composed of several tens of ovarioles. The system includes also a venomous gland that extends to a common oviduct. This gland had a filiform secretory portion, in which the epithelium was thin and surrounded a common evacuation canal. The secretory cells secrete into a large reservoir. Parasitism due to P. diplosisae is gregarious. The female reproductive system of A. procerae includes two ovaries of the meristic polytrophic‐type, and each ovary has a few ovarioles. Each ovariole includes one or two oocytes, which can be seen in the vitellarium. Two accessory glands, which extend to the oviduct, are also visible. The secretory epithelium of the accessory gland is made up of a dense network of secretory cells surrounded by muscle fibers. Females of A. procerae pierce the tissues of the gall and probably deposit one egg on or close to the pupa of the midge. Aprostocetus procerae is a solitary parasitoid of the midge. The two parasitoids exploit the same host at different developmental stages. These findings improve our knowledge of the reproductive biology of these two parasitoids associated with the African rice gall midge, an important pest in Africa.  相似文献   

19.
The coxal glands of M. murismusculi consist of the proximal tubular portion (tubulus), the distal glandular sac and the terminal excretory duct. The tubulus comprises looped proximal and distal tubes that run in close association with each other. The cells of the proximal tube form numerous short protrusions that project into the neighbouring organs through the pores in their basal lamina. The sac is a distal part of the gland and so it cannot be considered as a homologue of the proximal filter sacculus of other arthropods. A large number of pinocytotic vesicles and lysosome-like bodies in the epithelial lining of the sac imply that the main functions of this organ may be the absorption of substances from the lumen of the gland and their subsequent intracellular transformation. In addition the sac of females was shown to produce dense secretory granules. The ultrastructural features of the glands are discussed and compared to other representatives of Acari.  相似文献   

20.
Members of the cucujiform family Erotylidae possess a whole arsenal of compound integumentary glands. Structural details of the glands of the pronotum of Tritoma bipustulata and Triplax scutellaris are provided for the first time. These glands, which open in the posterior and anterior pronotal corners, bear, upon a long, usually unbranched excretory duct, numerous identical gland units, each comprising a central cuticular canal surrounded by a proximal canal cell and a distal secretory cell. The canal cell forms a lateral appendix filled with a filamentous mass probably consisting of cuticle, and the cuticle inside the secretory cell is strongly spongiose—both structural features previously not known for compound glands of beetles. Additional data are provided for compound glands of the prosternal process and for simple (dermal) glands of the pronotum. A combined defense plus anti-microbial function of the compound glands is tentatively proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号