首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The histidine residue essential for the catalytic activity of pancreatic cholesterol esterase (carboxylester lipase) has been identified in this study using sequence comparison and site-specific mutagenesis techniques. In the first approach, comparison of the primary structure of rat pancreatic cholesterol esterase with that of acetylcholinesterase and cholinesterase revealed two conserved histidine residues located at positions 420 and 435. The sequence in the region around histidine 420 is quite different between the three enzymes. However, histidine 435 is located in a 22-amino acid domain that is 47% homologous with other serine esterases. Based on this sequence homology, it was hypothesized that histidine 435 is the histidine residue essential for catalytic activity of cholesterol esterase. The role of His435 in the catalytic activity of pancreatic cholesterol esterase was then studied by the site-specific mutagenesis technique. Substitution of the histidine in position 435 with glutamine, arginine, alanine, serine, or aspartic acid abolished the ability of cholesterol esterase to hydrolyze p-nitrophenyl butyrate and cholesterol [14C]oleate. In contrast, mutagenesis of the histidine residue at position 420 to glutamine had no effect on cholesterol esterase enzyme activity. The results of this study strongly suggested that histidine 435 may be a component of the catalytic triad of pancreatic cholesterol esterase.  相似文献   

2.
Sequence analysis of membrane-bound glycerolipid acyltransferases revealed that proteins from the bacterial, plant, and animal kingdoms share a highly conserved domain containing invariant histidine and aspartic acid residues separated by four less conserved residues in an HX4D configuration. We investigated the role of the invariant histidine residue in acyltransferase catalysis by site-directed mutagenesis of two representative members of this family, the sn-glycerol-3-phosphate acyltransferase (PlsB) and the bifunctional 2-acyl-glycerophosphoethanolamine acyltransferase/acyl-acyl carrier protein synthetase (Aas) of Escherichia coli. Both the PlsB[H306A] and Aas[H36A] mutants lacked acyltransferase activity. However, the Aas[H36A] mutant retained significant acyl-acyl carrier protein synthetase activity, illustrating that the lack of acyltransferase activity was specifically associated with the H36A substitution. The invariant aspartic acid residue in the HX4D pattern was also important. The substitution of aspartic acid 311 with glutamic acid in PlsB resulted in an enzyme with significantly reduced catalytic activity. Substitution of an alanine at this position eliminated acyltransferase activity; however, the PlsB[D311A] mutant protein did not assemble into the membrane, indicating that aspartic acid 311 is also important for the proper folding and membrane insertion of the acyltransferases. These data are consistent with a mechanism for glycerolipid acyltransferase catalysis where the invariant histidine functions as a general base to deprotonate the hydroxyl moiety of the acyl acceptor.  相似文献   

3.
Chlorophyllases (Chlases), cloned so far, contain a lipase motif with the active serine residue of the catalytic triad of triglyceride lipases. Inhibitors specific for the catalytic serine residue in serine hydrolases, which include lipases effectively inhibited the activity of the recombinant Chenopodium album Chlase (CaCLH). From this evidence we assumed that the catalytic mechanism of hydrolysis by Chlase might be similar to those of serine hydrolases that have a catalytic triad composed of serine, histidine and aspartic acid in their active site. Thus, we introduced mutations into the putative catalytic residue (Ser162) and conserved amino acid residues (histidine, aspartic acid and cysteine) to generate recombinant CaCLH mutants. The three amino acid residues (Ser162, Asp191 and His262) essential for Chlase activity were identified. These results indicate that Chlase is a serine hydrolase and, by analogy with a plausible catalytic mechanism of serine hydrolases, we proposed a mechanism for hydrolysis catalyzed by Chlase.  相似文献   

4.
Conjugation is an efficient way for transfer of genetic information between bacteria, even between highly diverged species, and a major cause for the spreading of resistance genes. We have investigated the subcellular localization of several conserved conjugation proteins carried on plasmid pLS20 found in Bacillus subtilis. We show that VirB1, VirB4, VirB11, VirD2, and VirD4 homologs assemble at a single cell pole, but also at other sites along the cell membrane, in cells during the lag phase of growth. Bimolecular fluorescence complementation analyses showed that VirB4 and VirD4 interact at the cell pole and, less frequently, at other sites along the membrane. VirB1 and VirB11 also colocalized at the cell pole. Total internal reflection fluorescence microscopy showed that pLS20 is largely membrane associated and is frequently found at the cell pole, indicating that transfer takes place at the pole, which is a preferred site for the assembly of the active conjugation apparatus, but not the sole site. VirD2, VirB4, and VirD4 started to localize to the pole or the membrane in stationary-phase cells, and VirB1 and VirB11 were observed as foci in cells resuspended in fresh medium but no longer in cells that had entered exponential growth, although at least VirB4 was still expressed. These data reveal an unusual assembly/disassembly timing for the pLS20 conjugation machinery and suggest that specific localization of conjugation proteins in lag-phase cells and delocalization during growth are the reasons why pLS20 conjugation occurs only during early exponential phase.  相似文献   

5.
Two-component systems are one of the most prevalent mechanisms by which bacteria sense, respond and adapt to changes in their environment. The activation of a sensor histidine kinase leads to autophosphorylation of a conserved histidine residue followed by transfer of the phosphoryl group to a cognate response regulator in an aspartate residue. The search for antibiotics that inhibit molecular targets has led to study prokaryotic two-component systems. In this study, we characterized in vitro and in vivo the BaeSR two-component system from Salmonella Typhimurium and evaluated its role in mdtA regulation in response to ciprofloxacin treatment. We demonstrated in vitro that residue histidine 250 is essential for BaeS autophosphorylation and aspartic acid 61 for BaeR transphosphorylation. By real-time PCR, we showed that mdtA activation in the presence of ciprofloxacin depends on both members of this system and that histidine 250 of BaeS and aspartic acid 61 of BaeR are needed for this. Moreover, the mdtA expression is directly regulated by binding of BaeR at the promoter region, and this interaction is enhanced when the protein is phosphorylated. In agreement, a BaeR mutant unable to phosphorylate at aspartic acid 61 presents a lower affinity with the mdtA promoter.  相似文献   

6.
The gene coding for thermophilic xylose (glucose) isomerase of Clostridium thermosulfurogenes was isolated and its complete nucleotide sequence was determined. The structural gene (xylA) for xylose isomerase encodes a polypeptide of 439 amino acids with an estimated molecular weight of 50,474. The deduced amino acid sequence of thermophilic C. thermosulfurogenes xylose isomerase displayed higher homology with those of thermolabile xylose isomerases from Bacillus subtilis (70%) and Escherichia coli (50%) than with those of thermostable xylose isomerases from Ampullariella (22%), Arthrobacter (23%), and Streptomyces violaceoniger (24%). Several discrete regions were highly conserved throughout the amino acid sequences of all these enzymes. To identify the histidine residue of the active site and to elucidate its function during enzymatic xylose or glucose isomerization, histidine residues at four different positions in the C. thermosulfurogenes enzyme were individually modified by site-directed mutagenesis. Substitution of His101 by phenylalanine completely abolished enzyme activity whereas substitution of other histidine residues by phenylalanine had no effect on enzyme activity. When His101 was changed to glutamine, glutamic acid, asparagine, or aspartic acid, approximately 10-16% of wild-type enzyme activity was retained by the mutant enzymes. The Gln101 mutant enzyme was resistant to diethylpyrocarbonate inhibition which completely inactivated the wild-type enzyme, indicating that His101 is the only essential histidine residue involved directly in enzyme catalysis. The constant Vmax values of the Gln101, Glu101, Asn101, and Asp101 mutant enzymes over the pH range of 5.0-8.5 indicate that protonation of His101 is responsible for the reduced Vmax values of the wild-type enzyme at pH below 6.5. Deuterium isotope effects by D-[2-2H]glucose on the rate of glucose isomerization indicated that hydrogen transfer and not substrate ring opening is the rate-determining step for both the wild-type and Gln101 mutant enzymes. These results suggest that the enzymatic sugar isomerization does not involve a histidine-catalyzed proton transfer mechanism. Rather, essential histidine functions to stabilize the transition state by hydrogen bonding to the C5 hydroxyl group of the substrate and this enables a metal-catalyzed hydride shift from C2 to C1.  相似文献   

7.
W K Wang  M Essex    T H Lee 《Journal of virology》1995,69(1):538-542
Between hypervariable regions V1 and V2 of human immunodeficiency virus type 1 (HIV-1) gp120 lies a cluster of relatively conserved residues. The contribution of nine charged residues in this region to virus infectivity was evaluated by single-amino-acid substitutions in an infectious provirus clone. Three of the HIV-1 mutants studied had slower growth kinetics than the wild-type virus. The delay was most pronounced in a mutant with an alanine substituted for an aspartic acid residue at position 180. This aspartic acid is conserved by all HIV-1 isolates with known nucleotide sequences. Substitutions with three other residues at this position, including a negatively charged glutamic acid, all affected virus infectivity. The defect identified in these mutants suggests that this aspartic acid residue is involved in the early stages of HIV-1 replication.  相似文献   

8.
Mutagenesis studies on conserved histidine residues identified as possible metal binding ligands in clavaminic acid synthase isozyme 2 were consistent with His-145 and His-280 acting as iron ligands, in support of crystallographic and previous mutagenesis studies. Mutagenesis of the four cysteines and a glutamine residue, conserved in both clavaminic acid synthase isozymes 1 and 2, demonstrated that none of these residues is essential for activity.  相似文献   

9.
Agrobacterium uses a mechanism similar to conjugation for trans-kingdom transfer of its oncogenic T-DNA. A defined VirB/VirD4 Type IV secretion system is responsible for such a genetic transfer. In addition, certain virulence proteins as VirE2 can be mobilized into host cells by the same apparatus. VirE2 is essential to achieve plant but not yeast transformation. We found that the limited host range plasmid CloDF13 can be recruited by the virulence apparatus of Agrobacterium for transfer to eukaryotic hosts. As expected the VirB transport complex was required for such trans-kingdom DNA transfer. However, unexpectedly, the coupling factor VirD4 turned out to be necessary for transfer to plants but not for transport into yeast. The CloDF13 encoded coupling factor (Mob) was essential for transfer to both plants and yeast though. This is interpreted by the different specificities of Mob and VirD4. Hence, Mob being required for the transport of the CloDF13 transferred DNA (to both plants and yeast) and VirD4 being required for transport of virulence proteins such as VirE2. Nevertheless, the presence of the VirE2 protein in the host plant was not sufficient to restore the deficiency for VirD4 in the transforming bacteria. We propose that Mob functions encoded by the plasmid CloDF13 are sufficient for DNA mobilization to eukaryotic cells but that the VirD4-mediated pathway is essential to achieve DNA nuclear establishment specifically in plants. This suggests that other Agrobacterium virulence proteins besides VirE2 are translocated and essential for plant transformation.  相似文献   

10.
Leader peptidase   总被引:10,自引:1,他引:9  
The Escherichia coli leader peptidase has been vital for unravelling problems in membrane assembly and protein export. The role of this essential peptidase is to remove amino-terminal leader peptides from exported proteins after they have crossed the plasma membrane. Strikingly, almost all periplasmic proteins, many outer membrane proteins, and a few inner membrane proteins are made with cleavable leader peptides that are removed by this peptidase. This enzyme of 323 amino acid residues spans the membrane twice, with its large carboxyl-terminal domain protruding into the periplasm. Recent discoveries show that its membrane orientation is controlled by positively charged residues that border (on the cytosolic side) the transmembrane segments. Cleavable pre-proteins must have small residues at -1 and a small or aliphatic residue at -3 (with respect to the cleavage site). Leader peptidase does not require a histidine or cysteine amino acid for catalysis. Interestingly, serine 90 and aspartic acid 153 are essential for catalysis and are also conserved in a mitochondrial leader peptidase, which is 30.7% homologous with the bacterial enzyme over a 101-residue stretch.  相似文献   

11.
1H-3-Hydroxy-4-oxoquinoline 2,4-dioxygenase (Qdo) is a cofactor-free dioxygenase proposed to belong to the alpha/beta hydrolase fold superfamily of enzymes. Alpha/beta Hydrolases contain a highly conserved catalytic triad (nucleophile-acidic residue-histidine). We previously identified a corresponding catalytically essential histidine residue in Qdo. However, as shown by amino acid replacements through site-directed mutagenesis, nucleophilic and acidic residues of Qdo considered as possible triad residues were not absolutely required for activity. This suggests that Qdo does not contain the canonical catalytic triad of the alpha/beta hydrolase fold enzymes. Some radical trapping agents affected the Qdo-catalyzed reaction. A hypothetical mechanism of Qdo-catalyzed dioxygenation of 1H-3-hydroxy-4-oxoquinoline is compared with the dioxygenation of FMNH2 catalyzed by bacterial luciferase, which also uses a histidine residue as catalytic base.  相似文献   

12.
13.
The fatty acid elongase-1 β-ketoacyl-CoA synthase, FAE1 KCS, a seed-specific elongase condensing enzyme from Arabidopsis, is involved in the production of eicosenoic (C20:1) and erucic (C22:1) acids. Alignment of the amino acid sequences of FAE1 KCS, KCS1, and five other putative elongase condensing enzymes (KCSs) revealed the presence of six conserved cysteine and four conserved histidine residues. Each of the conserved cysteine and histidine residues was individually converted by site-directed mutagenesis to both alanine and serine, and alanine and lysine respectively. After expression in yeast cells, the mutant enzymes were analyzed for their fatty acid elongase activity. Our results indicated that only cysteine 223 is an essential residue for enzyme activity, presumably for acyl chain transfer. All histidine substitutions resulted in complete loss of elongase activity. The loss of activity of these mutants was not due to their lower expression level since immunoblot analysis confirmed each was expressed to the same extent as the wild type FAE1 KCS.  相似文献   

14.
Membrane-bound microsomal fatty acid desaturases are known to have three conserved histidine boxes, comprising a total of up to eight histidine residues. Recently, a number of deviations from this consensus have been reported, with the substitution of a glutamine for the first histidine residue of the third histidine box being present in the so called 'front end' desaturases. These enzymes are also characterized by the presence of a cytochrome b5 domain at the protein N-terminus. Site-directed mutagenesis has been used to probe the functional importance of a number of amino acid residues which comprise the third histidine box of a 'front end' desaturase, the borage Delta6-fatty acid desaturase. This showed that the variant glutamine in the third histidine box is essential for enzyme activity and that histidine is not able to substitute for this residue.  相似文献   

15.
Agrobacterium tumefaciens VirD2 polypeptide, in the presence of VirD1, catalyzes a site- and strand-specific nicking reaction at the T-DNA border sequences. VirD2 is found tightly attached to the 5' end of the nicked DNA. The protein-DNA complex is presumably formed via a tyrosine residue of VirD2 (F. Durrenberger, A. Crameri, B. Hohn, and Z. Koukolikova-Nicola, Proc. Natl. Acad. Sci. USA 86:9154-9158, 1989). A mutational approach was used to study whether a tyrosine residue(s) of VirD2 is required for its activity. By site-specific mutagenesis, a tyrosine (Y) residue at position 29, 68, 99, 119, 121, 160, or 195 of the octopine Ti plasmid pTiA6 VirD2 was altered to phenylalanine (F). The Y-29-F or Y-121-F mutation completely abolished nicking activity of VirD2 in vivo in Escherichia coli. Two other substitutions, Y-68-F and Y-160-F, drastically reduced VirD2 activity. A substitution at position 99, 119, or 195 had no effect on VirD2 activity. Additional mutagenesis experiments showed that at position 29, no other amino acid could substitute for tyrosine without destroying VirD2 activity. At position 121, only a tryptophan (W) residue could be substituted. This, however, yielded a mutant protein with significantly reduced VirD2 activity. The nicked DNA from strains bearing a Y-68-F, Y-99-F, Y-119-F, Y-160-F, Y-195-F, or Y-121-W mutation in VirD2 was always found to contain a tightly linked protein.  相似文献   

16.
Human and Saccharomyces cerevisiae MutLα, and some bacterial MutL proteins, possess a metal ion-dependent endonuclease activity which is important for the in vivo function of these proteins. Conserved amino acids of the C-terminal region of human PMS2, S. cerevisiae PMS1 and of some bacterial MutL proteins have been implicated in the metal-binding/endonuclease activity. However, the contribution of individual amino acids to these activities has not yet been fully elucidated. In this work we show that Pseudomonas aeruginosa MutL protein possess an in vitro metal ion-dependent endonuclease activity. In agreement with previous published results, we observed that mutation of the aspartic acid, the first histidine or the first glutamic acid of the conserved C-terminal DMHAAHERITYE region results in nonfunctional in vivo proteins. We also determined that the arginine residue is essential for the in vivo function of this protein. However, we unexpectedly observed that although the first glutamic acid mutant derivative is not functional in vivo, its in vitro endonuclease activity is even higher than that of the wild-type protein.  相似文献   

17.
The human UDP-glucuronosyltransferase UGT1A6 is the primary phenol-metabolizing UDP-glucuronosyltransferase isoform. It catalyzes the nucleophilic attack of phenolic xenobiotics on UDP-glucuronic acid, leading to the formation of water-soluble glucuronides. The catalytic mechanism proposed for this reaction is an acid-base mechanism that involves an aspartic/glutamic acid and/or histidine residue. Here, we investigated the role of 14 highly conserved aspartic/glutamic acid residues over the entire sequence of human UGT1A6 by site-directed mutagenesis. We showed that except for aspartic residues Asp-150 and Asp-488, the substitution of carboxylic residues by alanine led to active mutants but with decreased enzyme activity and lower affinity for acceptor and/or donor substrate. Further analysis including mutation of the corresponding residue in other UGT1A isoforms suggests that Asp-150 plays a major catalytic role. In this report we also identified a single active site residue important for glucuronidation of phenols and carboxylic acid substrates by UGT1A enzyme family. Replacing Pro-40 of UGT1A4 by histidine expanded the glucuronidation activity of the enzyme to phenolic and carboxylic compounds, therefore, leading to UGT1A3-type isoform in terms of substrate specificity. Conversely, when His-40 residue of UGT1A3 was replaced with proline, the substrate specificity shifted toward that of UGT1A4 with loss of glucuronidation of phenolic substrates. Furthermore, mutation of His-39 residue of UGT1A1 (His-40 in UGT1A4) to proline led to loss of glucuronidation of phenols but not of estrogens. This study provides a step forward to better understand the glucuronidation mechanism and substrate recognition, which is invaluable for a better prediction of drug metabolism and toxicity in human.  相似文献   

18.
A glutamic acid residue in subunit I of the heme-copper oxidases is highly conserved and has been directly implicated in the O(2) reduction and proton-pumping mechanisms of these respiratory enzymes. Its mutation to residues other than aspartic acid dramatically inhibits activity, and proton translocation is lost. However, this glutamic acid is replaced by a nonacidic residue in some structurally distant members of the heme-copper oxidases, which have a tyrosine residue in the vicinity. Here, using cytochrome c oxidase from Paracoccus denitrificans, we show that replacement of the glutamic acid and a conserved glycine nearby lowers the catalytic activity to <0.1% of the wild-type value. But if, in addition, a phenylalanine that lies close in the structure is changed to tyrosine, the activity rises more than 100-fold and proton translocation is restored. Molecular dynamics simulations suggest that the tyrosine can support a transient array of water molecules that may be essential for proton transfer in the heme-copper oxidases. Surprisingly, the glutamic acid is thus not indispensable, which puts important constraints on the catalytic mechanism of these enzymes.  相似文献   

19.
The most widely distributed biosynthetic pathway to initiate phosphatidic acid formation in bacterial membrane phospholipid biosynthesis involves the conversion of acyl-acyl carrier protein to acylphosphate by PlsX and the transfer of the acyl group from acylphosphate to glycerol 3-phosphate by an integral membrane protein, PlsY. The membrane topology of Streptococcus pneumoniae PlsY was determined using the substituted cysteine accessibility method. PlsY has five membrane-spanning segments with the amino terminus and two short loops located on the external face of the membrane. Each of the three larger cytoplasmic domains contains a highly conserved sequence motif. Site-directed mutagenesis revealed that each conserved domain was critical for PlsY catalysis. Motif 1 had an essential serine and arginine residue. Motif 2 had the characteristics of a phosphate-binding loop. Mutations of the conserved glycines in motif 2 to alanines resulted in a Km defect for glycerol 3-phosphate binding leading to the conclusion that this motif corresponded to the glycerol 3-phosphate binding site. Motif 3 contained a conserved histidine and asparagine that were important for activity and a glutamate that was critical to the structural integrity of PlsY. PlsY was noncompetitively inhibited by palmitoyl-CoA. These data define the membrane architecture and the critical active site residues in the PlsY family of bacterial acyltransferases.  相似文献   

20.
Multiple sequence alignment of Streptomyces lividans acetylxylan esterase A and other carbohydrate esterase family 4 enzymes revealed the following conserved amino acid residues: Asp-12, Asp-13, His-62, His-66, Asp-130, and His-155. These amino acids were mutated in order to investigate a functional role of these residues in catalysis. Replacement of the conserved histidine residues by alanine caused significant reduction of enzymatic activity. Maintenance of ionizable carboxylic group in side chains of amino acids at positions 12, 13, and 130 seems to be necessary for catalytic efficiency. The absence of conserved serine excludes a possibility that the enzyme is a serine esterase, in contrast to acetylxylan esterases of carbohydrate esterase families 1, 5, and 7. On the contrary, total conservation of Asp-12, Asp-13, Asp-130, and His-155 along with dramatic decrease in enzyme activity of mutants of either of these residues lead us to a suggestion that acetylxylan esterase A from Streptomyces lividans and, by inference, other members of carbohydrate esterase family 4 are aspartic deacetylases. We propose that one component of the aspartate dyad/triad functions as a catalytic nucleophile and the other one(s) as a catalytic acid/base. The ester/amide bond cleavage would proceed via a double displacement mechanism through covalently linked acetyl-enzyme intermediate of mixed anhydride type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号