首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Tyrosine 34 and glutamine 146 are highly conserved outer sphere residues in the mononuclear manganese active site of Escherichia coli manganese superoxide dismutase. Biochemical and spectroscopic characterization of site-directed mutants has allowed functional characterization of these residues in the wild-type (wt) enzyme. X-ray crystallographic analysis of three mutants (Y34F, Q146L, and Q146H) reveal subtle changes in the protein structures. The Y34A mutant, as well as the previously reported Y34F mutant, retained essentially the full superoxide dismutase activity of the wild-type enzyme, and the X-ray crystal structure of Y34F manganese superoxide dismutase shows that mutation of this strictly conserved residue has only minor effects on the positions of active site residues and the organized water in the substrate access funnel. Mutation of the outer sphere solvent pocket residue Q146 has more dramatic effects. The Q146E mutant is isolated as an apoprotein lacking dismutase activity. Q146L and Q146H mutants retain only 5-10% of the dismutase activity of the wild-type enzyme. The absorption and circular dichroism spectra of the Q146H mutant resemble corresponding data for the superoxide dismutase from a hyperthermophilic archaeon, Pyrobaculum aerophilum, which is active in both Mn and Fe forms. Interestingly, the iron-substituted Q146H protein also exhibits low dismutase activity, which increases at lower pH. Mutation of glutamine 146 disrupts the hydrogen-bonding network in the active site and has a greater effect on protein structure than does the Y34F mutant, with rearrangement of the tyrosine 34 and tryptophan 128 side chains.  相似文献   

2.
In this work, the site saturation mutagenesis of tyrosine 195, tyrosine 260 and glutamine 265 in the cyclodextrin glycosyltransferase (CGTase) from Paenibacillus macerans was conducted to improve the specificity of CGTase for maltodextrin, which can be used as a cheap and easily soluble glycosyl donor for the synthesis of 2-O-d-glucopyranosyl-l-ascorbic acid (AA-2G). Specifically, the site-saturation mutagenesis of three sites—tyrosine 195, tyrosine 260, and glutamine 265—was performed, and it was found that the resulting mutants (containing the mutations Y195S [tyrosine → serine], Y260R [tyrosine → arginine], and Q265K [glutamine → lysine]) produced higher AA-2G yields than the wild type and the other mutant CGTases when maltodextrin was used as the glycosyl donor. Furthermore, double and triple mutations were introduced, and four mutants (containing Y195S/Y260R, Y195S/Q265K, Y260R/Q265K, and Y260R/Q265K/Y195S) were obtained and evaluated for the capacity to produce AA-2G. The Y260R/Q265K/Y195S triple mutant produced the highest titer of AA-2G at 1.92 g/liter, which was 60% higher than that (1.20 g/liter) produced by the wild-type CGTase. The kinetics analysis of AA-2G synthesis by the mutant CGTases confirmed the enhanced maltodextrin specificity, and it was also found that compared with the wild-type CGTase, all seven mutants had lower cyclization activities and higher hydrolysis and disproportionation activities. Finally, the mechanism responsible for the enhanced substrate specificity was explored by structure modeling, which indicated that the enhancement of maltodextrin specificity may be related to the changes of hydrogen bonding interactions between the side chain of residue at the three positions (195, 260, and 265) and the substrate sugars. This work adds to our understanding of the synthesis of AA-2G and makes the Y260R/Q265K/Y195S mutant a good starting point for further development by protein engineering.  相似文献   

3.
The cloned Escherichia coli gor gene encoding the flavoprotein glutathione reductase was placed under the control of the tac promoter in the plasmid pKK223-3, allowing expression of glutathione reductase at levels approximately 40,000 times those of untransformed cells. This greatly facilitated purification of the enzyme. By directed mutagenesis of the gor gene, His-439 was changed to glutamine (H439Q) and alanine (H439A). The tyrosine residue at position 99 was changed to phenylalanine (Y99F), and in another experiment, the H439Q and Y99F mutations were united to form the double mutant Y99FH439Q. His-439 is thought to act in the catalytic mechanism as a proton donor/acceptor in the glutathione-binding pocket. The H439Q and H439A mutants retain approximately 1% and approximately 0.3%, respectively, of the catalytic activity of the wild-type enzyme. This reinforces our previous finding [Berry et al. (1989) Biochemistry 28, 1264-1269] that direct protonation and deprotonation of the histidine residue are not essential for the reaction to occur. The retention of catalytic activity by the H439A mutant demonstrates further that a side chain capable of hydrogen bonding to a water molecule, which might then act as proton donor, also is not essential at this position. Tyr-99 is a further possible proton donor in the glutathione-binding pocket, but the Y99F mutant was essentially fully active, and the Y99FH439Q double mutant also retained approximately 1% of the wild-type specific activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effects of Newcastle disease virus (NDV) fusion (F) glycoprotein cleavage mutants on the cleavage and syncytium-forming activity of the wild-type F protein were examined. F protein cleavage mutants were made by altering amino acids in the furin recognition region (amino acids 112 to 116) in the F protein of a virulent strain of NDV. Four mutants were made: Q114P replaced the glutamine residue with proline; K115G replaced lysine with glycine; double mutant K115G, R113G replaced both a lysine and an arginine with glycine residues; and a triple mutant, R112G, K115G, F117L, replaced three amino acids to mimic the sequence found in avirulent strains of NDV. All mutants except Q114P were cleavage negative and fusion negative. However, addition of exogenous trypsin cleaved all mutant F proteins and activated fusion. As expected for an oligomeric protein, the fusion-negative mutants had a dominant negative phenotype: cotransfection of wild-type and mutant F protein cDNAs resulted in an inhibition of syncytium formation. The presence of the mutant F protein did not inhibit cleavage of the wild-type protein. Furthermore, evidence is presented that suggests that the mutant protein and the wild-type protein formed heterooligomers. By measuring the syncytium-forming activity of the wild-type protein at various ratios of expression of mutant and wild-type protein, results were obtained that are most consistent with the notion that the size of the functionally active NDV F protein in these assays is a single oligomer, likely a trimer. That a larger oligomer, containing a mix of both wild-type and mutant F proteins, has partial activity cannot, however, be ruled out.  相似文献   

5.
Thermostability can be increased by introducing prolines at suitable sites in target proteins. Two single (G138P, G247D) mutants and one double (G138P/G247D) mutant of xylose isomerase from Streptomyces diastaticus No.7, strain M1033 have been constructed by site-directed mutagenesis. With respect to the wild-type enzyme, G138P showed about a 100% increase in thermostability, and G247D showed an increased catalytic activity. Significantly, the double mutant, G138P/G247D displayed even higher activity than G247D and better heat stability than G138P. Its half life was about 2.5-fold greater than the wild-type enzyme, using xylose as a substrate. Molecular modelling suggested that the introduction of a proline residue in the turn of a random coil may cause the surrounding conformation to be tightened by reducing the backbone flexibility. The change in thermostability can, therefore, be explained based on changes in the molecular rigidity. Furthermore, the improvements in the properties of the double mutant indicated that the advantages of two single mutants can be combined effectively.  相似文献   

6.
【背景】南极假丝酵母脂肪酶B (Candida antarctica lipase B,CALB)具有优异的酯合成活性,是在非水相催化中应用极为广泛的工业用酶。【目的】在保留CALB优秀催化性能的基础上,提高CALB的热稳定性。【方法】采用预测软件PoPMuSiC和FoldX计算CALB潜在热稳定性突变位点,并根据氨基酸残基的空间位置进一步筛选。利用重叠延伸PCR技术在基因calb中引入10个单点突变,于毕赤酵母GS115中表达。【结果】点突变A146G、A151P、L278M均能有效提高CALB的热稳定性。在单点突变的基础上,组合突变体A146G-L278M和A146G-L278M-A151P的热稳定性得到进一步提高。与野生型相比,突变体A146G-L278M和A146G-L278M-A151P的最适反应温度均提高了5°C,T_m值分别提高了3.3°C和4.2°C。此外,合成己酸乙酯的酶促反应动力学分析表明,相比于野生型,突变体A146G-L278M和A146G-L278M-A151P对己酸和乙醇均具有更高的亲和力,且对己酸的催化效率k_(catA)/K_(m A)是野生型的4.1倍。通过分子动力学模拟,从分子水平阐明了突变体A146G-L278M和A146G-L278M-A151P热稳定性提高的机制。【结论】本研究采用的理性设计策略对提高CALB的热稳定性是行之有效的,该策略可作为其他工业用酶提高热稳定性的参考。  相似文献   

7.
To investigate the role of superoxide dismutases (SOD) in root colonization and oxidative stress, mutants of Pseudomonas putida lacking manganese-superoxide dismutase (MnSOD) (sodA), iron-superoxide dismutase (FeSOD) (sodB), or both were generated. The sodA sodB mutant did not grow on components washed from bean root surfaces or glucose in minimal medium. The sodB and sodA sodB mutants were more sensitive than wild type to oxidative stress generated within the cell by paraquat treatment. In single inoculation of SOD mutants on bean, only the sodA sodB double mutant was impaired in growth on root surfaces. In mixed inoculations with wild type, populations of the sodA mutant were equal to those of the wild type, but levels of the sodB mutant and, to a great extent, the sodA sodB mutant, were reduced. Confocal microscopy of young bean roots inoculated with green fluorescent protein-tagged cells showed that wild type and SOD single mutants colonized well predominantly at the root tip but that the sodA sodB double mutant grew poorly at the tip. Our results indicate that FeSOD in P. putida is more important than MnSOD in aerobic metabolism and oxidative stress. Inhibition of key metabolic enzymes by increased levels of superoxide anion may cause the impaired growth of SOD mutants in vitro and in planta.  相似文献   

8.
The 2.9 A resolution structure of iron superoxide dismutase (FeSOD) (EC 1.15.1.1) from Pseudomonas ovalis complexed with the inhibitor azide was solved. Comparison of this structure with free enzyme shows that the inhibitor is bound at the open coordination position of the iron, with a bond length of 2.0 A. The metal moves by 0.4 A into the trigonal plane to produce an orthogonal geometry at the iron. Binding of the inhibitor also causes a movement of the axial ligand (histidine 26) away from the metal, a lengthening of the iron-histidine bond, and a rotation of the histidine 74 ring. The inhibitor possesses contacts in the binding pocket with a pair of conserved tryptophan residues and with the side chains of tyrosine 34 and glutamine 70. This glutamine is conserved between all FeSODs, but is absent in MnSOD. Comparisons with MnSOD show that a different glutamine which possesses the same interactions in the active site as Gln70 in FeSOD is conserved at position 154 in the overall SOD sequence, implying that while manganese and FeSODs are structural homologues in a global sense, their functional and evolutionary relationship is that of second-site mutation revertants.  相似文献   

9.
Escherichia coli heat-labile enterotoxin (LT) is a holotoxin which consists of one A and five B subunits. Although B subunit monomers released into periplasm can associate into pentameric structures in the absence of the A subunit, the A subunit accelerates the assembly. To express the function, A subunit constructs the proper spatial structure. However, the regions involved in the construction are unknown. To identify the regions, we substituted arginine residues near position 146 of the A subunit with glycine by oligonucleotide-directed site-specific mutagenesis and obtained the mutants expressing LT(R141G), LT(R143G), LT(R146G), LT(R143G, R146G), LT(R141G, R143G, R146G) and LT(R143G, R146G, R148G). We purified these mutant LTs by using an immobilized d -galactose column and analyzed the purified mutant LTs by SDS-PAGE to examine the amount of A subunit associated with B-subunit oligomer. The substitution of an arginine residue at any position did not induce a significant alteration in the amount of A subunit associated with B-subunit oligomer. However, the substitution of more than two arginine residues induced a significant decrease in the amount of A subunits associated with the B-subunit oligomer. Subsequently, we measured the level of the intracellular B-subunit oligomer of these mutant strains. The measurement revealed that the amount of B-subunit oligomer in cells decreased as the number of substituted arginine residues increased. These results show that all arginine residues near position 146 are important for the construction of the functional A subunit, and thus for holotoxin formation, although each individual arginine residue is not an absolute requirement.  相似文献   

10.
Huang X  Raushel FM 《Biochemistry》1999,38(48):15909-15914
Carbamoyl phosphate synthetase from Escherichia coli catalyzes the formation of carbamoyl phosphate from bicarbonate, glutamine, and two molecules of ATP. The enzyme consists of a large synthetase subunit, and a small amidotransferase subunit, which belongs to the Triad family of glutamine amidotransferases. Previous studies have established that the reaction mechanism of the small subunit proceeds through the formation of a gamma-glutamyl thioester with Cys-269. The roles in the hydrolysis of glutamine played by the conserved residues, Glu-355, Ser-47, Lys-202, and Gln-273, were determined by mutagenesis. In the X-ray crystal structure of the H353N mutant, Ser-47 and Gln-273 interact with the gamma-glutamyl thioester intermediate [Thoden, J. B., Miran, S. G., Phillips, J. C., Howard, A. J., Raushel, F. M., and Holden, H. M. (1998) Biochemistry 37, 8825-8831]. The mutants E355D and E355A have elevated values of K(m) for glutamine, but the overall carbamoyl phosphate synthesis reaction is unperturbed. E355Q does not significantly affect the bicarbonate-dependent ATPase or glutaminase partial reactions. However, this mutation almost completely uncouples the two partial reactions such that no carbamoyl phosphate is produced. The partial recovery of carbamoyl phosphate synthesis activity in the double mutant E355Q/K202M argues that the loss of activity in E355Q is at least partly due to additional interactions between Gln-355 and Lys-202 in E355Q. The mutants S47A and Q273A have elevated K(m) values for glutamine while the V(max) values are comparable to that of the wild-type enzyme. It is concluded that contrary to the original proposal for the catalytic triad, Glu-355 is not an essential residue for catalysis. The results are consistent with Ser-47 and Gln-273 playing significant roles in the binding of glutamine.  相似文献   

11.
The three-dimensional structure of the manganese-dependent superoxide dismutase (MnSOD) from Escherichia coli has been determined by X-ray crystallography at 2.1?Å resolution. The protein crystallizes with two homodimers in the asymmetric unit, and a model comprising 6528 protein atoms (residues 1–205 of all four monomers), four manganese ions and 415 water molecules has been refined to an R factor of 0.188 (R free 0.218). The structure shows a high degree of similarity with other MnSOD and FeSOD enzymes. The Mn centres are 5-coordinate, trigonal bipyramidal, with His26 and a solvent molecule, probably a hydroxide ion, as apical ligands, and His81, Asp167 and His171 as equatorial ligands. The coordinated solvent molecule is linked to a network of hydrogen bonds involving the non-coordinated carboxylate oxygen of Asp167 and a conserved glutamine residue, Gln146. The MnSOD dimer is notable for the way in which the two active sites are interconnected and a "bridge" comprising His171 of one monomer and Glu170 of the other offers a route for inter-site communication. Comparison of E. coli MnSOD and FeSOD (a) reveals some differences in the dimer interface, (b) yields no obvious explanation for their metal specificities, and (c) provides a structural basis for differences in DNA binding, where for MnSOD the groove formed by dimerization is complementary in charge and surface contour to B-DNA.  相似文献   

12.
The metallo-β-lactamase (MBL) GOB-1 was expressed via a T7 expression system in Escherichia coli BL21(DE3). The MBL was purified to homogeneity and shown to exhibit a broad substrate profile, hydrolyzing all the tested β-lactam compounds efficiently. The GOB enzymes are unique among MBLs due to the presence of a glutamine residue at position 116, a zinc-binding residue in all known class B1 and B3 MBL structures. Here we produced and studied the Q116A, Q116N and Q116H mutants. The substrate profiles were similar for each mutant, but with significantly reduced activity compared with that of the wild-type. In contrast to the Q116H enzyme, which bound two zinc ions just like the wild-type, only one zinc ion is present in Q116A and Q116N. These results suggest that the Q116 residue plays a role in the binding of the zinc ion in the QHH site.  相似文献   

13.
Virtually all of the eukaryotic low-molecular weight protein tyrosine phosphatases (LMW PTPases) studied to date contain a conserved, high-pK(a) histidine residue that is hydrogen bonded to a conserved active site asparagine residue of the phosphate binding loop. However, in the putative enzyme encoded by the genome of the trichomonad parasite Tritrichomonas foetus, this otherwise highly conserved histidine is replaced with a glutamine residue. We have cloned the gene, expressed the enzyme, demonstrated its catalytic activity, and examined the structural and functional roles of the glutamine residue using site-directed mutagenesis, kinetic measurements, and NMR spectroscopy. Titration studies of the two native histidine residues in the T. foetus enzyme as monitored by (1)H NMR revealed that H44 has a pK(a) of 6.4 and H143 has a pK(a) of 5.3. When a histidine residue was introduced in place of the native glutamine at position 67, a pK(a) of 8.2 was measured for this residue. Steady state kinetic methods were employed to study how mutation of the native glutamine to alanine, asparagine, and histidine affected the catalytic activity of the enzyme. Examination of k(cat)/K(m) showed that Q67H exhibits a substrate selectivity comparable to that of the wild-type (WT) enzyme, while Q67N and Q67A show reduced activity. The effect of pH on the reaction rate was examined. Importantly, the pH-rate profile of the WT TPTP enzyme revealed a much more clearly defined acidic limb than that which can be observed for other wild-type LMW PTPases. The pH-rate curve of the Q67H mutant shows a shift to a lower pH optimum relative to that seen for the wild-type enzyme. The Q67N and Q67A mutants showed curves that were shifted to higher pH optima. Although the active site of this enzyme is likely to be similar to that of other LMW PTPases, the hydrogen bonding and electrostatic changes afford new insight into factors affecting the pH dependence and catalysis by this family of enzymes.  相似文献   

14.
To investigate the role of superoxide dismutases (SOD) in root colonization and oxidative stress, mutants of Pseudomonas putida lacking manganese-superoxide dismutase (MnSOD) (sodA), iron-superoxide dismutase (FeSOD) (sodB), or both were generated. The sodA sodB mutant did not grow on components washed from bean root surfaces or glucose in minimal medium. The sodB and sodA sodB mutants were more sensitive than wild type to oxidative stress generated within the cell by paraquat treatment. In single inoculation of SOD mutants on bean, only the sodA sodB double mutant was impaired in growth on root surfaces. In mixed inoculations with wild type, populations of the sodA mutant were equal to those of the wild type, but levels of the sodB mutant and, to a great extent, the sodA sodB mutant, were reduced. Confocal microscopy of young bean roots inoculated with green fluorescent protein-tagged cells showed that wild type and SOD single mutants colonized well predominantly at the root tip but that the sodA sodB double mutant grew poorly at the tip. Our results indicate that FeSOD in P. putida is more important than MnSOD in aerobic metabolism and oxidative stress. Inhibition of key metabolic enzymes by increased levels of superoxide anion may cause the impaired growth of SOD mutants in vitro and in planta.  相似文献   

15.
Neurotransmitter:sodium symporters are crucial for efficient synaptic transmission. The transporter GAT-1 mediates electrogenic cotransport of GABA, sodium, and chloride. The presence of chloride enables the transporter to couple the transport of the neurotransmitter to multiple sodium ions, thereby enabling its accumulation against steep concentration gradients. Here we study the functional impact of mutations of the putative chloride-binding residues on transport by GAT-1, with the emphasis on a conserved glutamine residue. In contrast to another putative chloride coordinating residue, Ser-331, where mutation to glutamate led to chloride-independent GABA transport, the Q291E mutant was devoid of any transport activity, despite substantial expression at the plasma membrane. Low but significant transport activity was observed with substitution mutants with small side chains such as Q291S/A/G. Remarkably, when these mutations were combined with the S331E mutation, transport was increased significantly, even though the activity of the S331E single mutant was only ~25% of that of wild type GAT-1. Transport by these double mutants was largely chloride-independent. Like mutants of other putative chloride coordinating residues, the apparent affinity of the active Gln-291 single mutants for chloride was markedly reduced along with a change their anion selectivity. In addition to the interaction of the transporter with chloride, Gln-291 is also required at an additional step during transport. Electrophysiological analysis of the Q291N and Q291S mutants, expressed in Xenopus laevis oocytes, is consistent with the idea that this additional step is associated with the gating of the transporter.  相似文献   

16.
Interactions between subunit a and oligomeric subunit c are essential for the coupling of proton translocation to rotary motion in the ATP synthase. A pair of previously described mutants, R210Q/Q252R and P204T/R210Q/Q252R [L.P. Hatch, G.B. Cox and S.M. Howitt, The essential arginine residue at position 210 in the a subunit of the Escherichia coli ATP synthase can be transferred to position 252 with partial retention of activity, J. Biol. Chem. 270 (1995) 29407-29412] has been constructed and further analyzed. These mutants, in which the essential arginine of subunit a, R210, was switched with a conserved glutamine residue, Q252, are shown here to be capable of both ATP synthesis by oxidative phosphorylation, and ATP-driven proton translocation. In addition, lysine can replace the arginine at position 252 with partial retention of both activities. The pH dependence of ATP-driven proton translocation was determined after purification of mutant enzymes, and reconstitution into liposomes. Proton translocation by the lysine mutant, and to a lesser extent the arginine mutant, dropped off sharply above pH 7.5, consistent with the requirement for a positive charge during function. Finally, the rates of ATP synthesis and of ATP-driven proton translocation were completely inhibited by treatment with DCCD (N,N'-dicyclohexylcarbodiimide), while rates of ATP hydrolysis by the mutants were not significantly affected, indicating that DCCD modification disrupts the F(1)-F(o) interface. The results suggest that minimal requirements for proton translocation by the ATP synthase include a positive charge in subunit a and a weak interface between subunit a and oligomeric subunit c.  相似文献   

17.
We have studied the catalytic activity and some other properties of mutants of Escherichia coli plasmid-encoded RTEM beta-lactamase (EC 3.5.2.6) with all combinations of serine and threonine residues at the active-site positions 70 and 71. (All natural beta-lactamases have conserved serine-70 and threonine-71.) From the inactive double mutant Ser-70----Thr, Thr-71----Ser [Dalbadie-McFarland, G., Cohen, L. W., Riggs, A. D., Morin, C., Itakura, K., & Richards, J. H. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 6409-6413], an active revertant, Thr-71----Ser (i.e., residue 70 in the double mutant had changed from threonine to the serine conserved at position 70 in the wild-type enzyme), was isolated by an approach that allows identification of active revertants in the absence of a background of wild-type enzyme. This mutant (Thr-71----Ser) has about 15% of the catalytic activity of wild-type beta-lactamase. The other possible mutant involving serine and threonine residues at positions 70 and 71 (Ser-70----Thr) shows no catalytic activity. The primary nucleophiles of a serine or a cysteine residue [Sigal, I. S., Harwood, B. G., & Arentzen, R. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 7157-7160] at position 70 thus seem essential for enzymatic activity. Compared to wild-type enzyme, all three mutants show significantly reduced resistance to proteolysis; for the active revertant (Thr-71----Ser), we have also observed reduced thermal stability and reduced resistance to denaturation by urea.  相似文献   

18.
Each of the three cysteinyl residues per subunit in D-amino acid transaminase from a thermophilic species of Bacillus has been changed to a glycine residue (C142G, C164G, and C212G) by site-directed mutagenesis. The mutant enzymes were detected by Western blots and a stain for activity. After purification to homogeneity, each mutant protein had the same activity as the wild-type enzyme. Thus, none of the Cys residues are essential for catalysis. Each protein when denatured showed the expected titer of two SH groups per subunit. In the native state, each of the three mutant proteins exhibited nearly the same slow rate of titration of SH groups as the wild-type protein with about one SH group titratable over a period of 4 h. Conversion of Ser-146, adjacent to Lys-145 to which the coenzyme pyridoxal phosphate is bound, to an alanine residue (S146A) does not alter the catalytic activity but has a significant effect on the SH titration behavior. Thus, three to four of the six SH groups of S146A are titratable by DTNB. The rapid SH titration of S146A is prevented by the presence of D-alanine. This finding suggests that the change of Ser-146 to Ala at the active site promotes the exposure and rapid titration of a Cys residue in that region. The rapid SH titration of S146A by DTNB is accompanied by a loss of enzyme activity. Two of the mutant enzymes, C142G and S146A, lose activity at 4 degrees C and also upon freezing and thawing. The mutant enzymes C164G and C212G show the same degree of thermostability as the wild-type enzyme.  相似文献   

19.
Mu transposons carrying the chloramphenicol resistance marker have been inserted into the cloned Escherichia coli genes sodA and sodB coding for manganese superoxide dismutase (MnSOD) and iron superoxide dismutase (FeSOD) respectively, creating mutations and gene fusions. The mutated sodA or sodB genes were introduced into the bacterial chromosome by allelic exchange. The resulting mutants were shown to lack the corresponding SOD by activity measurements and immunoblot analysis. Aerobically, in rich medium, the absence of FeSOD or MnSOD had no major effect on growth or sensitivity to the superoxide generator, paraquat. In minimal medium aerobic growth was not affected, but the sensitivity to paraquat was increased, especially in the sodA mutant. A sodA sodB double mutant completely devoid of SOD was also obtained. It was able to grow aerobically in rich medium, its catalase level was unaffected and it was highly sensitive to paraquat and hydrogen peroxide; the double mutant was unable to grow aerobically on minimal glucose medium. Growth could be restored by removing oxygen, by providing an SOD-overproducing plasmid or by supplementing the medium with the 20 amino acids. It is concluded that the total absence of SOD in E. coli creates a conditional sensitivity to oxygen.  相似文献   

20.
Two mutants of the zinc finger peptide Xfin-31 (Ac-YKCGLCERSFVEKSALSRHQRVHKN-CONH2) containing alterations to the conserved hydrophobic core have been constructed and their zinc-bound structures investigated by 1H NMR techniques. In the first (Xfin-31B) a double mutation R8F/F10G places the conserved core aromatic residue at position 8 rather than position 10. In the second (Xfin-31C), Phe-10 is replaced by Leu. A qualitative analysis of 1H chemical shifts, NOE connectivities and coupling constants indicates that the global folds of both mutants are similar to that of the wild-type protein. However, amide exchange rates suggest that the F10L mutant is much less stable than either the wild-type or the R8F/F10G mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号