首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Forty-two white-rot fungi isolated in South America were incubated with long fibre sugar cane bagasse (LFB). The residual composition of LFB was determined after white-rot decay at 30 and 60 days. The ratio of residual lignin to residual lignin to residual cellulose (RL/RC) of untreated material (LFB) was 0.48. After white-rot-decay, the residual material with lower RL/RC ratios indicated that mainly lignin was degraded. In only 30 days, Phlebia sp. MVHC 5535, Athelia sp. MVHC 5509 and Spongipellis pachyodon MVHC 5019 caused a decrease in the RL/RC ratio to 0.36, 0.37 and 0.38, respectively, while it took 60 days for Ganoderma applanatum MVHC 5347, Hyphodontia sp. MVHC 5544, Panus tigrinus MVHC 5400, Stereum sp. MVHC 5113, Phellinus punctatus MVHC 5346 and MVHC 6388 to reach a ratio lower than 0.40. No correlation was found between the amount of some ligninolytic enzymes secreted and the residual composition of bagasse after white-rot fungi fermentation. Most of the fungal strains caused an increase in the relative amount of residual cellulose, indicating that hemicellulose was the preferred energy source.  相似文献   

2.
Summary As initial studies showed that enzymatic saccharification of sugar cane bagasse in columns with recycling of eluate was slightly more efficient than in agitated flasks, ethanol production by fermentation of the eluates with fast-decanting yeast and recycling of the fermentate through the bagasse columns was studied. The alcohol yield from these coupled columns after 24 or 48 h was more than 10% more than that in a simultaneous saccharification and fermentation in agitated flasks at 40°.  相似文献   

3.
By treatment of a wild-type strain of Cellulomonas flavigena with N-methyl-N'-nitro-N-nitrosoguanidine at 150 g/ml, mutants PN-7 and PN-10 were obtained, which produce 1.38 and 1.5 times more carboxymethylcellulase than the wild strain when cultured in a batch system with sugar cane bagasse as the sole carbon source. These mutants also exhibited higher specific growth rates compared to the wild strain. From a second mutagenesis of mutant PN-10, mutant PN-120 was obtained in continuous culture. This mutant was able to use a larger portion of sugar cane bagasse than did the wild-type and therefore its biomass yield was also higher. The mutant showed a specific growth rate on sugar cane bagasse threefold higher than the wild strain.  相似文献   

4.
5.
Summary Aspergillus niger and Trichoderma viride strains were used together as a fungal activator in the presence or absence of farmyard manure (FM) for composting of bagasse enriched with rock phosphate. Quality of the composts produced was compared with that obtained from non-inoculated bagasse. The composts were evaluated as organic phosphatic fertilizers, for broad bean plants. The results showed that composting of bagasse without microbial inoculation or FM addition was not complete after 105 days of fermentation. An excellent decomposition in a relatively short time however was obtained with the use of A. niger and T. viride as inoculant agents with or without FM. The inoculation with A. niger + T. viridewith or without FM, also represented the most suitable conditions for phosphate solubilization. Acidic conditions (pH 4–5) at the end of the experiment were obtained in all piles receiving Aspergillus niger and there was a correlation between the amounts of soluble phosphorus and the reduction in pH values in the compost piles. There were no phosphate-dissolving fungi present in any composted piles except those treated with Aspergillus niger and Trichoderma viride. The number of phosphate-dissolving bacteria increased only in the treatments that were treated with FM. The non-fertilized sandy soil and the non-inoculated bagasse compost did not provide broad bean plants with phosphorus while the composts produced by inoculation with A. niger + T. viride provided the plants with the highest amounts of phosphorus.  相似文献   

6.
Thermal degradation and kinetics for olive residue and sugar cane bagasse have been evaluated under dynamic conditions in the presence of nitrogen atmosphere, using a non-isothermal thermogravimetric method (TGA). The effect of heating rate was evaluated in the range of 2-50 K min(-1) providing significant parameters for the fingerprinting of the biomass. The DTG plot for the olive residue and sugar cane bagasse clearly shows that the bagasse begins to degrade at 473 K and exhibits two major peaks. The initial mass-loss was associated with hemicellulose pyrolysis and responsible for the first peak (538-543 K) whereas cellulose pyrolysis was initiated at higher temperatures and responsible for the second peak (600-607 K). The two biomass mainly devolatilized around 473-673 K, with total volatile yield of about 70-75%. The char in final residue was about 19-26%. Mass loss and mass loss rates were strongly affected by heating rate. It was found that an increase in heating rate resulted in a shift of thermograms to higher temperatures. Ozawa-Flynn-Wall and Vyazovkin methods were applied to determine apparent activation energy to the olive residue and sugar cane bagasse. Two different steps were detected with apparent activation energies in the 10-40% conversion range have a value of 153-162 kJ mol(-1) and 168-180 kJ mol(-1) for the hemicellulose degradation of olive residue and sugar cane bagasse, respectively. In the 50-80% conversion range, this value is 204-215 kJ mol(-1) and 231-240 kJ mol(-1) for the cellulose degradation of olive residue and sugar cane bagasse, respectively.  相似文献   

7.
8.
9.
The effect of cell density on xylanolytic activity and productivity of Cellulomonas flavigena was evaluated under two different culturing conditions: fed-batch culture with discontinuous feed of sugar cane bagasse (SCB; condition 1) and glycerol fed-batch culture followed by addition of SBC as xylanases inducer (condition 2). The enzymatic profile of xylanases was similar in both systems, regardless of the initial cell density at time of induction. However, the xylanolytic activity changed with initial cell density at the time of induction (condition 2). The maximum volumetric xylanase activity increased with increased initial cell density from 4 to 34 g l−1 but decreased above this value. The largest total volumetric xylanase productivity under condition 2 (1.3 IU ml−1 h−1) was significantly greater compared to condition 1 (maximum 0.6 IU ml−1 h−1). Consequently, induction of xylanase activity by SCB after growing of C. flavigena on glycerol at intermediate cell density can be a feasible alternative to improve activity and productivity of xylanolytic enzymes.  相似文献   

10.
Trichoderma reesei LM-UC4 and its mutant LM-UC4E1 were co-cultured with Aspergillus phoenicis QM329 for cellu-lase production on bagasse by mixed culture solid substrate fermentation. A mutual synergism was observed between the parent Trichoderma strain and the Aspergillus, resulting in enhanced combined biomass production and corresponding increased in cellulase, endoglucanase and b-glucosidase activities. Such synergism was absent with the mutant Trichoderma strain suggesting that in the hypermutation the ability for cooperative interaction with other microbes was lost.  相似文献   

11.
Escherichia coli KO11, carrying the ethanol pathway genes pdc (pyruvate decarboxylase) and adh (alcohol dehydrogenase) from Zymomonas mobilis integrated into its chromosome, has the ability to metabolize pentoses and hexoses to ethanol, both in synthetic medium and in hemicellulosic hydrolysates. In the fermentation of sugar mixtures simulating hemicellulose hydrolysate sugar composition (10.0 g of glucose/l and 40.0 g of xylose/l) and supplemented with tryptone and yeast extract, recombinant bacteria produced 24.58 g of ethanol/l, equivalent to 96.4% of the maximum theoretical yield. Corn steep powder (CSP), a byproduct of the corn starch-processing industry, was used to replace tryptone and yeast extract. At a concentration of 12.5 g/l, it was able to support the fermentation of glucose (80.0 g/l) to ethanol, with both ethanol yield and volumetric productivity comparable to those obtained with fermentation media containing tryptone and yeast extract. Hemicellulose hydrolysate of sugar cane bagasse supplemented with tryptone and yeast extract was also readily fermented to ethanol within 48 h, and ethanol yield achieved 91.5% of the theoretical maximum conversion efficiency. However, fermentation of bagasse hydrolysate supplemented with 12.5 g of CSP/l took twice as long to complete. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

12.
Xylitol, a sweetener comparable to sucrose, is anticariogenic and can be consumed by diabetics. This sugar has been employed successfully in many foods and pharmaceutical products. The discovery of microorganisms capable of converting xylose present in lignocellulosic biomass into xylitol offers the opportunity of producing this poliol in a simple way. Xylitol production by biotechnological means using sugar cane bagasse is under study in our laboratories, and fermentation parameters have already been established. However, the downstream processing for xylitol recovery is still a bottleneck on which there is only a few data available in the literature. The present study deals with xylitol recovery from fermented sugar cane bagasse hydrolysate using 5.2 g/l of aluminium polychloride associated with activated charcoal. The experiments were performed at pH 9, 50 degrees C for 50 min. The results showed that aluminium polychloride and activated charcoal promoted a 93.5% reduction in phenolic compounds and a 9.7% loss of xylitol from the fermented medium, which became more discoloured, facilitating the xylitol separation.  相似文献   

13.
A fed-batch culture system was used to study xylitol production by Candida guilliermondii FTI 20037 in a synthetic and a sugar cane bagasse hydrolysate medium. The values achieved for xylitol yield and volumetric productivity were, respectively, 0 · 84 g g−1 and 0 · 64 g l−1 h−1 using the synthetic medium and 0 · 78 g g−1 and 0 · 62 g l−1 h−1 using the hydrolysate medium.  相似文献   

14.
Kluyveromyces marxianus DMKU 3-1042, isolated by an enrichment technique in a sugar cane juice medium supplemented with 4% (w/v) ethanol at 35 degrees C, produced high concentrations of ethanol at both 40 and 45 degrees C. Ethanol production by this strain in shaking flask cultivation in sugar cane juice media at 37 degrees C was highest in a medium containing 22% total sugars, 0.05% (NH(4))(2)SO(4), 0.05% KH(2)PO(4), and 0.15% MgSO(4).7H(2)O and having a pH of 5.0; the ethanol concentration reached 8.7% (w/v), productivity 1.45 g/l/h and yield 77.5% of theoretical yield. At 40 degrees C, a maximal ethanol concentration of 6.78% (w/v), a productivity of 1.13 and a yield 60.4% of theoretical yield were obtained from the same medium, except that the pH was adjusted to 5.5. In a study on ethanol production in a 5l jar fermenter with an agitation speed of 300 rpm and an aeration rate of 0.2 vvm throughout the fermentation, K. marxianus DMKU 3-1042 yielded a final ethanol concentration of 6.43% (w/v), a productivity of 1.3g/l/h and a yield of 57.1% of theoretical yield.  相似文献   

15.

Background

Previous studies on the use of SO2 and CO2 as impregnating agent for sugar cane bagasse steam treatment showed comparative and promising results concerning the cellulose enzymatic hydrolysis and the low formation of the inhibitors furfural and hydroxymethylfurfural for the use of CO2 at 205°C/15 min or SO2 at 190°C/5 min. In the present study sugar cane bagasse materials pretreated as aforementioned were analyzed by scanning and transmission electron microscopy (SEM and TEM), X-Ray Diffraction (XRD) and Infrared (FTIR spectroscopy) aiming a better understanding of the structural and chemical changes undergone by the pretreated materials.

Results

SEM and TEM data showed that the structural modifications undergone by the pretreatment with CO2 were less pronounced in comparison to that using SO2, which can be directly related to the combined severity of each pretreatment. According to XRD data, untreated bagasse showed, as expected, a lower crystallinity index (CI = 48.0%) when compared to pretreated samples with SO2 (CI = 65.5%) or CO2 (CI = 56.4%), due to the hemicellulose removal of 68.3% and 40.5%, respectively. FTIR spectroscopy supported SEM, TEM and XRD results, revealing a more extensive action of SO2.

Conclusions

The SEM, TEM, XRD and FTIR spectroscopy techniques used in this work contributed to structural and chemical analysis of the untreated and pretreated bagasse. The images from SEM and TEM can be related to the severity of SO2 pretreatment, which is almost twice higher. The crystallinity index values obtained from XRD showed that pretreated materials have higher values when compared with untreated material, due to the partial removal of hemicellulose after pretreatment. FTIR spectroscopy supported SEM, TEM and XRD results. CO2 can actually be used as impregnating agent for steam pretreatment, although the present study confirmed a more extensive action of SO2.  相似文献   

16.
Summary Saccharomyces cerevisiae was immobilised by adsorption to untreated sugar cane bagasse in a packed bed reactor. Complete conversion of glucose to ethanol was obtained at a dilution rate of 0.19 h−1. Continuous ethanol production was maintained for up to 57 days. Reactor productivity increased with increasing packing density of the bagasse. Plugging of void spaces due to cell overgrowth led to channelling of the feed and decreased reactor productivity. Increasing the average column temperature alleviated plugging and restored column performance over a short period; however prolonged exposure to the high temperature resulted in decreased ethanol production rates. Bagasse has advantages as a support material for ethanol production from sugar cane or beet, including negligible cost, ready availability and the capacity to support a high yeast population.  相似文献   

17.
Sugar cane bagasse hemicellulosic fraction was hydrolysed by treatment with 70 mg of sulphuric acid per gram of dry mass at 125 °C for 2 h. The hydrolysate was used as the substrate to grow Candida langeronii RLJ Y-019 at 42 °C; initial pH 6.0; stirring at 700 rev/min and aeration at 1.0 and 2.0 v/v/min. The utilization of D-xylose, L-arabinose, and acetic acid were delayed due to the presence of D-glucose, but after D-glucose depletion the other carbon sources were utilized. The kinetic parameters calculated for both cultivations at 1.0 and 2.0 v/v/min included: maximum specific growth rate (max) of 0.29 ± 0.01 h–1 and 0.43 ± 0.016 h–1, yields (Y x/s) of 0.36 ± 0.012 and 0.40 ± 0.012 gx/gs and productivity (Q x) of 0.81 ± 0.016 and 0.97 ± 0.012 gx/l/h, respectively, and compared favourably with published results obtained with Candida utilis and Geotrichum candidum. Candida langeronii appeared superior to C. utilis for biomass production from hemicellulose hydrolysate, in that it utilized L-arabinose and was capable of growth at higher temperatures. The biomass contained 48.2, 1.4, 5.8 and 23.4% of total protein, DNA, RNA and carbohydrate, respectively and contained essential amino acids for animal feed.  相似文献   

18.
Summary The selected yeast strains were examined for their ability to grow, to retain cell viability and to ferment diluted sugar cane juice (15 % total sugar, w/v) to ethanol at 40°C. The degree of agitation (aeration) affects the thermotolerance while the method used for isolation of the strains appears to have no significant effect. The yeast isolated are aerobically fermentative with increased levels of fermentation and growth resulting from agitation (aeration), the exact level of these increases being dependent on the strain used.  相似文献   

19.
An extract containing trehalase and invertase was prepared from apical internodes of sugar cane. The extract hydrolysed three glucosides: maltose, trehalose and sucrose. By reprecipitation with ammonium sulphate, maltase and trehalase activities appear to be due to different enzymes. As was also shown by differential inhibition and activation and by studies on the behaviour of both enzymes during growth, invertase and trehalase activities are attributed to different enzymes whose activities do not overlap. Invertase-free preparations confirm these results. Sucrose is a simple competitive inhibitor of sugar cane trehalase, excluding a regulatory role for this sugar. Sucrose was found at inhibitory levels in the first four apical internodes. A close correlation between sugar cane growth and invertase and trehalase levels was found in the apical internodes. Invertase has the greatest activity during growing, and trehalase reaches a maximum at maturity, prior to the flowering process. The high levels of trehalase in the flower suggest that the enzyme is involved in flowering or in related processes linked to seed formation.  相似文献   

20.
Sugar cane bagasse was pretreated with either liquid hot water (LHW) or steam using the same 25 l reactor. Solids concentration ranged from 1% to 8% for LHW pretreatment and was > or = 50% for steam pretreatment. Reaction temperature and time ranged from 170 to 230 degrees C and 1 to 46 min, respectively. Key performance metrics included fiber reactivity, xylan recovery, and the extent to which pretreatment hydrolyzate inhibited glucose fermentation. In four cases, LHW pretreatment achieved > or = 80% conversion by simultaneous saccharification and fermentation (SSF). > or = 80% xylan recovery, and no hydrolyzate inhibition of glucose fermentation yield. Combined effectiveness was not as good for steam pretreatment due to low xylan recovery. SSF conversion increased and xylan recovery decreased as xylan dissolution increased for both modes. SSF conversion, xylan dissolution. hydrolyzate furfural concentration, and hydrolyzate inhibition increased, while xylan recovery and hydrolyzate pH decreased, as a function of increasing LHW pretreatment solids concentration (1-8%). These results are consistent with the notion that autohydrolysis plays an important. if not exclusive, role in batch hydrothermal pretreatment. Achieving concurrently high (greater than 90%) SSF conversion and xylan recovery will likely require a modified reactor configuration (e.g. continuous percolation or base addition) that better preserves dissolved xylan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号