首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bacterial type II DNA topoisomerases are essential enzymes for correct genome functioning and cell growth. Gyrase is responsible for maintaining negative supercoiling of bacterial chromosome, whereas topoisomerase IV acts in disentangling daughter chromosomes following replication. Type II DNA topoisomerases possess an ATP binding site, which can be treated as a target for antibacterial drugs. Resolving crystal structures of protein fragments consisting of an ATP binding site complexed with ADPNP/antibiotics have proven to be valuable for the understanding of the mode of action of existing antibacterial agents and presented new possibilities for novel drug design. Coumarins, quinolones and cyclothialidines are diverse group of antibiotics that interfere with type II DNA topoisomerases, however their mode of action is different. Recently a new class of antibiotics, simociclinones, was characterized. Their mechanism of action towards gyrase is entirely distinct from already known modes of action, therefore demonstrating the potential for development of novel anti-bacterial agents.  相似文献   

3.
Due to the helical structure of DNA the process of DNA replication is topologically complex. Freshly replicated DNA molecules are catenated with each other and are frequently knotted. For proper functioning of DNA it is necessary to remove all of these entanglements. This is done by DNA topoisomerases that pass DNA segments through each other. However, it has been a riddle how DNA topoisomerases select the sites of their action. In highly crowded DNA in living cells random passages between contacting segments would only increase the extent of entanglement. Using molecular dynamics simulations we observed that in actively supercoiled DNA molecules the entanglements resulting from DNA knotting or catenation spontaneously approach sites of nicks and gaps in the DNA. Type I topoisomerases, that preferentially act at sites of nick and gaps, are thus naturally provided with DNA–DNA juxtapositions where a passage results in an error-free DNA unknotting or DNA decatenation.  相似文献   

4.
The twisted 'life' of DNA in the cell: bacterial topoisomerases   总被引:11,自引:2,他引:9  
DNA topoisomerases are essential to the cell for the regulation of DNA supercoiling levels and for chromosome decatenation. The proposed mechanisms for these reactions are essentially the same, except that a change in supercoiling is due to an intramolecular event, while decatenation requires an intermolecular event. The characterized bacterial topoisomerases appear capable of both types of reaction in vitro. Four DNA topoisomerases have been identified in Escherichia coli. Topoisomerase I, gyrase, and topoisomerase IV normally appear to have distinct essential functions within the cell, Gyrase and topoisomerase I are responsible for the regulation of DNA supercoiling. Both gyrase and topoisomerase IV are necessary for chromosomal decatenation. Multiple topoisomerases with distinct functions may give the cell more precise control over DNA topology by allowing tighter regulation of the principal enzymatic activities of these different proteins.  相似文献   

5.
6.
7.
DNA supercoiling inhibits DNA knotting   总被引:1,自引:1,他引:0  
Despite the fact that in living cells DNA molecules are long and highly crowded, they are rarely knotted. DNA knotting interferes with the normal functioning of the DNA and, therefore, molecular mechanisms evolved that maintain the knotting and catenation level below that which would be achieved if the DNA segments could pass randomly through each other. Biochemical experiments with torsionally relaxed DNA demonstrated earlier that type II DNA topoisomerases that permit inter- and intramolecular passages between segments of DNA molecules use the energy of ATP hydrolysis to select passages that lead to unknotting rather than to the formation of knots. Using numerical simulations, we identify here another mechanism by which topoisomerases can keep the knotting level low. We observe that DNA supercoiling, such as found in bacterial cells, creates a situation where intramolecular passages leading to knotting are opposed by the free-energy change connected to transitions from unknotted to knotted circular DNA molecules.  相似文献   

8.
9.
DNA ligand Hoechst-33342 significantly enhances UV induced cytotoxicity in human glioma cell lines (BMG-1 & U-87) with supra additive increase in cell death, cytogenetic damage, cell cycle delay, apoptosis and inhibition of PLDR. Cytotoxicity of Hoechst-33342 arises due to its interference in the breakage-rejoining reaction of DNA topoisomerases by stabilization of cleavable complexes. Since topoisomerases have also been implicated in the generation of potentially lethal DNA breaks by interaction with various types of DNA damage including UV induced DNA lesions, we investigated in present studies the role of functional topoisomerases in the synergistic cytotoxicity of Hoechst-33342 and UV in a human glioma cell line (BMG-1). Topoisomerase I activity analyzed by the plasmid relaxation assay, was significantly enhanced upon UV irradiation, implying a possible role of this enzyme in the processing of UV induced lesions. However, this increase in the activity was reduced by >50% in cells incubated with Hoechst-33342 for 1 hr prior to irradiation. Imunoflowcytometric analysis of the chromatin bound topoisomerases I and II levels (cleavable complex) using topoisomerases I and II anti-antibodies showed a good correlation between the induction of apoptosis by Hoechst-33342 and UV and enhancement in the level of topoisomerase II mediated cleavable complexes. Induction of apoptosis was associated with a decline in the level of Bcl2. Taken together, these studies show that supra additive cytotoxic effects of UV-C and Hoechst-33342 in BMG-1 cells are consequences of enhanced stabilization of topo II mediated cleavable complexes and alterations in specific signal transduction pathways of apoptosis, besides the inhibition of topoisomerase mediated repair processes.  相似文献   

10.
The human DNA replication origin, located in the lamin B2 gene, interacts with the DNA topoisomerases I and II in a cell cycle-modulated manner. The topoisomerases interact in vivo and in vitro with precise bonds ahead of the start sites of bidirectional replication, within the pre-replicative complex region; topoisomerase I is bound in M, early G1 and G1/S border and topoisomerase II in M and the middle of G1. The Orc2 protein competes for the same sites of the origin bound by either topoisomerase in different moments of the cell cycle; furthermore, it interacts on the DNA with topoisomerase II during the assembly of the pre-replicative complex and with DNA-bound topoisomerase I at the G1/S border. Inhibition of topoisomerase I activity abolishes origin firing. Thus, the two topoisomerases are closely associated with the replicative complexes, and DNA topology plays an essential functional role in origin activation.  相似文献   

11.
A considerable number of agents with chemotherapeutic potentials reported over the past years were shown to interfere with the reactions of DNA topoisomerases, the essential enzymes that regulate conformational changes in DNA topology. Gossypol, a naturally occurring bioactive phytochemical is a chemopreventive agent against various types of cancer cell growth with a reported activity on mammalian topoisomerase II. The compounds targeting topoisomerases vary in their mode of action; class I compounds act by stabilizing covalent topoisomerase-DNA complexes resulting in DNA strand breaks while class II compounds interfere with the catalytic function of topoisomerases without generating strand breaks. In this study, we report Gossypol as the interfering agent with type I topoisomerases as well. We also carried out an extensive set of assays to analyze the type of interference manifested by Gossypol on DNA topoisomerases. Our results strongly suggest that Gossypol is a potential class II inhibitor as it blocked DNA topoisomerase reactions with no consequently formed strand breaks.  相似文献   

12.
本文报告了Ⅱ型拓扑异构酶抑制剂——新生霉素对多瘤病毒DNA合成的抑制作用,发现新生霉素对细胞和病毒DNA的体外合成具有不同的抑制曲线。新生霉素在复制过程中抑制复制中间物转变成成熟的病毒DNA分子的过程,同时影响病毒DNA分子的负超螺旋密度。本文结果提示Ⅱ型拓扑异构酶是病毒DNA复制末期所必须的酶。  相似文献   

13.
14.
It has been shown earlier that eukaryotic type I DNA topoisomerases act on duplex DNA regions, while eubacterial type I topoisomerases require single-stranded regions. The present paper demonstrates that the type I topoisomerase from extremely thermophilic archaebacteria, reverse gyrase, winds DNA by binding to single-stranded DNA regions. Thus, type I topoisomerases, both relaxing one in eubacteria and reverse gyrase in extremely thermophilic archaebacteria share a substrate specificity to melted DNA regions. The important consequence of this specificity is that the cellular DNA superhelical stress actively controlled by bacterial topoisomerases is confined to a narrow range characterized by a low stability of the double helix. Hence we suppose that bacterial topoisomerase systems control duplex stability near its minimum, for which purpose they create an appropriate negative superhelicity at moderate temperatures or a positive one at extremely high temperatures, the feedback being ensured by the aforesaid specificity of type I bacterial topoisomerases.  相似文献   

15.
DNA topoisomerases contribute to various cellular activities that involve DNA. We previously identified a human nuclear gene that encodes a mitochondrial DNA topoisomerase. Here we show that genes for mitochondrial DNA topoisomerases (type IB) exist only in vertebrates. A 13-exon topoisomerase motif was identified as a characteristic of genes for both nuclear and mitochondrial type IB topoisomerases. The presence of this signature motif is thus an indicator of the coexistence of nuclear and mitochondrial type IB DNA topoisomerases. We hypothesize that the prototype topoisomerase IB with the 13-exon structure formed first, and then duplicated. One topoisomerase specialized for nuclear DNA and the other for mitochondrial DNA.  相似文献   

16.
DNA topoisomerases are enzymes that control DNA topology by cleaving and rejoining DNA strands and passing other DNA strands through the transient gaps. Consequently, these enzymes play a crucial role in the regulation of the physiological function of the genome. Beyond their normal functions, topoisomerases are important cellular targets in the treatment of human cancers. In this review we summarize current protocols for extracting and purifying DNA topoisomerases, and for separating subtypes and isoforms of these enzymes. Furthermore, we discuss methods for measuring the catalytic activity of topoisomerases and for monitoring the molecular effects of topoisomerase-directed antitumor drugs in cell-free assays.  相似文献   

17.
18.
19.
The biochemical steps by which bacterial topoisomerases alter the topology of DNA are well known. However, it has been a more vexing task to establish physiological roles and sites of action of the different topoisomerases within the context of the bacterial cell cycle. This difficulty can be attributed in part to the redundancy among the activities of the different enzymes. In this microreview, we will focus on recent progress in understanding the topological structure of the chromosome, analysis of topoisomerase mechanism in single-molecule assays and recent data on the regulation and integration of topoisomerase activity within the cell cycle that have all brought a new perspective to the action of topoisomerases in the bacterial cell.  相似文献   

20.
Abstract

The role of DNA topoisomerases in cell processes related to DNA metabolism, their involvement in the regulation of cell proliferation and their distribution in plant tissues are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号