首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lantibiotic mersacidin inhibits peptidoglycan biosynthesis by binding to the peptidoglycan precursor lipid II. Mersacidin contains an unsaturated thioether bridge, which is proposed to be synthesized by posttranslational modifications of threonine residue +15 and the COOH-terminal cysteine residue of the mersacidin precursor peptide MrsA. We show that the flavoprotein MrsD catalyzes the oxidative decarboxylation of the COOH-terminal cysteine residue of MrsA to an aminoenethiol residue. MrsD belongs to the recently described family of homo-oligomeric flavin-containing Cys decarboxylases (i.e., the HFCD protein family). Members of this protein family include the bacterial Dfp proteins (which are involved in coenzyme A biosynthesis), eukaryotic salt tolerance proteins, and further oxidative decarboxylases such as EpiD. In contrast to EpiD and Dfp, MrsD is a FAD and not an FMN-dependent flavoprotein. HFCD enzymes are characterized by a conserved His residue which is part of the active site. Exchange of this His residue for Asn led to inactivation of MrsD. The lantibiotic-synthesizing enzymes EpiD and MrsD have different substrate specificities.  相似文献   

2.
Strauss E  Zhai H  Brand LA  McLafferty FW  Begley TP 《Biochemistry》2004,43(49):15520-15533
Phosphopantothenoylcysteine decarboxylase (PPC-DC) catalyzes the decarboxylation of the cysteine moiety of 4'-phosphopantothenoylcysteine (PPC) to form 4'-phosphopantetheine (PPantSH); this reaction forms part of the biosynthesis of coenzyme A. The enzyme is a member of the larger family of cysteine decarboxylases including the lantibiotic-biosynthesizing enzymes EpiD and MrsD, all of which use a tightly bound flavin cofactor to oxidize the thiol moiety of the substrate to a thioaldehyde. The thioaldehyde serves to delocalize the charge that develops in the subsequent decarboxylation reaction. In the case of PPC-DC enzymes the resulting enethiol is reduced to a thiol giving net decarboxylation of cysteine, while in EpiD and MrsD it is released as the final product of the reaction. In this paper, we describe the characterization of the novel cyclopropyl-substituted product analogue 4'-phospho-N-(1-mercaptomethyl-cyclopropyl)-pantothenamide (PPanDeltaSH) as a mechanism-based inhibitor of the human PPC-DC enzyme. This inhibitor alkylates the enzyme on Cys(173), resulting in the trapping of a covalently bound enethiolate intermediate. When Cys(173) is exchanged for the weaker acid serine by site-directed mutagenesis the enethiolate reaction intermediate also accumulates. This suggests that Cys(173) serves as an active site acid in the protonation of the enethiolate intermediate in PPC-DC enzymes. We propose that this protonation step is the key mechanistic difference between the oxidative decarboxylases EpiD and MrsD (which have either serine or threonine at the corresponding position in their active sites) and PPC-DC enzymes, which also reduce the intermediate in an overall simple decarboxylation reaction.  相似文献   

3.
The Arabidopsis thaliana flavoprotein AtHAL3a is related to plant growth and salt and osmotic tolerance. AtHAL3a shows sequence homology to the bacterial flavoproteins EpiD and Dfp. EpiD, Dfp, and AtHAL3a are members of the homo-oligomeric flavin-containing Cys decarboxylase (HFCD) protein family. We demonstrate that AtHAL3a catalyzes the decarboxylation of (R)-4'-phospho-N-pantothenoylcysteine to 4'-phosphopantetheine. This key step in coenzyme A biosynthesis is catalyzed in bacteria by the Dfp proteins. Exchange of His-90 of AtHAL3a for Asn led to complete inactivation of the enzyme. Dfp and AtHAL3a are characterized by a shortened substrate binding clamp compared with EpiD. Exchange of the cysteine residue of the conserved ACGD motif of this binding clamp resulted in loss of (R)-4'-phospho-N-pantothenoylcysteine decarboxylase activity. Based on the crystal structures of EpiD H67N with bound substrate peptide and of AtHAL3a, we present a model for the binding of (R)-4'-phospho-N-pantothenoylcysteine to AtHAL3a.  相似文献   

4.
BACKGROUND: The Arabidopsis thaliana HAL3 gene product encodes for an FMN-binding protein (AtHal3) that is related to plant growth and salt and osmotic tolerance. AtHal3 shows sequence homology to ScHal3, a regulatory subunit of the Saccharomyces cerevisae serine/threonine phosphatase PPz1. It has been proposed that AtHal3 and ScHal3 have similar roles in cellular physiology, as Arabidopsis transgenic plants that overexpress AtHal3 and yeast cells that overexpress ScHal3 display similar phenotypes of improved salt tolerance. The enzymatic activity of AtHal3 has not been investigated. However, the AtHal3 sequence is homologous to that of EpiD, a flavoprotein from Staphylococcus epidermidis that recognizes a peptidic substrate and subsequently catalyzes the alpha, beta-dehydrogenation of its C-terminal cysteine residue. RESULTS: The X-ray structure of AtHal3 at 2 A resolution reveals that the biological unit is a trimer. Each protomer adopts an alpha/beta Rossmann fold consisting of a six-stranded parallel beta sheet flanked by two layers of alpha helices. The FMN-binding site of AtHal3 contains all the structural requirements of the flavoenzymes that catalyze dehydrogenation reactions. Comparison of the amino acid sequences of AtHal3, ScHal3 and EpiD reveals that a significant number of residues involved in trimer formation, the active site, and FMN binding are conserved. This observation suggests that ScHal3 and EpiD might also be trimers, having a similar structure and function to AtHal3. CONCLUSIONS: Structural comparisons of AtHal3 with other FMN-binding proteins show that AtHal3 defines a new subgroup of this protein family that is involved in signal transduction. Analysis of the structure of AtHal3 indicates that this protein is designed to interact with another cellular component and to subsequently catalyze the alpha,beta-dehydrogenation of a peptidyl cysteine. Structural data from AtHal3, together with physiological and biochemical information from ScHal3 and EpiD, allow us to propose a model for the recognition and regulation of AtHal3/ScHal3 cellular partners.  相似文献   

5.
The NH(2)-terminal domain of the bacterial flavoprotein Dfp catalyzes the decarboxylation of (R)-4'-phospho-N-pantothenoylcysteine to 4'-phosphopantetheine, a key step in coenzyme A biosynthesis. Dfp proteins, LanD proteins (for example EpiD, which is involved in epidermin biosynthesis), and the salt tolerance protein AtHAL3a from Arabidopsis thaliana are homooligomeric flavin-containing Cys decarboxylases (HFCD protein family). The crystal structure of the peptidyl-cysteine decarboxylase EpiD complexed with a pentapeptide substrate has recently been determined. The peptide is bound by an NH(2)-terminal substrate binding helix, residue Asn(117), which contacts the cysteine residue of the substrate, and a COOH-terminal substrate recognition clamp. The conserved motif G-G/S-I-A-X-Y-K of the Dfp proteins aligns partly with the substrate binding helix of EpiD. Point mutations within this motif resulted in loss of coenzyme binding (G14S) or in significant decrease of Dfp activity (G15A, I16L, A17D, K20N, K20Q). Exchange of Asn(125) of Dfp, which corresponds to Asn(117) of EpiD, and exchange of Cys(158), which is within the proposed substrate recognition clamp of Dfp, led to inactivity of the enzyme. Molecular analysis of the conditional lethality of the Escherichia coli dfp-707 mutant revealed that the single point mutation G11D of Dfp is related to decreased amounts of soluble Dfp protein at 37 degrees C.  相似文献   

6.
The Arabidopsis thaliana protein AtHAL3a decarboxylates 4'-phosphopantothenoylcysteine to 4'-phosphopantetheine, a step in coenzyme A biosynthesis. Surprisingly, this decarboxylation reaction is carried out as an FMN-dependent redox reaction. In the first half-reaction, the side-chain of the cysteine residue of 4'-phosphopantothenoylcysteine is oxidised and the thioaldehyde intermediate decarboxylates spontaneously to the 4'-phosphopantothenoyl-aminoethenethiol intermediate. In the second half-reaction this compound is reduced to 4'-phosphopantetheine and the FMNH(2) cofactor is re-oxidised. The active site mutant C175S is unable to perform this reductive half-reaction. Here, we present the crystal structure of the AtHAL3a mutant C175S in complex with the reaction intermediate pantothenoyl-aminoethenethiol and FMNH(2). The geometry of binding suggests that reduction of the C(alpha)=C(beta) double bond of the intermediate can be performed by direct hydride-transfer from N5 of FMNH(2) to C(beta) of the aminoethenethiol-moiety supported by a protonation of C(alpha) by Cys175. The binding mode of the substrate is very similar to that previously observed for a pentapeptide to the homologous enzyme EpiD that introduces the aminoethenethiol-moiety as final reaction product at the C terminus of peptidyl-cysteine residues. This finding further supports our view that these homologous enzymes form a protein family of homo-oligomeric flavin-containing cysteine decarboxylases, which we have termed HFCD family.  相似文献   

7.
The N-acetylglucosamine-1-phosphate uridyltransferase (GlmU) is a key bifunctional enzyme in the biosynthesis of UDP-GlcNAc, a precursor in the synthesis of cell wall peptidoglycan. Crystal structures of the enzyme from different bacterial strains showed that the polypeptide forms a trimer through a unique parallel left-handed beta helix domain. Here, we show that the GlmU enzyme from Escherichia coli forms a hexamer in solution. Sedimentation equilibrium analytical ultracentrifugation demonstrated that the enzyme is in a trimer/hexamer equilibrium. Small-angle X-ray scattering studies were performed to determine the structure of the hexameric assembly and showed that two trimers assemble through their N-terminal domains. The interaction is mediated by a loop that undergoes a large conformational change in the uridyl transferase reaction, a feature that may affect the enzymatic activity of GlmU.  相似文献   

8.
Flavodoxins are involved in a variety of electron transfer reactions that are essential for life. Although FMN-binding proteins are well characterized in prokaryotic organisms, information is scarce for eukaryotic flavodoxins. We describe the 2.0-A resolution crystal structure of the Saccharomyces cerevisiae YLR011w gene product, a predicted flavoprotein. YLR011wp indeed adopts a flavodoxin fold, binds the FMN cofactor, and self-associates as a homodimer. Despite the absence of the flavodoxin key fingerprint motif involved in FMN binding, YLR011wp binds this cofactor in a manner very analogous to classical flavodoxins. YLR011wp closest structural homologue is the homodimeric Bacillus subtilis Yhda protein (25% sequence identity) whose homodimer perfectly superimposes onto the YLR011wp one. Yhda, whose function is not documented, has 53% sequence identity with the Bacillus sp. OY1-2 azoreductase. We show that YLR011wp has an NAD(P)H-dependent FMN reductase and a strong ferricyanide reductase activity. We further demonstrate a weak but specific reductive activity on azo dyes and nitrocompounds.  相似文献   

9.
Pulmonary surfactant protein D (SP-D) is a glycoprotein from the collectin family that is a component of the lung surfactant system. It exhibits host defense and immune regulatory functions in addition to contributing to the homeostasis of the surfactant pool within the alveolar airspaces. It is known that the SP-D monomer forms trimers, which further associate into higher-order oligomers. However, the pathway and the interactions involved in the assembly of SP-D oligomers are not clearly understood. In the current study, a recombinant form of full-length human SP-D (rhSP-D) has been qualitatively and quantitatively studied by atomic force microscopy (AFM) and electrophoresis, with the aim to understand the conformational diversity and the determinants defining the oligomerization of the protein. The rhSP-D preparation studied is a mixture of trimers, hexamers, dodecamers and higher-order oligomeric species, with dodecamers accounting for more than 50% of the protein by mass. Similar structures were also found in hSP-D obtained from proteinosis patients, with the largest fuzzy-ball-like oligomers being more abundant in these samples. The proportion of dodecamer is increased under acidic conditions, accompanied by a conformational change into more compact configurations. Two hexamers appear to be the minimal necessary unit for dodecamer formation, with stabilization of the dodecamer occurring via non-covalent, ionic, and hydrophobic interactions between the individual N-terminal domains and the proximal area of the SP-D collagen stems.  相似文献   

10.
BACKGROUND: Escherichia coli pyridoxine 5'-phosphate oxidase (PNPOx) catalyzes the terminal step in the biosynthesis of pyridoxal 5'-phosphate (PLP), a cofactor used by many enzymes involved in amino acid metabolism. The enzyme oxidizes either the 4'-hydroxyl group of pyridoxine 5'-phosphate (PNP) or the 4'-primary amine of pyridoxamine 5'-phosphate (PMP) to an aldehyde. PNPOx is a homodimeric enzyme with one flavin mononucleotide (FMN) molecule non-covalently bound to each subunit. A high degree of sequence homology among the 15 known members of the PNPOx family suggests that all members of this group have similar three-dimensional folds. RESULTS: The crystal structure of PNPOx from E. coli has been determined to 1.8 A resolution. The monomeric subunit folds into an eight-stranded beta sheet surrounded by five alpha-helical structures. Two monomers related by a twofold axis interact extensively along one-half of each monomer to form the dimer. There are two clefts at the dimer interface that are symmetry-related and extend from the top to the bottom of the dimer. An FMN cofactor that makes interactions with both subunits is located in each of these two clefts. CONCLUSIONS: The structure is quite similar to the recently deposited 2.7 A structure of Saccharomyces cerevisiae PNPOx and also, remarkably, shares a common structural fold with the FMN-binding protein from Desulfovibrio vulgaris and a domain of chymotrypsin. This high-resolution E. coli PNPOx structure permits predictions to be made about residues involved in substrate binding and catalysis. These predictions provide testable hypotheses, which can be answered by making site-directed mutants.  相似文献   

11.
The lantibiotic-synthesizing flavoprotein EpiD catalyzes the oxidative decarboxylation of peptidylcysteines to peptidyl-aminoenethiols. The sequence motif responsible for flavin coenzyme binding and enzyme activity is conserved in different proteins from all kingdoms of life. Dfp proteins of eubacteria and archaebacteria and salt tolerance proteins of yeasts and plants belong to this new family of flavoproteins. The enzymatic function of all these proteins was not known, but our experiments suggested that they catalyze a similar reaction like EpiD and/or may have similar substrates and are homododecameric flavoproteins. We demonstrate that the N-terminal domain of the Escherichia coli Dfp protein catalyzes the decarboxylation of (R)-4'-phospho-N-pantothenoylcysteine to 4'-phosphopantetheine. This reaction is essential for coenzyme A biosynthesis.  相似文献   

12.
Post-translational modifications of lantibiotics   总被引:2,自引:0,他引:2  
Several newly reported post-translational modification reactions are involved in lantibiotic biosynthesis. A short overview of the present knowledge on the post-translational modifications and on the enzymes involved in lantibiotic biosynthesis is given. The oxidative decarboxylation of the epidermin precursor peptide EpiA is described in detail. The FMN-containing oxidoreductase EpiD is involved in the formation of the C-terminal S-[(Z)-2-aminovinyl]-D-cysteine residue of epidermin: under reducing conditions the side chain of the C-terminal cysteine residue of EpiA is converted to an enethiol. EpiD has no absolute substrate specificity and can be used for modification of peptides having the C-terminal consensus motif [V/I/L/(M)/F/Y/W]-[A/S/V/T/C/(I/L)]-C.Abbreviations Dha 2,3-didehydroalanine - Dhb (Z)-2,3-didehydrobutyrine - ES-MS Electrospray Mass Spectrometry - FAD Flavin Adenine Dinucleotide - FMN Flavin Mononucleotide - MBP Maltose-Binding Protein - TFA TrifluoroAcetic Acid - TLC Thin-Layer Chromatography  相似文献   

13.
We used sequence and structural comparisons to determine the fold for eukaryotic ornithine decarboxylase, which we found is related to alanine racemase. These enzymes have no detectable sequence identity with any protein of known structure, including three pyridoxal phosphate-utilizing enzymes. Our studies suggest that the N-terminal domain of ornithine decarboxylase folds into a beta/alpha-barrel. Through the analysis of known barrel structures we developed a topographic model of the pyridoxal phosphate-binding domain of ornithine decarboxylase, which predicts that the Schiff base lysine and a conserved glycine-rich sequence both map to the C-termini of the beta-strands. Other residues in this domain that are likely to have essential roles in catalysis, substrate, and cofactor binding were also identified, suggesting that this model will be a suitable guide to mutagenic analysis of the enzyme mechanism.  相似文献   

14.
Bioinformatic analyses of whole genome sequences highlight the problem of identifying the biochemical and cellular functions of many gene products that are at present uncharacterized. The open reading frame Rv3853 from Mycobacterium tuberculosis has been annotated as menG and assumed to encode an S-adenosylmethionine (SAM)-dependent methyltransferase that catalyzes the final step in menaquinone biosynthesis. The Rv3853 gene product has been expressed, refolded, purified, and crystallized in the context of a structural genomics program. Its crystal structure has been determined by isomorphous replacement and refined at 1.9 A resolution to an R factor of 19.0% and R(free) of 22.0%. The structure strongly suggests that this protein is not a SAM-dependent methyltransferase and that the gene has been misannotated in this and other genomes that contain homologs. The protein forms a tightly associated, disk-like trimer. The monomer fold is unlike that of any known SAM-dependent methyltransferase, most closely resembling the phosphohistidine domains of several phosphotransfer systems. Attempts to bind cofactor and substrate molecules have been unsuccessful, but two adventitiously bound small-molecule ligands, modeled as tartrate and glyoxalate, are present on each monomer. These may point to biologically relevant binding sites but do not suggest a function. In silico screening indicates a range of ligands that could occupy these and other sites. The nature of these ligands, coupled with the location of binding sites on the trimer, suggests that proteins of the Rv3853 family, which are distributed throughout microbial and plant species, may be part of a larger assembly binding to nucleic acids or proteins.  相似文献   

15.
The Arabidopsis thaliana flavoprotein AtHAL3a, which is linked to plant growth and salt and osmotic tolerance, catalyzes the decarboxylation of 4'-phosphopantothenoylcysteine to 4'-phosphopantetheine, a key step in coenzyme A biosynthesis. AtHAL3a is similar in sequence and structure to the LanD enzymes EpiD and MrsD, which catalyze the oxidative decarboxylation of peptidylcysteines. Therefore, we hypothesized that the decarboxylation of 4'-phosphopantothenoylcysteine also occurs via an oxidatively decarboxylated intermediate containing an aminoenethiol group. A set of AtHAL3a mutants were analyzed to detect such an intermediate. By exchanging Lys(34), we found that AtHAL3a is not only able to decarboxylate 4'-phosphopantothenoylcysteine but also pantothenoylcysteine to pantothenoylcysteamine. Exchanging residues within the substrate binding clamp of AtHAL3a (for example of Gly(179)) enabled the detection of the proposed aminoenethiol intermediate when pantothenoylcysteine was used as substrate. This intermediate was characterized by its high absorbance at 260 and 280 nm, and the removal of two hydrogen atoms and one molecule of CO(2) was confirmed by ultrahigh resolution mass spectrometry. Using the mutant AtHAL3a C175S enzyme, the product pantothenoylcysteamine was not detectable; however, oxidatively decarboxylated pantothenoylcysteine could be identified. This result indicates that reduction of the aminoenethiol intermediate depends on a redox-active cysteine residue in AtHAL3a.  相似文献   

16.
The yeast Saccharomyces cerevisiae mitochondrial matrix factor Mmf1, a member in the YER057c/Yigf/Uk114 family, participates in isoleucine biosynthesis and mitochondria maintenance. Mmf1 physically interacts with another mitochondrial matrix protein Mam33, which is involved in the sorting of cytochrome b? to the intermembrane space as well as mitochondrial ribosomal protein synthesis. To elucidate the structural basis for their interaction, we determined the crystal structures of Mmf1 and Mam33 at 1.74 and 2.10 ?, respectively. Both Mmf1 and Mam33 adopt a trimeric structure: each subunit of Mmf1 displays a chorismate mutase fold with a six-stranded β-sheet flanked by two α-helices on one side, whereas a subunit of Mam33 consists of a twisted six-stranded β-sheet surrounded by five α-helices. Biochemical assays combined with structure-based computational simulation enable us to model a putative complex of Mmf1-Mam33, which consists of one Mam33 trimer and two tandem Mmf1 trimers in a head-to-tail manner. The two interfaces between the ring-like trimers are mainly composed of electrostatic interactions mediated by complementary negatively and positively charged patches. These results provided the structural insights into the putative function of Mmf1 during mitochondrial protein synthesis via Mam33, a protein binding to mitochondrial ribosomal proteins.  相似文献   

17.
The crystal structure of the modular flavin adenine dinucleotide (FAD) synthetase from Corynebacterium ammoniagenes has been solved at 1.95 Å resolution. The structure of C. ammoniagenes FAD synthetase presents two catalytic modules—a C-terminus with ATP-riboflavin kinase activity and an N-terminus with ATP-flavin mononucleotide (FMN) adenylyltransferase activity—that are responsible for the synthesis of FAD from riboflavin in two sequential steps. In the monomeric structure, the active sites from both modules are placed 40 Å away, preventing the direct transfer of the product from the first reaction (FMN) to the second catalytic site, where it acts as substrate. Crystallographic and biophysical studies revealed a hexameric assembly formed by the interaction of two trimers. Each trimer presents a head-tail configuration, with FMN adenylyltransferase and riboflavin kinase modules from different protomers approaching the active sites and allowing the direct transfer of FMN. Experimental results provide molecular-level evidences of the mechanism of the synthesis of FMN and FAD in prokaryotes in which the oligomeric state could be involved in the regulation of the catalytic efficiency of the modular enzyme.  相似文献   

18.
The Pyrococcus furiosus ornithine carbamoyltransferase (OTCase) is extremely heat stable and maintains 50% of its catalytic activity after 60 min at 100 degrees C. The enzyme has an unusual quaternary structure when compared to anabolic OTCases from mesophilic organisms. It is built up of four trimers arranged in a tetrahedral manner, while other anabolic enzymes are single trimers. Residues Trp21, Glu25, Met29 and Trp33 are located in the main interfaces that occur between the catalytic trimers within the dodecamer. They participate in either hydrophobic clusters or ionic interactions. In order to elucidate the role played by the oligomerization in the enzyme stability at very high temperatures, we performed mutagenesis studies of these residues. All the variants show similar catalytic activities and kinetic properties when compared to the wild-type enzyme, allowing the interpretation of the mutations solely on heat stability and quaternary structure. The W21A variant has only a slight decrease in its stability, and is a dodecamer. The variants E25Q, M29A, W33A, W21A/W33A and E25Q/W33A show that altering more drastically the interfaces results in a proportional decrease in heat stability, correlated with a gradual dissociation of dodecamers into trimers. Finally, the E25Q/M29A/W33A variant shows a very large decrease in heat stability and is a trimer. These results suggest that extreme thermal stabilization of this OTCase is achieved in part through oligomerization.  相似文献   

19.
Pyridoxine 5'-phosphate oxidase (PNP Ox) catalyzes the terminal step in the biosynthesis of pyridoxal 5'-phosphate. The 53-kDa homodimeric enzyme contains a noncovalently bound flavin mononucleotide (FMN) on each monomer. Three crystal forms of Escherichia coli PNP Ox complexed with FMN have been obtained at room temperature. The first crystal form belongs to trigonal space group P3(1)21 or P3(2)21 with unit cell dimensions a = b = 64.67A, c = 125.64A, and has one molecule of the complex (PNP Ox-FMN) per asymmetric unit. These crystals grow very slowly to their maximum size in about 2 to 4 months and diffract to about 2.3 A. The second crystal form belongs to tetragonal space group P4(1) or P4(3) with unit cell dimensions a = b = 54.92A, c = 167.65A, and has two molecules of the complex per asymmetric unit. The crystals reach their maximum size in about 5 weeks and diffract to 2.8 A. A third crystal form with a rod-like morphology grows faster and slightly larger than the other two forms, but diffracts poorly and could not be characterized by X-ray analysis. The search for heavy-atom derivatives for the first two crystal forms to solve the structure is in progress.  相似文献   

20.
Riboflavin (vitamin B(2)) serves as the precursor for FMN and FAD in almost all organisms that utilize the redox-active isoalloxazine ring system as a coenzyme in enzymatic reactions. The role of flavin, however, is not limited to redox processes, as ~ 10% of flavin-dependent enzymes catalyze nonredox reactions. Moreover, the flavin cofactor is also widely used as a signaling and sensing molecule in biological processes such as phototropism and nitrogen fixation. Here, we present a study of 374 flavin-dependent proteins analyzed with regard to their function, structure and distribution among 22 archaeal, eubacterial, protozoan and eukaryotic genomes. More than 90% of flavin-dependent enzymes are oxidoreductases, and the remaining enzymes are classified as transferases (4.3%), lyases (2.9%), isomerases (1.4%) and ligases (0.4%). The majority of enzymes utilize FAD (75%) rather than FMN (25%), and bind the cofactor noncovalently (90%). High-resolution structures are available for about half of the flavoproteins. FAD-containing proteins predominantly bind the cofactor in a Rossmann fold (~ 50%), whereas FMN-containing proteins preferably adopt a (βα)(8)-(TIM)-barrel-like or flavodoxin-like fold. The number of genes encoding flavin-dependent proteins varies greatly in the genomes analyzed, and covers a range from ~ 0.1% to 3.5% of the predicted genes. It appears that some species depend heavily on flavin-dependent oxidoreductases for degradation or biosynthesis, whereas others have minimized their flavoprotein arsenal. An understanding of 'flavin-intensive' lifestyles, such as in the human pathogen Mycobacterium tuberculosis, may result in valuable new intervention strategies that target either riboflavin biosynthesis or uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号