首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aphid saliva can suppress the blocking of sieve elements, a reaction that plants employ to inhibit aphid feeding, but aphid saliva can also elicit plant defence responses. Such plant responses might affect interactions between different aphid species and intraspecifically, e.g. among different biotypes. The objectives of our study were to investigate if feeding behaviour and performance of two biotypes of the lettuce aphid Nasonovia ribisnigri are affected by (1) feeding by the other biotype and (2) feeding by the green peach aphid Myzus persicae or the potato aphid Macrosiphum euphorbiae. Additionally the effect of feeding in a group was studied. All experiments were performed on both a resistant and an isogenic susceptible lettuce cultivar. Feeding or probing by conspecific or heterospecific aphids had different effects on Nasonovia ribisnigri biotypes. Aphids were only slightly affected by feeding or probing of the same biotype on both susceptible and resistant lettuce. N. ribisnigri virulent biotype Nr:1 suppressed the resistance against Nr:0 in the resistant cultivar. In contrast, defence was induced by Nr:1 against Nr:0 in susceptible lettuce. Co-infestation by M. euphorbiae and M. persicae had minor effects on Nr:0. Defence against Nr:1 was induced on both susceptible lettuce and resistant lettuce by Nr:0 and M. euphorbiae. Additionally, M. persicae induced defence in resistant lettuce against Nr:1. Effectors in the saliva of Nr:1 aphids are likely responsible for the defence suppression in lettuce. Identification of these effectors could lead to a better understanding of the mechanism of virulence in N. ribisnigri.  相似文献   

2.
Biological control agents can be used as a complementary control measure that can be combined with resistant host plants to control pests. In this study, the effects of different canola cultivars (Karaj-1, Karaj-2, Karaj-3, Licord, Okapi, Opera, RGS003, Sarigol, Talaye and Zarfam) on the performance and life table parameters of the cabbage aphid, Brevicoryne brassicae, and its parasitoid, Diaeretiella rapae, were determined under laboratory conditions. Total fecundity of the cabbage aphid differed with cultivar, with the highest value (59.41 nymphs per female) of this parameter observed on Opera and the lowest (1.67) observed on RGS003. The highest and lowest intrinsic rates of increase (r) of the cabbage aphid were observed on Opera (0.331 day?1) and RGS003 (? 0.242 day?1) cultivars, respectively, suggesting these to be the most susceptible and most resistant cultivars to this pest. However, because the aphid did not settle and feed well on RGS003, it was not possible to determine demographic parameters for its parasitoid. Consequently, the Okapi cultivar, which was the most resistant cultivar to the cabbage aphid after RGS003, was used in this study to assess the parasitoid wasp. The parasitoid’s intrinsic rate of increase (r) varied from 0.426 day?1 on the susceptible cultivar (Opera) to 0.341 day?1 on the resistant canola cultivar Okapi. Aphid performance decreased 93% on the resistant canola cultivar, while parasitoid performance decreased only 20% on the resistant cultivar compared to more susceptible cultivar.  相似文献   

3.
Modern plant breeding heavily relies on the use of molecular markers. In recent years, next generation sequencing (NGS) emerged as a powerful technology to discover DNA sequence polymorphisms and generate molecular markers very rapidly and cost effectively, accelerating the plant breeding programmes. A single dominant locus, Frl, in tomato provides resistance to the fungal pathogen Fusarium oxysporum f. sp. radicis-lycopersici (FORL), causative agent of Fusarium crown and root rot. In this study, we describe the generation of molecular markers associated with the Frl locus. An F2 mapping population between an FORL resistant and a susceptible cultivar was generated. NGS technology was then used to sequence the genomes of a susceptible and a resistant parent as well the genomes of bulked resistant and susceptible F2 lines. We zoomed into the Frl locus and mapped the locus to a 900 kb interval on chromosome 9. Polymorphic single-nucleotide polymorphisms (SNPs) within the interval were identified and markers co-segregating with the resistant phenotype were generated. Some of these markers were tested successfully with commercial tomato varieties indicating that they can be used for marker-assisted selection in large-scale breeding programmes.  相似文献   

4.
The chickweed (Stellaria media L.) pro-SmAMP2 gene encodes the hevein-like peptides that have in vitro antimicrobial activity against certain harmful microorganisms. These peptides play an important role in protecting the chickweed plants from infection, and the pro-SmAMP2 gene was previously used to protect transgenic tobacco and Arabidopsis plants from phytopathogens. In this study, the pro-SmAMP2 gene under control of viral CaMV35S promoter or under control of its own pro-SmAMP2 promoter was transformed into cultivated potato plants of two cultivars, differing in the resistance to Alternaria: Yubiley Zhukova (resistant) and Skoroplodny (susceptible). With the help of quantitative real-time PCR, it was demonstrated that transgenic potato plants expressed the pro-SmAMP2 gene under control of both promoters at the level comparable to or exceeding the level of the potato actin gene. Assessment of the immune status of the transformants demonstrated that expression of antimicrobial peptide pro-SmAMP2 gene was able to increase the resistance to a complex of Alternaria sp. and Fusarium sp. phytopathogens only in potato plants of the Yubiley Zhukova cultivar. The possible role of the pro-SmAMP2 products in protecting potatoes from Alternaria sp. and Fusarium sp. is discussed.  相似文献   

5.
6.
The study was carried out to investigate the ability of three aphids, Myzus persicae, Aphis gossypii and Aphis spiraecola, to acquire and retain the Potato Virus Y (PVY) isolate, PVYNTN. Tobacco plants, Nicotiana tabacum var. Xanthi, were used as test plant for the virus inoculation and aphid acquisition. The serological test double-antibody sandwich enzyme-linked immunosorbent assay was applied for virus detection on the test plants and aphids. Furthermore, virus retention by aphids was also assessed using a monoclonal anti-PVYN. Although a duration of 2 min was enough for the virus acquisition, the three tested aphids showed different capacities to retain PVYNTN. The retention of PVYNTN was 3 h for M. persicae and A. spiraecola, and 2 h for A. gossypii. This study provides basic information of the virus retention by potato-colonizing aphid species, which may increase our understanding of PVY epidemiology in Tunisia.  相似文献   

7.
Megoura crassicauda Mordvilko (Hemiptera: Aphididae) is a dominant aphid species found on Vicia sativa subsp. nigra (L.) Ehrh. (Fabaceae) in the spring. Worker ants of Formica japonica, the dominant ant species attracted to the extrafloral nectaries of V. s. nigra, often attack ladybirds (Coccinella septempunctata), which are aphid enemies. However, the workers of F. japonica do not attack or exclude M. crassicauda, the non-myrmecophilous aphid. It appears that the “bodyguard” retained by the plant guards the plant’s herbivore by attacking the herbivores’ enemies, rather than guarding the plant itself. The relationship between V. s. nigra and M. crassicauda was observed in the field to examine and evaluate the cost of parasitism. Parasitism by M. crassicauda delayed flower bud formation markedly in V. s. nigra but did not kill the plants. V. s. nigra plants that were parasitized showed a net bean production similar to that of the non-parasitized controls. The parasitism rate of M. crassicauda increased when extrafloral nectaries were used by F. japonica. These results may indicate that M. crassicauda provides V. s. nigra with benefits by preventing other serious disadvantages.  相似文献   

8.
9.
This study examined the induction of the defence-related hormones jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA) and the phytoalexin medicarpin in Medicago truncatula when challenged by the pea aphid Acyrthosiphon pisum. There was some induction of hormones in the compatible interaction between A. pisum clone N116 and M. truncatula cultivar DZA315, whereas JA, SA and medicarpin exhibited more significant increases in foliage concentration during the incompatible interaction between A. pisum clone PS01 and M. truncatula cultivar Jemalong A17. Foliar concentration of JA, SA and medicarpin exhibited a positive relationship with aphid density after 3-day feeding, whereas ABA was not affected by the presence of aphids. When aphids were restricted to a single leaf using plastic tubes, JA, SA and medicarpin displayed strong local induction, whereas there were no significant systemic increases in uninfested leaves. Medicarpin and SA appeared to increase with duration of aphid feeding, whereas JA showed a more transient increase in concentration 24 h after challenge commenced. Results suggest that increases in JA, SA and medicarpin are associated with M. truncatula resistance to particular clones of A. pisum. The variation in concentration of the defence-related compounds recorded with regard to aphid density, duration of challenge, genotypes of plant and aphids, and between locally challenged and distant leaves reinforces the need for consideration of these experimental factors when generalizing about the plant defence processes that occur during aphid–plant interactions.  相似文献   

10.
The Azuki bean weevil, Callosobruchus chinensis (L.), is a destructive pest of stored mung bean [Vigna radiata (L.) Wilczek] as well as other leguminous seeds. The development of resistant seeds to manage this pest is of current great interest to plant breeders. In this study, we investigated the oviposition preference and development of C. chinensis on two susceptible mung bean cultivars (Seonhwa and Gyeongseon) and one previously reported resistant cultivar (Jangan), compared to the susceptible cowpea (Vigna unguiculata L.), cultivar (Yeonbun) using both multiple-choice and no-choice tests. In addition, the development of C. chinensis was also examined at four constant temperatures (20, 25, 30, and 35 °C). Both tests found cowpea to be the most suitable seed for oviposition. Total developmental time from oviposition to adult emergence ranged from 27.01 to 38.2 days, being shortest on cowpea and longest on the mung bean, cv. Jangan. However, no successful development of C. chinensis larvae on mung bean, cv. Jangan, occurred at any temperature. The highest rate of adult emergence and the longest adult longevity both occurred on cowpea and certain mung bean cultivars (Seonhwa and Gyeongseon), with the dramatic exception of cv. Jangan. These results suggest that the higher preference and performance of C. chinensis on cowpea (3.3 egg/seed) and least on mung bean, cv. Jangan (0.4 egg/seed). This information may facilitate the exploration of resistant genetic materials and chemicals associated with seeds for successful breeding. Further studies should examine the chemicals associated with mung bean cultivars and its resistant mechanism to develop a control method against bruchines.  相似文献   

11.
Bacillus amyloliquefaciens strain WF02, isolated from soil collected at Wufeng Mountain, Taiwan, has siderophore-producing ability and in vitro antagonistic activity against bacterial wilt pathogen. To determine the impact of plant genotype on biocontrol effectiveness, we treated soil with this strain before infecting susceptible (L390) and moderately resistant (Micro-Tom) tomato cultivars with Ralstonia solanacearum strain Pss4. We also compared the efficacy of this strain with that of commercial Bacillus subtilis strain Y1336. Strain WF02 provided longer lasting protection against R. solanacearum than did strain Y1336 and controlled the development of wilt in both cultivars. To elucidate the genetic responses in these plants under WF02 treatment, we analyzed the temporal expression of defense-related genes in leaves. The salicylic acid pathway-related genes phenylalanine ammonia-lyase and pathogenesis-related protein 1a were up-regulated in both cultivars, whereas expression of the jasmonic acid pathway-related gene lipoxygenase was only elevated in the susceptible tomato cultivar (L390). These results suggest that WF02 can provide protection against bacterial wilt in tomato cultivars with different levels of disease resistance via direct and indirect modes of action.  相似文献   

12.
Cucumber green mottle mosaic virus (CGMMV) is a major limiting factor in the production of cucumber plants worldwide. In the present study, we use plant growth-promoting rhizobacteria (PGPR) to control this virus effectively. Stenotrophomonas maltophilia HW2 was isolated from healthy cucumber root, exhibited a good biocontrol efficacy against CGMMV. Here, it is documented that 20 d after virus inoculation, the biocontrol efficacy of HW2 reached 52.61%. HW2 can effectively colonize in cucumber rhizosphere, and also promoted cucumber plants growth. We also examined the effect of HW2 on viral replication and its mechanism. Compared with the control, HW2 pre-treated plants could delay virus replication for more than 3 d and inhibit viral protein genes (CP, MP, Rep) expression in the cucumber leaf. The expression of antioxidant enzyme genes (SOD and CAT) and defense-related genes (PR1 and PR5) were quickly induced by HW2. These results suggest that HW2 induced plant defense responses to CGMMV by increasing the expression of defense response genes. We report for the first time that Stenotrophomonas maltophilia improved cucumber resistance against CGMMV, which highlights the applying of PGPR on controlling of virus diseases.  相似文献   

13.
The cultivated apple is susceptible to several pests including the rosy apple aphid (RAA; Dysaphis plantaginea Passerini), control of which is mainly based on chemical treatments. A few cases of resistance to aphids have been described in apple germplasm resources, laying the basis for the development of new resistant cultivars by breeding. The cultivar ‘Florina’ is resistant to RAA, and recently, the Dp-fl locus responsible for its resistance was mapped on linkage group 8 of the apple genome. In this paper, a chromosome walking approach was performed by using a ‘Florina’ bacterial artificial chromosome (BAC) library. The walking started from the available tightly linked molecular markers flanking the resistance region. Various walking steps were performed in order to identify the minimum tiling path of BAC clones covering the Dp-fl region from both the “resistant” and “susceptible” chromosomes of ‘Florina’. A genomic region of about 279 Kb encompassing the Dp-fl resistance locus was fully sequenced by the PacBio technology. Through the development of new polymorphic markers, the mapping interval around the resistance locus was narrowed down to a physical region of 95 Kb. The annotation of this sequence resulted in the identification of four candidate genes putatively involved in the RAA resistance response.  相似文献   

14.
Wild rice genotypes are rich in genetic diversity. This has potential to improve agronomic rice by allele mining for superior traits. Late embryogenesis abundant (LEA) proteins are often associated with desiccation tolerance and stress signalling. In the present study, a group 3 LEA gene, Wsi18 from the wild rice Oryza nivara was expressed under its own inducible promoter element in stress susceptible cultivated indica rice (cv. IR20). The resulting transgenic plants cultivated in a greenhouse showed enhanced tolerance to soil water deficit. Transgenic plants had higher grain yield, plant survival rate, and shoot relative water content compared to wild type (WT) IR20. Cell membrane stability index, proline and soluble sugar content were also greater in transgenic than WT plants under water stress. These results demonstrate the potential for improving SWS tolerance in agronomically important rice cultivar by incorporating Wsi18 gene from a wild rice O. nivara.  相似文献   

15.

Key message

In the soybean cultivar Suweon 97, BCMV-resistance gene was fine-mapped to a 58.1-kb region co-localizing with the Soybean mosaic virus (SMV)-resistance gene, Rsv1-h raising a possibility that the same gene is utilized against both viral pathogens.

Abstract

Certain soybean cultivars exhibit resistance against soybean mosaic virus (SMV) or bean common mosaic virus (BCMV). Although several SMV-resistance loci have been reported, the understanding of the mechanism underlying BCMV resistance in soybean is limited. Here, by crossing a resistant cultivar Suweon 97 with a susceptible cultivar Williams 82 and inoculating 220 F2 individuals with a BCMV strain (HZZB011), we observed a 3:1 (resistant/susceptible) segregation ratio, suggesting that Suweon 97 possesses a single dominant resistance gene against BCMV. By performing bulked segregant analysis with 186 polymorphic simple sequence repeat (SSR) markers across the genome, the resistance gene was determined to be linked with marker BARSOYSSR_13_1109. Examining the genotypes of nearby SSR markers on all 220 F2 individuals then narrowed down the gene between markers BARSOYSSR_13_1109 and BARSOYSSR_13_1122. Furthermore, 14 previously established F2:3 lines showing crossovers between the two markers were assayed for their phenotypes upon BCMV inoculation. By developing six more SNP (single nucleotide polymorphism) markers, the resistance gene was finally delimited to a 58.1-kb interval flanked by BARSOYSSR_13_1114 and SNP-49. Five genes were annotated in this interval of the Williams 82 genome, including a characteristic coiled-coil nucleotide-binding site-leucine-rich repeat (CC-NBS-LRR, CNL)-type of resistance gene, Glyma13g184800. Coincidentally, the SMV-resistance allele Rsv1-h was previously mapped to almost the same region, thereby suggesting that soybean Suweon 97 likely relies on the same CNL-type R gene to resist both viral pathogens.
  相似文献   

16.
The rose aphid, Macrosiphum rosae (L.), is one of the most important pests on rose plants (Rosa spp.) with a worldwide distribution. As resistance indices, the development, survivorship, and reproduction of this aphid were evaluated on 10 rose cultivars, including Bella Vita, Cool Water, Dolce Vita, Maroussia, Orange Juice, Pinkpromise, Roulette, Tea, Valentine, and Persian Yellow in laboratory at 25?±?1°C, 65?±?5% relative humidity, and photoperiod of 16:8 (L/D)?h. Rose aphid successfully survived on all 10 rose cultivars, although mortality rate was higher on Tea and Bella Vita. The number of offspring per female differed significantly among the tested rose cultivars, and ranged from 9.2 on Tea to 38.7 nymphs on Orange Juice. Population growth parameters were significantly affected by rose cultivars. The longest mean generation time (T) was observed on Bella Vita (14.8 days) and Tea (14.7 days) and the shortest on Orange Juice (10.0 days). The net reproductive rate (R 0 ) ranged from 6.9 on Tea to 33.2 nymphs on Orange Juice cultivar. Correspondingly, the highest value of intrinsic rate of increase (r m ) was observed on Orange Juice (0.348 day?1) and lower values on Tea (0.131 day?1) followed by Bella Vita (0.154 day?1). Cluster analysis of all the measured parameters of rose aphid on different rose cultivars revealed that Tea and Bella Vita were relatively resistant to M. rosae. These findings could be useful in developing an integrated pest management (IPM) program for this aphid in urbanized areas and commercial rose potting.  相似文献   

17.
Generation of reactive oxygen species (ROS) in tobacco (Nicotiana tabacum L.) cell cultures and potato (Solanum tuberosum L.) of two varieties experiencing the action of bacterial pathogen Clavibacter michiganensis ssp. sepedonicus (Cms) was investigated. The intensity and dynamics of the changes in hydrogen peroxide concentration observed in these cultures provided evidence for the development in tobacco of the effector-activated immune responses and the induction of the same type of responses but with low intensity for resistant potato variety and the inhibition of the defense mechanisms for its susceptible variety. This is in accordance with the data concerning the dynamics of plant cell culture death as well as the results obtained earlier on the whole plants. The experiments performed had also the purpose to elucidate whether the development of the above responses on the ability of bacteria Cms to form biofilms during plant infection. It was shown that this ability of Cms is significantly inhibited upon the combined cultivation of it with the plant cells exerting the responses of the effector-activated immunity and represented by the cells of tobacco and resistant potato variety. In the case of susceptible potato variety, the process of the biofilm formation was suppressed by the plant only to a slight extent. In addition, the fact concerning the participation of heat shock proteins (HSPs) in the development of the effector-activated immune responses was revealed.  相似文献   

18.
A potential alternative strategy to chemical control of plant diseases could be the stimulation of plant defense by arbuscular mycorrhizal fungi (AMF). In the present study, the influence of three parameters (phosphorus supply, mycorrhizal inoculation, and wheat cultivar) on AMF protective efficiency against Blumeria graminis f. sp. tritici, responsible for powdery mildew, was investigated under controlled conditions. A 5-fold reduction (P/5) in the level of phosphorus supply commonly recommended for wheat in France improved Funneliformis mosseae colonization and promoted protection against B. graminis f. sp. tritici in a more susceptible wheat cultivar. However, a further decrease in P affected plant growth, even under mycorrhizal conditions. Two commercially available AMF inocula (F. mosseae, Solrize®) and one laboratory inoculum (Rhizophagus irregularis) were tested for mycorrhizal development and protection against B. graminis f. sp. tritici of two moderately susceptible and resistant wheat cultivars at P/5. Mycorrhizal levels were the highest with F. mosseae (38 %), followed by R. irregularis (19 %) and Solrize® (SZE, 8 %). On the other hand, the highest protection level against B. graminis f. sp. tritici was obtained with F. mosseae (74 %), followed by SZE (58 %) and R. irregularis (34 %), suggesting that inoculum type rather than mycorrhizal levels determines the protection level of wheat against B. graminis f. sp. tritici. The mycorrhizal protective effect was associated with a reduction in the number of conidia with haustorium and with an accumulation of polyphenolic compounds at B. graminis f. sp. tritici infection sites. Both the moderately susceptible and the most resistant wheat cultivar were protected against B. graminis f. sp. tritici infection by F. mosseae inoculation at P/5, although the underlying mechanisms appear rather different between the two cultivars. This study emphasizes the importance of taking into account the considered parameters when considering the use of AMF as biocontrol agents.  相似文献   

19.
Armadillo repeat family is well-characterized in several plant species for their involvement in multiple regulatory processes including growth, development, and stress response. We have previously shown a three-fold higher expression of ARM protein-encoding in tomato cultivar tolerant to tomato leaf curl New Delhi virus (ToLCNDV) compared to susceptible cultivar upon virus infection. This suggests the putative involvement of ARM proteins in defense response against virus infection; however, no comprehensive investigation has been performed to address this inference. In the present study, we have identified a total of 46 ARM-repeat proteins (SlARMs), and 41 U-box-containing proteins (SlPUBs) in tomato. These proteins and their corresponding genes were studied for their physicochemical properties, gene structure, domain architecture, chromosomal localization, phylogeny, and cis-regulatory elements in the upstream promoter region. Expression profiling of candidate genes in response to ToLCNDV infection in contrasting tomato cultivars showed significant upregulation of SlARM18 in the tolerant cultivar. Virus-induced gene silencing of SlARM18 in the tolerant tomato cultivar conferred susceptibility, which suggests the involvement of this gene in resistance mechanism. Further studies are underway to functionally characterize SlARM18 to delineate its precise role in defense mechanism.  相似文献   

20.
Herbivore feeding on host plants may induce defense responses of the plant which influence other herbivores and interacting species in the vicinity, such as natural enemies. The present work evaluated the impact of pre-infestation with the tobacco whitefly Bemisia tabaci cryptic species MEAM 1, on the predation ability of the ladybird Propylea japonica, to the green peach aphid Myzus persicae, on tomato plants. The results show that B. tabaci pre-infestation density, duration, and leaf position, can impact prey consumed by P. japonica under various aphid densities. The aphids consumed by P. japonica in each treatment were fit using the Holling type II functional response equation. The predatory efficiency (a/T h) of P. japonica was the highest in the treatment with 60 aphids and 48-h infestation directly on damaged leaves. The predatory efficiencies of P. japonica decreased with a reduction of pre-infestation density and duration. We also observed that pre-infestation on young and undamaged leaves increased predation by P. japonica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号