首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Telomeres are essential for chromosome integrity, protecting the ends of eukaryotic linear chromosomes during cell proliferation. Telomeres also function in meiosis; a characteristic clustering of telomeres beneath the nuclear membrane is observed during meiotic prophase in many organisms from yeasts to plants and humans, and the role of the telomeres in meiotic pairing and the recombination of homologous chromosomes has been demonstrated in the fission yeast Schizosaccharomyces pombe and in the budding yeast Saccharomyces cerevisiae. Here we report that S. pombe Rap1 is a telomeric protein essential for meiosis. While Rap1 is conserved in budding yeast and humans, schemes for telomere binding vary among species: human RAP1 binds to the telomere through interaction with the telomere binding protein TRF2; S. cerevisiae Rap1, however, binds telomeric DNA directly, and no orthologs of TRF proteins have been identified in this organism. In S. pombe, unlike in S. cerevisiae, an ortholog of human TRF has been identified. This ortholog, Taz1, binds directly to telomere repeats [18] and is necessary for telomere clustering in meiotic prophase. Our results demonstrate that S. pombe Rap1 binds to telomeres through interaction with Taz1, similar to human Rap1-TRF2, and that Taz1-mediated telomere localization of Rap1 is necessary for telomere clustering and for the successful completion of meiosis. Moreover, in taz1-disrupted cells, molecular fusion of Rap1 with the Taz1 DNA binding domain recovers telomere clustering and largely complements defects in meiosis, indicating that telomere localization of Rap1 is a key requirement for meiosis.  相似文献   

2.
3.
The telomere at the end of a linear chromosome plays crucial roles in genome stability. In the fission yeast Schizosaccharomyces pombe, the Rap1 protein, one of the central players at the telomeres, associates with multiple proteins to regulate various telomere functions, such as the maintenance of telomere DNA length, telomere end protection, maintenance of telomere heterochromatin, and telomere clustering in meiosis. The molecular bases of the interactions between Rap1 and its partners, however, remain largely unknown. Here, we describe the identification of the interaction domains of Rap1 with its partners. The Bqt1/Bqt2 complex, which is required for normal meiotic progression, Poz1, which is required for telomere length control, and Taz1, which is required for the recruitment of Rap1 to telomeres, bind to distinct domains in the C-terminal half of Rap1. Intriguingly, analyses of a series of deletion mutants for rap1 + have revealed that the long N-terminal region (1–456 a.a. [amino acids]) of Rap1 (full length: 693 a.a.) is not required for telomere DNA length control, telomere end protection, and telomere gene silencing, whereas the C-terminal region (457–693 a.a.) containing Poz1- and Taz1-binding domains plays important roles in those functions. Furthermore, the Bqt1/Bqt2- and Taz1-binding domains are essential for normal spore formation after meiosis. Our results suggest that the C-terminal half of Rap1 is critical for the primary telomere functions, whereas the N-terminal region containing the BRCT (BRCA1 C-terminus) and Myb domains, which are evolutionally conserved among the Rap1 family proteins, does not play a major role at the telomeres.  相似文献   

4.
In many organisms, meiotic chromosomes are bundled at their telomeres to form a "bouquet" arrangement. The bouquet formation plays an important role in homologous chromosome pairing and therefore progression of meiosis. As meiotic telomere clustering occurs in response to mating pheromone signaling in fission yeast, we looked for factors essential for bouquet formation among genes induced under mating pheromone signaling. This genome-wide search identified two proteins, Bqt1 and Bqt2, that connect telomeres to the spindle-pole body (SPB; the centrosome equivalent in fungi). Neither Bqt1 nor Bqt2 alone functions as a connector, but together the two proteins form a bridge between Rap1 (a telomere protein) and Sad1 (an SPB protein). Significantly, when both Bqt1 and Bqt2 are ectopically expressed in mitotic cells, they also form a bridge between Rap1 and Sad1. Thus, a complex including Bqt1 and Bqt2 is essential for connecting telomeres to the SPB.  相似文献   

5.
Scherthan H  Sfeir A  de Lange T 《Chromosoma》2011,120(2):151-157
Attachment of telomeres to the nuclear envelope (NE) and their clustering in a chromosomal bouquet during meiotic prophase I is an evolutionary conserved event that promotes chromosome pairing and recombination. In fission yeast, bouquet formation fails when the telomeric protein Rap1 is absent or when the telomeric protein Taz1 fails to recruit Rap1 to telomeres. The mammalian Rap1 orthologue is a component of the shelterin complex and localises to telomeres through an interaction with a Taz1-like telomeric DNA binding factor, TRF2. Here, we investigated the role of mammalian Rap1 in meiotic telomere attachment and clustering by analysing spermatogenesis in Rap1-deficient mice. The results establish that the meiotic three-dimensional nuclear architecture and recombination are not affected by the absence of Rap1. Furthermore, Rap1-deficient meiotic telomeres assemble the SUN1 nuclear membrane protein, attach to the NE, and undergo bouquet formation indistinguishable from the wild-type setting. Thus, the role of Rap1 in meiosis is not conserved between fission yeast and mammals, suggesting that mammals have alternative modes for connecting telomeres to SUN proteins on the meiotic nuclear envelope.  相似文献   

6.
Alternative ends: telomeres and meiosis   总被引:1,自引:0,他引:1  
Meiosis is a specialized type of cell division that halves the diploid number of chromosomes, yielding four haploid nuclei. Dramatic changes in chromosomal organization occur within the nucleus at the beginning of meiosis which are followed by the separation of homologous chromosomes at the first meiotic division. This is the case for telomeres that display a meiotic-specific behavior with gathering in a limited sector of the nuclear periphery. This leads to a characteristic polarized chromosomal configuration, called the "bouquet" arrangement. The widespread phenomenon of bouquet formation among eukaryotes has led to the hypothesis that it is functionally linked to the process of interactions between homologous chromosomes that are a unique feature of meiosis and are essential for proper chromosome segregation. Various studies in different model organisms have questioned the role of the telomere bouquet in chromosome pairing and recombination, and very recently in meiotic spindle formation, and have provided some clues about the molecular mechanisms that carry out this specific clustering of telomeres.  相似文献   

7.
Abstract Meiosis is central to the formation of haploid gametes or spores in that it segregates homologous chromosomes and halves the chromosome number. A prerequisite of this genome bisection is the pairing of homologous chromosomes during the first meiotic prophase. When budding yeast cells are induced to undergo meiosis, this has profound consequences for nuclear structure: after premeiotic DNA replication centromeres disperse, while telomeres move about the nuclear periphery and temporarily cluster during the leptotene/zygotene transition (bouquet stage) of the prophase to first meiotic division. In vegetative cells, Hdf1p (yKu) and the myosin-like proteins Mlp1p and Mlp2p have been suggested to contribute to the organization of silent chromatin, tethering of telomeres to the nuclear periphery, DNA repair, and telomere maintenance. Here, we investigated by molecular cytology whether yKu and Mlp proteins contribute to telomere and chromosome dynamics in meiosis. It was found that mlp1 Δ mlp2 Δ double-mutant cells undergo centromere dispersion, telomere clustering, homologue pairing, and sporulation like wild type. On the other hand, cells deficient for yKu underwent meiosis-specific chromosomal events with a delay, while they eventually sporulated like wild type. These results suggest that the absence of yKu not only affects vegetative nuclear architecture ( Laroche et al., 1998 ) but also interferes with the ordered occurrence of chromosome dynamics during first meiotic prophase.  相似文献   

8.
Telomeres are nucleoprotein structures that cap the ends of chromosomes and thereby protect their stability and integrity. In the presence of telomerase, the enzyme that synthesizes telomeric repeats, telomere length is controlled primarily by Rap1p, the budding yeast telomeric DNA binding protein which, through its C-terminal domain, nucleates a protein complex that limits telomere lengthening. In the absence of telomerase, telomeres shorten with every cell division, and eventually, cells enter replicative senescence. We have set out to identify the telomeric property that determines the replicative capacity of telomerase-deficient budding yeast. We show that in cells deficient for both telomerase and homologous recombination, replicative capacity is dependent on telomere length but not on the binding of Rap1p to the telomeric repeats. Strikingly, inhibition of Rap1p binding or truncation of the C-terminal tail of Rap1p in Kluyveromyces lactis and deletion of the Rap1p-recruited complex in Saccharomyces cerevisiae lead to a dramatic increase in replicative capacity. The study of the role of telomere binding proteins and telomere length on replicative capacity in yeast may have significant implications for our understanding of cellular senescence in higher organisms.  相似文献   

9.
During meiosis, chromosomes undergo large-scale reorganization to allow pairing between homologues, which is necessary for recombination and segregation. In many organisms, pairing of homologous chromosomes is accompanied, and possibly facilitated, by the bouquet, the clustering of telomeres in a small region of the nuclear periphery. Taking advantage of the cytological accessibility of meiosis in maize, we have characterized the organization of centromeres and telomeres throughout meiotic prophase. Our results demonstrate that meiotic centromeres are polarized prior to the bouquet stage, but that this polarization does not contribute to bouquet formation. By examining telocentric and ring chromosomes, we have tested the cis-acting requirements for participation in the bouquet. We find that: (a) the healed ends of broken chromosomes, which contain telomere repeats, can enter the bouquet; (b) ring chromosomes enter the bouquet, indicating that terminal position on a chromosome is not necessary for telomere sequences to localize to the bouquet; and (c) beginning at zygotene, the behavior of telomeres is dominant over any centromere-mediated chromosome behavior. The results of this study indicate that specific chromosome regions are acted upon to determine the organization of meiotic chromosomes, enabling the bouquet to form despite large-scale changes in chromosome architecture.  相似文献   

10.
Mammalian telomeres consist of TTAGGG repeats, telomeric repeat binding factor (TRF), and other proteins, resulting in a protective structure at chromosome ends. Although structure and function of the somatic telomeric complex has been elucidated in some detail, the protein composition of mammalian meiotic telomeres is undetermined. Here we show, by indirect immunofluorescence (IF), that the meiotic telomere complex is similar to its somatic counterpart and contains significant amounts of TRF1, TRF2, and hRap1, while tankyrase, a poly-(ADP-ribose)polymerase at somatic telomeres and nuclear pores, forms small signals at ends of human meiotic chromosome cores. Analysis of rodent spermatocytes reveals Trf1 at mouse, TRF2 at rat, and mammalian Rap1 at meiotic telomeres of both rodents. Moreover, we demonstrate that telomere repositioning during meiotic prophase occurs in sectors of the nuclear envelope that are distinct from nuclear pore-dense areas. The latter form during preleptotene/leptotene and are present during entire prophase I.  相似文献   

11.
In fission yeast meiotic prophase, telomeres are clustered near the spindle pole body (SPB; a centrosome-equivalent structure in fungi) and take the leading position in chromosome movement, while centromeres are separated from the SPB. This telomere position contrasts with mitotic nuclear organization, in which centromeres remain clustered near the SPB and lead chromosome movement. Thus, nuclear reorganization switching the position of centromeres and telomeres must take place upon entering meiosis. In this report, we analyze the nuclear location of centromeres and telomeres in genetically well-characterized meiotic mutant strains. An intermediate structure for telomere-centromere switching was observed in haploid cells induced to undergo meiosis by synthetic mating pheromone; fluorescence in situ hybridization revealed that in these cells, both telomeres and centromeres were clustered near the SPB. Further analyses in a series of mutants showed that telomere-centromere switching takes place in two steps; first, association of telomeres with the SPB and, second, dissociation of centromeres from the SPB. The first step can take place in the haploid state in response to mating pheromone, but the second step does not take place in haploid cells and probably depends on conjugation-related events. In addition, a linear minichromosome was also co-localized with authentic telomeres instead of centromeres, suggesting that telomere clustering plays a role in organizing chromosomes within a meiotic prophase nucleus.  相似文献   

12.
Slk19p is necessary to prevent separation of sister chromatids in meiosis I   总被引:4,自引:0,他引:4  
BACKGROUND: A fundamental difference between meiotic and mitotic chromosome segregation is that in meiosis I, sister chromatids remain joined, moving as a unit to one pole of the spindle rather than separating as they do in mitosis. It has long been known that the sustained linkage of sister chromatids through meiotic anaphase I is accomplished by association of the chromatids at the centromere region. The localization of the cohesin Rec8p to the centromeres is essential for maintenance of sister chromatid cohesion through meiosis I, but the molecular basis for the regulation of Rec8p and sister kinetochores in meiosis remains a mystery. RESULTS: We show that the SLK19 gene product from Saccharomyces cerevisiae is essential for proper chromosome segregation during meiosis I. When slk19 mutants were induced to sporulate they completed events characteristic of meiotic prophase I, but at the first meiotic division they segregated their sister chromatids to opposite poles at high frequencies. The vast majority of these cells did not perform a second meiotic division and proceeded to form dyads (asci containing two spores). Slk19p was found to localize to centromere regions of chromosomes during meiotic prophase where it remained until anaphase I. In the absence of Slk19p, Rec8p was not maintained at the centromere region through anaphase I as it is in wild-type cells. Finally, we demonstrate that Slk19p appears to function downstream of the meiosis-specific protein Spo13p in control of sister chromatid behavior during meiosis I. CONCLUSIONS: Our results suggest that Slk19p is essential at the centromere of meiotic chromosomes to prevent the premature separation of sister chromatids at meiosis I.  相似文献   

13.
Ding X  Xu R  Yu J  Xu T  Zhuang Y  Han M 《Developmental cell》2007,12(6):863-872
Prior to the pairing and recombination between homologous chromosomes during meiosis, telomeres attach to the nuclear envelope and form a transient cluster. However, the protein factors mediating meiotic telomere attachment to the nuclear envelope and the requirement of this attachment for homolog pairing and synapsis have not been determined in animals. Here we show that the inner nuclear membrane protein SUN1 specifically associates with telomeres between the leptotene and diplotene stages during meiotic prophase I. Disruption of Sun1 in mice prevents telomere attachment to the nuclear envelope, efficient homolog pairing, and synapsis formation in meiosis. Massive apoptotic events are induced in the mutant gonads, leading to the abolishment of both spermatogenesis and oogenesis. This study provides genetic evidence that SUN1-telomere interaction is essential for telomere dynamic movement and is required for efficient homologous chromosome pairing/synapsis during mammalian gametogenesis.  相似文献   

14.
Dynamic telomere repositioning is a prominent feature of meiosis. Deletion of a telomere-associated protein, Ndj1, results in the failure of both attachment and clustering of telomeres at the nuclear envelope and delays several landmarks of meiosis I, such as pairing, synaptonemal complex formation, and timing of the meiosis I division. We explored the role of Ndj1 in meiotic recombination, which occurs through the formation and repair of programmed double-strand breaks. The ndj1delta mutation allows for the formation of the first detectable strand invasion intermediate (i.e., single-end invasion) with wild-type kinetics; however, it confers a delay in the formation of the double-Holliday junction intermediate and both crossover and noncrossover products. These results challenge the widely held notion that clustering of telomeres in meiosis promotes the ability of homologous chromosomes to find one another in budding Saccharomyces cerevisiae. We propose that an Ndj1-dependent function is critical for stabilizing analogous strand invasion intermediates that exist in two separate branches of the bifurcated pathway, leading to either noncrossover or crossover formation. These findings provide a link between telomere dynamics and a distinct mechanistic step of meiotic recombination that follows the homology search.  相似文献   

15.
16.
The histone H2A variant H2AX is phosphorylated in response to DNA double-strand breaks originating from diverse origins, including dysfunctional telomeres. Here, we show that normal mitotic telomere maintenance does not require H2AX. Moreover, H2AX is dispensable for the chromosome fusions arising from either critically shortened or deprotected telomeres. However, H2AX has an essential role in controlling the proper topological distribution of telomeres during meiotic prophase I. Our results suggest that H2AX is a downstream effector of the ataxia telangiectasia-mutated kinase in controlling telomere movement during meiosis.  相似文献   

17.
In the yeast Kluyveromyces lactis, the telomeres are composed of perfect 25-bp repeats copied from a 30-nucleotide RNA template defined by 5-nucleotide terminal repeats. A genetic dissection of the K. lactis telomere was performed by using mutant telomerase RNA (TER1) alleles to incorporate mutated telomeric repeats. This analysis has shown that each telomeric repeat contains several functional regions, some of which may physically overlap. Mutations in the terminal repeats of the template RNA typically lead to telomere shortening, as do mutations in the right side of the Rap1p binding site. Mutations in the left half of the Rap1p binding site, however, lead to the immediate formation of long telomeres. When mutated, the region immediately 3' of the Rap1p binding site on the TG-rich strand of the telomere leads to telomeres that are initially short but eventually undergo extreme telomere elongation. Mutations between this region and the 3' terminal repeat cause elevated recombination despite the presence of telomeres of nearly wild-type length. Mutants with highly elongated telomeres were further characterized and exhibit signs of telomere capping defects, including elevated levels of subtelomeric recombination and the formation of extrachromosomal and single-stranded telomeric DNA. Lengthening caused by some Rap1 binding site mutations can be suppressed by high-copy-number RAP1. Mutated telomeric repeats from a delayed elongation mutant are shown to be defective at regulating telomere length in cells with wild-type telomerase, indicating that the telomeric repeats are defective at telomere length regulation.  相似文献   

18.
During meiosis, chromosomes undergo dramatic changes in structural organization, nuclear positioning, and motion. Although the nuclear pore complex has been shown to affect genome organization and function in vegetative cells, its role in meiotic chromosome dynamics has remained largely unexplored. Recent work in the budding yeast Saccharomyces cerevisiae demonstrated that the mobile nucleoporin Nup2 is required for normal progression through meiosis I prophase and sporulation in strains where telomere-led chromosome movement has been compromised. The meiotic-autonomous region, a short fragment of Nup2 responsible for its role in meiosis, was shown to localize to the nuclear envelope via Nup60 and to bind to meiotic chromosomes. To understand the relative contribution these 2 activities have on meiotic-autonomous region function, we first carried out a screen for meiotic-autonomous region mutants defective in sporulation and found that all the mutations disrupt interaction with both Nup60 and meiotic chromosomes. Moreover, nup60 mutants phenocopy nup2 mutants, exhibiting similar nuclear division kinetics, sporulation efficiencies, and genetic interactions with mutations that affect the telomere bouquet. Although full-length Nup60 requires Nup2 for function, removal of Nup60’s C-terminus allows Nup60 to bind meiotic chromosomes and promotes sporulation without Nup2. In contrast, binding of the meiotic-autonomous region to meiotic chromosomes is completely dependent on Nup60. Our findings uncover an inhibitory function for the Nup60 C-terminus and suggest that Nup60 mediates recruitment of meiotic chromosomes to the nuclear envelope, while Nup2 plays a secondary role counteracting the inhibitory function in Nup60’s C-terminus.  相似文献   

19.
Chromosome ends have been implicated in the meiotic processes of the nematode Caenorhabditis elegans. Cytological observations have shown that chromosome ends attach to the nuclear membrane and adopt kinetochore functions. In this organism, centromeric activity is highly regulated, switching from multiple spindle attachments all along the chromosome during mitotic division to a single attachment during meiosis. C. elegans chromosomes are functionally monocentric during meiosis. Earlier genetic studies demonstrated that the terminal regions of the chromosomes are not equivalent in their meiotic potentials. There are asymmetries in the abilities of the ends to recombine when duplicated or deleted. In addition, mutations in single genes have been identified that mimic the meiotic effects of a terminal truncation of the X chromosome. The recent cloning and characterization of the C. elegans telomeres has provided a starting point for the study of chromosomal elements mediating the meiotic process.  相似文献   

20.
Telomeres are essential for genome integrity. scRap1 (S. cerevisiae Rap1) directly binds to telomeric DNA and regulates telomere length and telomere position effect (TPE) by recruiting two different groups of proteins to its RCT (Rap1 C-terminal) domain. The first group, Rif1 and Rif2, regulates telomere length. The second group, Sir3 and Sir4, is involved in heterochromatin formation. On the other hand, human TRF1 and TRF2, as well as their fission yeast homolog, Taz1, directly bind to telomeric DNA and negatively regulate telomere length. Taz1 also plays important roles in TPE and meiosis. Human Rap1, the ortholog of scRap1, negatively regulates telomere length and appears to be recruited to telomeres by interacting with TRF2. Here, we describe two novel fission yeast proteins, spRap1 (S. pombe Rap1) and spRif1 (S. pombe Rif1), which are orthologous to scRap1 and scRif1, respectively. spRap1 and spRif1 are independently recruited to telomeres by interacting with Taz1. The rap1 mutant is severely defective in telomere length control, TPE, and telomere clustering toward the spindle pole body (SPB) at the premeiotic horsetail stage, indicating that spRap1 has critical roles in these telomere functions. The rif1 mutant also shows some defects in telomere length control and meiosis. Our results indicate that Taz1 provides binding sites for telomere regulators, spRap1 and spRif1, which perform the essential telomere functions. This study establishes the similarity of telomere organization in fission yeast and humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号