首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prediction of convection-enhanced drug delivery to the human brain   总被引:2,自引:0,他引:2  
The treatment for many neurodegenerative diseases of the central nervous system (CNS) involves the delivery of large molecular weight drugs to the brain. The blood brain barrier, however, prevents many therapeutic molecules from entering the CNS. Despite much effort in studying drug dispersion with animal models, accurate drug targeting in humans remains a challenge. This article proposes an engineering approach for the systematic design of targeted drug delivery into the human brain. The proposed method predicts achievable volumes of distribution for therapeutic agents based on first principles transport and chemical kinetics models as well as accurate reconstruction of the brain geometry from patient-specific diffusion tensor magnetic resonance imaging. The predictive capabilities of the methodology will be demonstrated for invasive intraparenchymal drug administration. A systematic procedure to determine the optimal infusion and catheter design parameters to maximize penetration depth and volumes of distribution in the target area will be discussed. The computational results are validated with agarose gel phantom experiments. The methodology integrates interdisciplinary expertise from medical imaging and engineering. This approach will allow physicians and scientists to design and optimize drug administration in a systematic fashion.  相似文献   

2.
Y Nievergelt 《Biometrics》1990,46(4):1111-1121
In the research on drug transport within brain tissue, typical data sets consist of a collection of volume integrals from various locations in the brain, with each datum measuring the total amount of drug in a sample of tissue. These samples contain medically useful information about the extent and orientation of the distribution of the drug, but extracting this information requires some mathematical analysis. The method of analysis presented here performs a nonlinear regression on the data to fit a multivariate density function (for example, a Gaussian density) to model such transport processes as diffusion and dispersion. The principal components of that density then characterize the size and shape of the distribution of drug.  相似文献   

3.
4.
The tooth organ is extensively used in developmental biology to investigate organogenesis and cell differentiation. It also represents an advantageous system for the study of the various cellular and extracellular matrix events that regulate the formation of both collagenous and noncollagenous calcified tissues. This article describes an in vivo surgical approach to access and experimentally manipulate the tooth organ and supporting tissues of the rat incisor. By use of a dental drill, a "window" was created through the alveolar bone on the buccal aspect of the hemimandible at the apical end of the incisor. It is at this site that epithelial and mesenchymal precursors are situated and undergo cellular differentiation to give rise to cells of the odontogenic organ. Active bone remodeling is also observed in this area to accommodate posterior growth of the tooth. An osmotic minipump connected to the bony window through an outlet catheter was used for controlled and continuous administration of experimental agents over a predetermined period of time. To validate the model, vinblastine sulfate, fetuingold, and dinitrophenylated albumin were thus infused. The animals were then sacrificed and the hemimandibles were processed for histological and immunocytochemical analyses. The effects of the drug and the presence of tracers were restricted to the treated hemimandible and were found in the enamel organ and pulp, as well as in the tooth supporting tissues. Cellular changes typically associated with the administration of vinblastine were obtained, and tracers were localized both in the extracellular milieu and within the endosomal/lysosomal elements of cells. These results suggest that this new surgical approach could serve as an advantageous in vivo model in which various chemical agents, therapeutic drugs, molecular probes are locally administered to study the molecular events that regulate calcified tissue formation.  相似文献   

5.
雌激素受体亚型及其配体调节基因转录机制的研究   总被引:9,自引:0,他引:9  
An SJ  Zhang YX 《生理科学进展》2002,33(4):309-312
本文综述雌激素受体亚型(ERα和ERβ)的结构,功能,组织分布,生理作用及雌激素受体配体调节基因转录的机制,目的是深入系统地了解植物雌激素和选择性雌激素受体调节剂的作用路径及其组织特异性的发生机制,最终为提高雌激素类药物的选择性,优化以临床为基础的药物设计提供一条较为系统的思路。结果表明,ERα和ERβ对不同雌激素类化合物产生不同应答,配体的结构不同,调节基因转录的路径不同和募集的辅调节蛋白的不同是雌激素受体两种亚型组织特异性激活或抑制的主要原因。  相似文献   

6.
A theoretical model is formulated for analyzing oxygen delivery from an arbitrary network configuration of cylindrical microvessels to a finite region of tissue. In contrast to models based on the classical Krogh cylinder approach, this model requires no a priori assumptions concerning the extent of the tissue region supplied with oxygen by each vessel segment. Steady-state conditions are assumed, and oxygen consumption in the tissue is assumed to be uniform. The nonlinear dissociation characteristics of oxyhemoglobin are taken into account. A computationally efficient Green's function approach is used, in which the tissue oxygen field is expressed in terms of the distribution of source strengths along each segment. The utility of the model is illustrated by analyses of oxygen delivery to a cuboidal tissue region by a single segment and by a six-segment network. It is found that the fractional contribution of the proximal segments to total oxygen delivery increases with decreasing flow rate and metabolic rate.  相似文献   

7.
8.
Developing amorphous solid dispersions of water-insoluble molecules using polymeric materials is a well-defined approach to improve the dissolution rate and bioavailability. While the selected polymer plays a vital role in stabilizing the amorphous solid dispersion physically, it is equally important to improve the dissolution profile by inhibiting crystallization from the supersaturated solution generated by dissolution of the amorphous material. Furthermore, understanding the mechanism of dissolution rate enhancement is of vital importance. In this work, wetting kinetics was taken up as an alternative approach for understanding the enhanced dissolution rate for amorphous solid dispersion of a poorly soluble drug. While cilostazol (CIL) was selected as the model drug, povidone (PVP), copovidone, and hypromellose (HPMC) were the polymers of choice. The concentrations against time profiles were evaluated for the supersaturated solutions of CIL in the presence and absence of the selected polymers. The degree of supersaturation increased significantly with increase in polymer content within the solid dispersion. While povidone was found to maintain the highest level of supersaturation for the greatest length of time both in dissolution and solution crystallization experiments, copovidone and hypromellose were found to be the less effective as crystallization inhibitor. The ability of polymers to generate and maintain supersaturated drug solutions was assessed by dissolution studies. The wetting kinetics was compared against the solid dispersion composition to establish a correlation with enhanced dissolution rate.KEY WORDS: Cilostazol, Crystallization inhibition, Solid dispersions, Supersaturated solutions, Wetting kinetics  相似文献   

9.
In experiments on cows it has been shown that addition of the tracer dye, Food Green No. 4, to intramammary preparations containing sulphonamide by inspection of cut surfaces directly demonstrates the galactogenic dispersion. By sulphonamide reaction on the cut surface of the udder and quantitative chemical determinations of both the dye and sulphonamide on pieces of gland tissue an identical distribution of the two components has been found. In normal as well as in glands with chronic indurative mastitis an uneven distribution after intramammary infusion has been found. After simultaneous intramammary application of vehicles for sulphonamide intramammary injections containing Food Green No. 4 and intravenous injection of sulphonamide, an uneven distribution of the intramammary preparation but an uniform distribution of the parenterally injected sulphonamide was demonstrated. The results obtained are discussed in relation to the treatment of mastitis in cows and it is concluded that the blockage of the galactogenic dispersion of intramammary infusions by the pathological changes in acute as well as chronic mastitis, indicate systemic treatment with distribution of the drugs by the vascular route.  相似文献   

10.

Background

Particle size is a key parameter for drug-delivery nanoparticle design. It is believed that the size of a nanoparticle may have important effects on its ability to overcome the transport barriers in biological tissues. Nonetheless, such effects remain poorly understood. Using a multiscale model, this work investigates particle size effects on the tissue distribution and penetration efficacy of drug-delivery nanoparticles.

Results

We have developed a multiscale spatiotemporal model of nanoparticle transport in biological tissues. The model implements a time-adaptive Brownian Dynamics algorithm that links microscale particle-cell interactions and adhesion dynamics to tissue-scale particle dispersion and penetration. The model accounts for the advection, diffusion, and cellular uptakes of particles. Using the model, we have analyzed how particle size affects the intra-tissue dispersion and penetration of drug delivery nanoparticles. We focused on two published experimental works that investigated particle size effects in in vitro and in vivo tissue conditions. By analyzing experimental data reported in these two studies, we show that particle size effects may appear pronounced in an in vitro cell-free tissue system, such as collagen matrix. In an in vivo tissue system, the effects of particle size could be relatively modest. We provide a detailed analysis on how particle-cell interactions may determine distribution and penetration of nanoparticles in a biological tissue.

Conclusion

Our work suggests that the size of a nanoparticle may play a less significant role in its ability to overcome the intra-tissue transport barriers. We show that experiments involving cell-free tissue systems may yield misleading observations of particle size effects due to the absence of advective transport and particle-cell interactions.
  相似文献   

11.
A low-density, porous chitosan/poly-(dl-lactide-co-glycolide) (PLGA) microparticle composite scaffold was produced by thermally induced phase separation followed by lyophilization, to provide a bicontinuous microstructure potentially suitable for tissue engineering and locally controlled drug release. PLGA particles were mixed into the chitosan solution and subsequent phase separation during chitosan solidification forced PLGA particles into chitosan phase (Plateau borders). The distributions of volume, surface area, and elongation of 15,422 inclusions of agglomerated PLGA particles were calculated and approximated with log-normal distribution functions from nanotomography reconstructions. Cluster analysis revealed a homogenous inclusion distribution throughout the scaffold. The spatial location and orientation of individual inclusions within the Plateau borders of the scaffold were determined and from these the nearest-neighbor inter-inclusion distance distribution calculated, showing a mean of 2.5 microm. The depth of the inclusions in Plateau borders peaks at 700 or 125 nm, respectively, indicating a step-wise drug release from inclusions successively exposed during scaffold decomposition. Particle diameter ranged from 400 nm to 3 microm and inclusion Feret lengths ranged from 800 nm to 12 microm. These findings on composite morphology and distribution of inclusions are fundamental for predicting scaffold deterioration and particle-mediated drug release during ex vivo and in vivo cell cultivation.  相似文献   

12.
《IRBM》2008,29(5):326-336
Hyperthermia is a technique of raising the temperature locally to treat say tumours. There are several hyperthermia modalities like radio frequency (RF), microwave, and ultrasound. RF and microwave hyperthermia are good for superficial treatment while ultrasound is good for the therapeutic treatment of deep-seated tumours, with the ability of easy focussing. Focussed ultrasound system developed for deep-seated tumours, say in the complex brain tissue, is studied here. Nanotechnological approach is presented here for different control mechanisms for the control of ultrasound intensity, focussing beam, thermal profile of temperature distribution in the tissue and dosage control levels. Ex vivo study of excised tumours, like breast tumours, bone tumours and other such samples, with the present system is also presented. Physical and biological effects on the human health are discussed.  相似文献   

13.
The system poly(lactic-co-glycolic) acid/ piroxicam (PLGA/PX) was selected, as a model system, to evaluate the effectiveness of supercritical carbon dioxide (SC-CO(2)) extraction of the oily phase (ethyl acetate) from oil-in-water emulsions used in the production of polymer/drug microspheres for sustained drug release applications. The influence of process parameters like operating pressure and temperature, flow rate and contacting time between the emulsion and SC-CO(2) was studied with respect to the microsphere size, distribution and solvent residue. Different polymer concentrations in the oily phase were also tested in emulsions formulation to monitor their effects on droplets and microspheres size distribution at fixed mixing conditions. Spherical PLGA microspheres loaded with PX (10% w/w) with mean sizes ranging between 1 and 3 microm and very narrow size distributions were obtained due to the short supercritical processing time (30 min) that prevents the aggregation phenomena typically occurring during conventional solvent evaporation process. A solvent residue smaller than 40 ppm was also obtained at optimized operating conditions. DSC and SEM-EDX analyses confirmed that the produced microparticles are formed by a solid solution of PLGA and PX and that the drug is entrapped in an amorphous state into the polymeric matrix with an encapsulation efficiency in the range of 90-95%. Drug release rate studies showed very uniform drug concentration profiles, without any burst effect, confirming a good dispersion of the drug into the polymer particles.  相似文献   

14.
About 25 years ago it was demonstrated that certain peptides possess the ability to cross the plasma membrane. This led to the development of cell-penetrating peptides (CPPs) as vectors to mediate the cellular entry of (macro-)molecules that do not show cell entry by themselves. Nonetheless, in spite of an early bloom of promising pre-clinical studies, not a single CPP-based drug has been approved, yet. It is a paradigm in CPP research that the peptides are taken up by virtually all cells. In exploratory research and early preclinical development, this assumption guides the choice of the therapeutic target. However, while this indiscriminatory uptake may be the case for tissue culture experiments, in an organism this is clearly not the case. Biodistribution analyses demonstrate that CPPs only target a very limited number of cells and many tissues are hardly reached at all. Here, we review biodistribution analyses of CPPs and CPP-based drug delivery systems. Based on this analysis we propose a paradigm change towards a more opportunistic approach in CPP research. The application of CPPs should focus on those pathophysiologies for which the relevant target cells have been shown to be reached in vivo.  相似文献   

15.
Restriction of blood flow by the narrowing or occlusion of arteries is one of the most common presentations of cardiovascular disease. One treatment involves the introduction of a metal scaffold, or stent, designed to prevent recoil and to provide structural stability to the vessel. On the occasions that this treatment is ineffective, failure is usually associated with re-invasion of tissue. This can be prevented by local delivery of drugs which inhibit tissue growth. The drug might be delivered locally in a polymer coating on the stent. This paper develops and explores the use of a thermal analogue of the drug delivery process and the associated three-dimensional convection-diffusion equation to model the spatial and temporal distribution of drug concentration within the vessel wall. This allows the routine use of commercial finite element analysis software to investigate the dynamics of drug distribution, assist in the understanding of the treatment process and develop improved delivery systems. Two applications illustrate how the model might be used to investigate the effects of controllable or measurable parameters on the progression of the process. It is demonstrated that the geometric characteristics of the stent can have significant impact on the homogeneity of the dosing in the vessel wall.  相似文献   

16.
Identifying the best drug for each cancer patient requires an efficient individualized strategy. We present MATCH (M erging genomic and pharmacologic A nalyses for T herapy CH oice), an approach using public genomic resources and drug testing of fresh tumor samples to link drugs to patients. Valproic acid (VPA) is highlighted as a proof‐of‐principle. In order to predict specific tumor types with high probability of drug sensitivity, we create drug response signatures using publically available gene expression data and assess sensitivity in a data set of >40 cancer types. Next, we evaluate drug sensitivity in matched tumor and normal tissue and exclude cancer types that are no more sensitive than normal tissue. From these analyses, breast tumors are predicted to be sensitive to VPA. A meta‐analysis across breast cancer data sets shows that aggressive subtypes are most likely to be sensitive to VPA, but all subtypes have sensitive tumors. MATCH predictions correlate significantly with growth inhibition in cancer cell lines and three‐dimensional cultures of fresh tumor samples. MATCH accurately predicts reduction in tumor growth rate following VPA treatment in patient tumor xenografts. MATCH uses genomic analysis with in vitro testing of patient tumors to select optimal drug regimens before clinical trial initiation.  相似文献   

17.
Knowledge of elastic properties of cerebral aneurysms is crucial for understanding the biomechanical behavior of the lesion. However, characterizing tissue properties using in vivo motion data presents a tremendous challenge. Aside from the limitation of data accuracy, a pressing issue is that the in vivo motion does not expose the stress-free geometry. This is compounded by the nonlinearity, anisotropy, and heterogeneity of the tissue behavior. This article introduces a method for identifying the heterogeneous properties of aneurysm wall tissue under unknown stress-free configuration. In the proposed approach, an accessible configuration is taken as the reference; the unknown stress-free configuration is represented locally by a metric tensor describing the prestrain from the stress-free configuration to the reference configuration. Material parameters are identified together with the metric tensor pointwisely. The paradigm is tested numerically using a forward-inverse analysis loop. An image-derived sac is considered. The aneurysm tissue is modeled as an eightply laminate whose constitutive behavior is described by an anisotropic hyperelastic strain-energy function containing four material parameters. The parameters are assumed to vary continuously in two assigned patterns to represent two types of material heterogeneity. Nine configurations between the diastolic and systolic pressures are generated by forward quasi-static finite element analyses. These configurations are fed to the inverse analysis to delineate the material parameters and the metric tensor. The recovered and the assigned distributions are in good agreement. A forward verification is conducted by comparing the displacement solutions obtained from the recovered and the assigned material parameters at a different pressure. The nodal displacements are found in excellent agreement.  相似文献   

18.
Knowledge on the structure and distribution of genetic diversity is a key aspect to plan and execute an efficient conservation and utilization of the genetic resources of any crop as well as for determining historical demographic inferences. In this work, a large data set of 1,765 accessions of cherimoya (Annona cherimola Mill, Annonaceae), an underutilized fruit tree crop native to the Neotropics and used as a food source by pre‐Columbian cultures, was collected from six different countries across the American continent and amplified with nine highly informative microsatellite markers. The structure analyses, fine representation of the genetic diversity and an ABC approach suggest a Mesoamerican origin of the crop, contrary to previous reports, with clear implications for the dispersion of plant germplasm between Central and South America in pre‐Columbian times. These results together with the potential distribution of the species in a climatic change context using two different climate models provide new insights for the history and conservation of extant genetic resources of cherimoya that can be applied to other currently underutilized woody perennial crops.  相似文献   

19.
Molecular imaging of thin mammalian tissue sections by mass spectrometry   总被引:1,自引:0,他引:1  
Imaging of tissue sections by mass spectrometry provides a detailed molecular picture containing information on both the abundance and distribution of many constituent compounds. Mass spectra are acquired directly from fresh frozen tissue sections using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS); sample preparation and data collection mode determine the spatial resolution or surface area of the section represented in each mass spectrum. Statistical analyses of the individual ion signatures yield biomarkers whose abundances correlate to cell development processes, tumorigenesis and/or drug treatment. In an alternate mode, the generation of intensity maps for individual ions provides a visual representation of the distribution of each species throughout the section at spatial resolutions as small as 50 microm. The availability of this molecular information is likely to be of great value to clinicians and should lead to improved therapeutic efficacy in the future.  相似文献   

20.
Effective drug delivery for many neurodegenerative diseases or tumors of the central nervous system is challenging. Targeted invasive delivery of large macromolecules such as trophic factors to desired locations inside the brain is difficult due to anisotropy and heterogeneity of the brain tissue. Despite much experimental research, prediction of bio-transport phenomena inside the brain remains unreliable. This article proposes a rigorous computational approach for accurately predicting the fate of infused therapeutic agents inside the brain. Geometric and physiological properties of anisotropic and heterogeneous brain tissue affecting drug transport are accounted for by in-vivo diffusion tensor magnetic resonance imaging data. The three-dimensional brain anatomy is reconstructed accurately from subject-specific medical images. Tissue anisotropy and heterogeneity are quantified with the help of diffusion tensor imaging (DTI). Rigorous first principles physical transport phenomena are applied to predict the fate of a high molecular weight trophic factor infused into the midbrain. Computer prediction of drug distribution in humans accounting for heterogeneous and anisotropic brain tissue properties have not been adequately researched in open literature before.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号