首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The polymeric structure of the cyclic AMP-dependent protein kinase (E.C.2.7.1.37) from the dimorphic fungus Mucor rouxii was analyzed through studies of gel filtration and sucrose gradient centrifugation of the holoenzyme and its subunits and by photoaffinity labeling of the regulatory subunit. It was demonstrated that it is a tetramer composed by two regulatory subunits (R) of mol. wt. 75 000 and two catalytic subunits (C) of mol. wt. 41 000 forming a holoenzyme R2C2 of mol. wt. 242 000. Frictional coefficients of 1.55 and 1.62 for the holoenzyme and for the regulatory dimer, respectively, indicate a significant degree of dimensional asymmetry in both molecules. A procedure for the purification of the catalytic subunit of the kinase is presented. The holoenzyme could be bound to a cyclic AMP-agarose column and the catalytic subunit could be eluted by 0.5 M NaCl, well resolved from the bulk of protein. This particular behaviour of the holoenzyme in cyclic AMP-agarose chromatography allowed the inclusion of this step in the purification of the catalytic subunit and corroborated that the holoenzyme was not dissociated by cyclic AMP alone. The isolated catalytic subunit displays Michaelis-Menten behaviour towards kemptide, protamine and histone and is inhibited by sulfhydryl reagents, indicating that the molecule has at least one cysteine residue essential for enzyme activity. The catalytic activity of the isolated C subunit is inactivated by the mammalian protein kinase inhibitor, and is inhibited by the regulatory subunit from homologous and heterologous sources. In general, the properties of the catalytic subunit suggest a structural similarity between Mucor and mammalian C subunits.Abbreviations C catalytic subunit monomer of protein kinase - R regulatory subunit monomer of protein kinase - 8-N3-cyclic AMP 8-azido-cylic AMP - SDS sodium dodecyl sulfate - Pipes piperazine-N,N-bis(2-ethanesulfonic acid) See AcknowledgementsCareer Investigators from the CONICET  相似文献   

2.
A protein fraction of molecular weight 33,000-36,000 accounted for about 40% of the cyclic AMP binding capacity of the cytoplasmic extract of human tonsillar lymphocytes. This cyclic AMP binding fraction (designated as R' protein [10]) proved to be a proteolytic fragment of the regulatory subunit of the cyclic AMP-dependent protein kinase. The Scatchard plot of cyclic AMP binding by the isolated R' fraction indicated positive cooperativity. 50% saturation of the cyclic AMP binding sites was achieved at about 4 . 10(-9) M cyclic AMP. An upward concave curve was obtained in the Scatchard plot of cyclic GMP binding by the R' protein. These results strongly suggest that more than one molecule of cyclic nucleotide can be bound by one molecule of the R' protein. The R' protein could not be detected in the physiological salt extract of isolated nuclei in which type I cyclic AMP-dependent protein kinase was the dominating isoenzyme (according to the terminology used by Corbin, S.D., Keely, S.L. and Park, C.R. (1975) J. Biol. Chem. 250, 218-225). The cytoplasm of cells contained a higher amount of type II than type I regulatory subunit. In the cytoplasm the predominant part of RII was present in the dissociated state in all preparations, while when the RII was found in the nucleus it was mainly in the holoenzyme form. The R' protein presumably from the dissociated type II regulatory subunit.  相似文献   

3.
Two 8.5-S protein kinases (ATP : protein phosphotransferase EC 2.7.1.37) and one 6.6-S protein kinase were purified 500--1000-fold from the acid-soluble fraction of brown adipose tissue. The catalytic properties of the kinases were similar. Each kinase was activated by cyclic AMP and had two components of cyclic AMP binding. In the presence of 200 nM cyclic AMP, undissociated kinase activity sedimented at 7.7 or 5.5 S. Free catalytic activity (3.2 S) could be detected but was unstable. Free regulatory units could not be detected. The 8.5-S protein kinase was dissociated by freezing and thawing to a 7.7-S variety with loss of the higher affinity component of binding. The 7.7-S kinase was sedimented through linear gradients of sucrose containing different concentrations of cyclic AMP. At each concentration, kinase activity lost from the holoenzyme peak (% of original) was identical with the amount of cyclic AMP bound at equilibrium (% oof maximum). Similar experiments on the 8.5-S kinase showed that the binding component with higher affinity was not associated with the release of catalytic activity. The results were consistent with the propostal that the kinases isolated contained one more cyclic AMP binding subunit than catalytic subunit (3 : 2 for 8.5 S and 2 : 1 for 6.6 S) and that this extra subunit was released to give an equal number of subunits of each type before catalytic activity was liberated.  相似文献   

4.
Adenosine 3':5' -monophosphate (cyclic AMP) -dependent protein kinase from bovine heart muscle catalyzes the phosphorylation of its regulatory, cyclic AMP-binding subunit. Phosphorylation enhances net dissociation of the enzyme by cyclic AMP. Chromatography on omega-aminohexyl-agarose was used to study the effects of phosphorylation on cyclic AMP binding and subunit dissociation and reassociation. This method permitted rapid separation of the catalytic subunit from the cyclic AMP -binding protein and holoenzyme. Phospho- and dephosphoprotein kinases were found to dissociate to the same extent at any given concentration of cyclic AMP and completely at saturation. At equilibrium, the amount of cyclic AMP bound was the same for both forms of enzyme and was directly proportional to the degree of dissociation of the holoenzyme. In the absence of cyclic AMP, phospho- and dephospho-cyclic AMP-binding proteins reassociated completely with the catalytic subunit. However, the rate of reassociation of the dephospho-cyclic AMP-binding protein was at least 5 times greater than the phospho-cyclic AMP-binding protein. Retardation of reassociation was directly proportional to the extent of phosphorylation. We conclude that the degree to which the cyclic AMP-binding protein is phosphorylated markedly affects its intrinsic ability to combine with the catalytic subunit to regenerate the inactive cyclic nucleotide-dependent kinase and that the state of phosphorylation of this subunit may be important in detemining the proportion of dissociated (active) and reassociated (inactive) protein kinase at any given time.  相似文献   

5.
Previous kinetic studies have demonstrated that the activation of cyclic AMP-dependent protein kinase by cyclic AMP involves the formation of a ternary complex of cyclic AMP, the regulatory subunit (R) and the catalytic subunit (C). It is suggested that only this ternary complex breaks down to liberate the enzymically active catalytic subunit. We have performed cross-linking experiments with the holoenzyme and its dissimilar subunits in the presence of MgATP and various concentrations of cyclic AMP. Results from these cross-linking studies indicate that regulatory subunits exist as dimers in the native form. Moreover, dissociation of the holoenzyme or the reconstituted enzyme is promoted by cyclic AMP, and the effect of MgATP is to stabilize the enzyme in the tetrameric form. The success in cross-linking the regulatory and the catalytic subunits of protein kinase with the lysine-specific bifunctional cross-linking reagent dimethyl suberimidate may be attributed to the presence of a large number of lysine residues in the enzyme.  相似文献   

6.
Autophosphorylation of cyclic AMP-dependent protein kinase (ATP: protein phosphotransferase, EC 2.7.1.37) was shown to occur via an intramolecular mechanism: the regulatory subunit undergoes phosphorylation only within the holoenzyme. The phospho form of the catalytic subunit has the capacity to phosphorylate the regulatory subunit. The phosphotransferase reaction and the reaction of autophosphorylation were found to proceed with the involvement of the same active site. The activation constant of phospho- and dephosphoprotein kinase under the influence of cyclic AMP and the dissociation constant of the cyclic AMP complex with phospho- and dephospho forms of the holoenzyme were estimated. Autophosphorylation was demonstrated to lead to almost complete dissociation of the holoenzyme under the influence of cyclic AMP. Circular dichroism spectra of the phosphorylated and non-phosphorylated forms of protein kinase were studied. The relative content of the secondary structure elements in proteins was estimated and conformational changes were detected in the enzyme upon its interaction with cycli AMP. The anti-conformation of the cyclic nucleotide fixed in the complex with the phospho form of the regulatory subunit is suggested.  相似文献   

7.
Five peaks of cyclic AMP-binding activity could be resolved by DEAE-cellulose chromatography of bovine adrenal-cortex cytosol. Two of the binding peaks co-chromatographed with the catalytic activities of cyclic AMP-dependent protein kinases (ATP-protein phosphotransferase, EC 2.7.1.37) of type I or type II respectively. A third binding protein was eluted between the two kinases, and appeared to be the free regulatory moiety of protein kinase I. Two of the binding proteins for cyclic AMP, sedimenting at 9S in sucrose gradients, could also bind adenosine. They bound cyclic AMP with an apparent equilibrium dissociation constant (K(d)) of about 0.1mum, and showed an increased binding capacity for cyclic AMP after preincubation in the presence of K(+), Mg(2+) and ATP. The two binding proteins differed in their apparent affinities for adenosine. The isolated regulatory moiety of protein kinase I had a very high affinity for cyclic AMP (K(d)<0.1nm). At low ionic strength or in the presence of MgATP, the high-affinity binding of cyclic AMP to the regulatory subunit of protein kinase I was decreased by the catalytic subunit. At high ionic strength and in the absence of MgATP the high-affinity binding to the regulatory subunit was not affected by the presence of catalytic subunit. Under all experimental conditions tested, dissociation of protein kinase I was accompanied by an increased affinity for cyclic AMP. To gain some insight into the mechanism by which cyclic AMP activates protein kinase, the interaction between basic proteins, salt and the cyclic nucleotide in activating the kinase was studied.  相似文献   

8.
Some properties of cyclic AMP-dependent pig brain protein kinase were studied. The holoenzyme was shown to exist in solution in the form of a tetramer complex R2C2 with mol. weight of 180 000. The limited proteolysis of the regulatory subunit caused the formation of a fragment with mol. weight of 35 000, capable of independent binding of 3H-cyclic AMP and containing a site, which can be phosphorylated in the autophosphorylation reaction. Autophosphorylation of the holoenzyme led to an increase in the degree of dissociation of the former into individual subunits under the effect of cyclic AMP. The ability of the phosphoform of the catalytic subunit was demonstrated. The autophosphorylation process and the phosphotransferase reaction involve the same active site of the catalytic subunit.  相似文献   

9.
Autophosphorylation of cyclic AMP-dependent pig brain protein kinase has been detected. Up to 1,5 moles of gamma-32P are transferred from [gamma-32P]ATP to the dimer of the regulatory subunit. The autophosphorylation reaction is Mg2+-dependent and occurs at a high rate: more than 50% of the radioactive label is incorporated during the first minute of incubation at 30 degrees. The pH dependence of this reaction differs from that of the phosphotransferase reaction. The phosphoholoenzyme is more sensitive to cyclic AMP than the dephosphoholoenzyme; however, both forms bind up to 2 moles of 3H-cyclic AMP per 1 mole of the holoenzyme. The activation and dissociation constants for both forms of the holoenzyme have been calculated. The autophosphorylation reaction has been shown to occur via an intramolecular mechanism; the phosphorylation of the regulatory subunit can occur only within the holoenzyme. The increase in the concentration of cyclic AMP causes the latter to produce an inhibitory effect on autophosphorylation. The regulatory action of autophosphorylation on cyclic AMP-dependent protein kinases is discussed.  相似文献   

10.
The ability of cyclic AMP to inhibit growth, cause cytolysis and induce synthesis of cyclic AMP-phosphodiesterase in S49.1 mouse lymphoma cells is deficient in cells selected on the basis of their resistance to killing by 2 mM dibutyryl cyclic AMP. The properties of the cyclic AMP-dependent protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37) in the cyclic AMP-sensitive (S) and cyclic AMP-resistant (R) lymphoma cells were comparatively studied. The cyclic AMP-dependent protein kinase activity or R cells cytosol exhibits an apparent Ka for activation by cyclic AMP 100-fold greater than that of the enzyme from the parental S cells. The free regulatory and catalytic subunits from both S and R kinase are thermolabile, when associated in the holoenzyme the two subunits are more stable to heat inactivation in R kinase than in S kinase. The increased heat stability of R kinase is observed however only for the enzyme in which the catalytic and cyclic AMP-binding activities are expressed at high cyclic AMP concentrations (10(-5)--10(-4) M), the activities expressed at low cyclic AMP concentrations (10(-9)--10(-6) M) being thermolabile. The regulatory subunit of S kinase can be stabilized against heat inactivation by cyclic AMP binding both at 2-10(-7) and 10(-5) M cyclic AMP concentrations. In contrast, the regulatory subunit-cyclic AMP complex from R kinase is stable to heat inactivation only when formed in the presence of high cyclic AMP concentrations (10(-5)M). The findings indicate that the transition from a cyclic AMP-sensitive to a cyclic AMP-resistant lymphoma cell phenotype is related to a structural alteration in the regulatory subunit of the cyclic AMP-dependent protein kinase which has affected the protein's affinity for cyclic AMP and its interaction with the catalytic subunit.  相似文献   

11.
Two distinct populations of binding sites for cyclic AMP are associated with the regulatory moity of cyclic AMP dependent protein kinase (E.C. 2.7.1.37), as judged from the kinetics of the interaction between the nucleotide and the binding protein. The two types of sites were present at the proportion 1:1. The rate of dissociation of bound cyclic AMP was more rapid for one type of site than for the other type. High ionic strength accentuated the difference in the rate of dissociation of cyclic AMP from the two sites.The two binding sites and protein kinase activity copurified during the entire procedure for preparation of protein kinase holoenzyme. The kinetic properties of each of the two sites and the proportion between them was the same in a highly purified preparation of the regulatory moiety of protein kinase and in binding protein freshly prepared in the presence of protease-inhibitor.  相似文献   

12.
Homogeneous preparations of adenosine 3':5'-monophosphate (cyclic AMP)-dependent protein kinase from rabbit skeletal (Peak I) and bovine heart muscle have been compared. Each enzyme has an S20,w value of 7.0. Each enzyme binds 2 mol of cyclic AMP per mol of enzyme and is dissociated in the presence of saturating concentrations of cyclic AMP into a demeric regulatory subunit-cyclic AMP complex and two catalytic subunits. The isolated subunits recombine, resulting in the formation of the original holoenzyme in each case. Several differences between the two enzymes were found. Different salt concentrations are necessary for elution of the respective enzyme from DEAE-cellulose. Their regulatory subunits differ with respect to their sedimentation constants and mobility on sodium dodecyl sulfate gel electrophoresis. The regulatory subunit of the heart enzyme is rapidly phosphorylated by MgATP but this does not occur with the skeletal muscle enzyme. MgATP is bound with high affinity only to the skeletal muscle enzyme. The enzymes have different apparent dissociation constants and Hill coefficients for cyclic AMP binding. With the skeletal muscle enzyme MgATP increases the dissociation constants for cyclic AMP about 10-fold and decreases the Hill coefficient, while with the heart enzyme phosphorylation decreases the cissociation constant for cyclic AMP 5- to 6-fold and increases the Hill coefficient. Different concentrations of cyclic AMP are required to dissociate the skeletal and heart muscle enzymes. The presence of MgATP increases the concentration of cyclic AMP required to dissociate the skeletal muscle enzyme but decreases the concentration necessary to dissociate the heart enzyme.  相似文献   

13.
Extracts obtained from rat hepatocytes incubated with saline, glucagon or insulin were electrophoresed on polyacrylamide gels and then assayed for cyclic (3H)AMP binding capacity. Analysis of the binding patterns demonstrated that glucagon dissociated a holoenzyme of cyclic AMP-dependent protein kinase in a dose-dependent manner. The increase in free regulatory subunits and, hence, in free catalytic subunits explains the activation of this enzyme by glucagon in the liver. Insulin decreased both the amount of cyclic (3H)AMP bound to the holoenzyme and the capacity of the enzyme to be dissociated when the extracts were incubated with increasing concentrations of this cyclic nucleotide. We propose that these insulin-induced effects are determined by an inhibition of the cyclic AMP binding capacity of this protein kinase. This mechanism could account for the inactivation of cyclic AMP-dependent protein kinase that insulin causes in the liver.Abbreviations cAMP (cyclic AMP), Adenosine 3,5 monophosphate - (3H)cAMP cyclic (3H)AMP - MIX 1-methyl-3-isobutylxanthine  相似文献   

14.
During the purification of cyclic AMP binding proteins from rat liver, some smaller active fragments were obtained, possibly as the result of proteolysis. The binding proteins detected had approximate molecular weights of 50,000, 36,000, and 10,000. Each of these components bound cyclic [3H]AMP with high affinity (apparent dissociation constants ranging from 2 to 10 nM) and had a similar ability to inhibit the purified catalytic subunit of rat liver protein kinase. Cyclic AMP prevented this inhibition in each instance. These results suggest that the binding site for cyclic AMP and the site for interacting with catalytic subunit occur relatively close to one another on the regulatory subunit and can remain functional when a substantial fraction of the subunit is lost.  相似文献   

15.
1. At least two classes of high-affinity cyclic AMP-binding proteins have been identified: those derived from cyclic AMP-dependent protein kinases (regulatory subunits) and those that bind a wide range of adenine analogues (adenine analogue-binding proteins). 2. In fresh-tissue extracts, regulatory subunits could be further subdivided into 'type I or 'type II' depending on whether they were derived from 'type I' or 'type II' protein kinase [see Corbin et al. (1975) J. Biol. Chem. 250, 218-225]. 3. The adenine analogue-binding protein was detected in crude tissue supernatant fractions of bovine and rat liver. It differed from the regulatory subunit of cyclic AMP-dependent protein kinase in many of its properties. Under the conditions of assay used, the protein accounted for about 45% of the binding of cyclic AMP to bovine liver supernatants. 4. The adenine analogue-binding protein from bovine liver was partially purified by DEAE-cellulose and Sepharose 6B chromatography. It had mol.wt. 185000 and was trypsin-sensitive. As shown by competition and direct binding experiments, it bound adenosine and AMP in addition to cyclic AMP. At intracellular concentrations of adenine nucleotides, binding of cyclic AMP was essentially completely inhibited in vitro. Adenosine binding was inhibited by only 30% under similar conditions. 5. Rat tissues were examined for the presence of the adenine analogue-binding protein, and, of those examined (adipose tissue, heart, brain, testis, kidney and liver), significant amounts were only found in the liver. The possible physiological role of the adenine analogue-binding protein is discussed. 6. Because the adenine analogue-binding protein or other cyclic AMP-binding proteins in tissues may be products of partial proteolysis of the regulatory subunit of cyclic AMP-dependent protein kinase, the effects of trypsin and aging on partially purified protein kinase and its regulatory subunit from bovine liver were investigated. In all studies, the effects of trypsin and aging were similar. 7. In fresh preparations, the cyclic AMP-dependent protein kinase had mol.wt. 150000. Trypsin treatment converted it into a form of mol.wt 79500. 8. The regulatory subunit of the protein kinase had mol.wt. 87000. It would reassociate with and inhibit the catalytic subunit of the enzyme. Trypsin treatment of the regulatory subunit produced a species of mol.wt. 35500 which bound cyclic AMP but did not reassociate with the catalytic subunit. Trypsin treatment of the protein kinase and dissociation of the product by cyclic AMP produced a regulatory subunit of mol.wt. 46500 which reassociated with the catalytic subunit. 9. These results may be explained by at least two trypsin-sensitive sites on the regulatory subunit. A model for the effects of trypsin is described.  相似文献   

16.
Summary Ustilago maydis was surveyed for cyclic AMP-dependent protein kinase activity. Using a combination of ion-exchange and molecular filtration techniques, we demonstrate that there is only one form of cyclic AMP-dependent protein kinase in the cytosolic fraction of the fungus. The kinase activity is specifically activated by cyclic AMP and utilizes protamine and kemptide as substrates. Most, if not all, of the cyclic AMP binding detected in the soluble fraction is associated with the protein kinase activity. Cyclic AMP-dependent protein kinase is completely dissociated by cyclic AMP into catalytic and regulatory subunits having an apparent molecular weight of 35 000 daltons as judged by sucrose gradient centrifugation.Post graduate fellow from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina).Career investigator from CONICET.  相似文献   

17.
Adenosine 3':5'-monophosphate (cyclic AMP), a mediator of hormone action in a variety of tissues, has been measured in its free and bound forms in intact cardiac tissue. We have used a rapid high dilution technique which involves tissue homogenization, subcellular fractionation, and separation of bound from free cyclic AMP by Millopore filtration. The precision of this method is dependent upon minimization of binding and dissociation of cyclic AMP that occur during the preparation and handling of tissue homogenates. In each experiment, a tracer of cyclic [3H]AMP prebound to isolated cardiac binding protein was freed of unbound cyclic [3H]AMP by Sephadex gel filtration and added to the tissue just prior to homogenization in cold EDTA buffer. This tracer was therefore treated identically to the sample through all subsequent dilution, fractionation, and filtration procedures, and provided an acurate internal monitor for total cyclic AMP dissociation during the course of the free-bound determination. Each tissue sample was then individually corrected for dissociation. Rapid dilution to produce a 1:1000 homogenate was found to lower endogenous cyclic AMP levels sufficiently to make binding (or rebinding) during the procedure negligible (less than 5%). Spontaneously beating rat right atria (controls) contained 5.96 +/- 0.28 pmol of cyclic AMP/mg of protein (n = 19) of which 41 and 14% were bound to soluble and particulate proteins, respectively. The remaining cyclic AMP was free. Pretreatment of the tissue with 1 muM isoproterenol (30 s at 30 degrees) increased both the bound and free forms of cyclic AMP (n = 8). While free cyclic AMP increased 420% with the catecholamine, the bound forms increased 240% (soluble) and 60% (particulate). Similar results were obtained when atria (n = 6) were treated with the phosphodiesterase inhibitor, methylisobutylxanthine (0.5 mM, 10 min at 30 degrees). When both agents were used together, cyclic AMP bound to soluble proteins was elevated 4-fold over control while free cyclic AMP increased 27-fold (n = 7), indicating saturation of the soluble sites. It could be calculated that less than one-third of these sites are occupied in the unstimulated cell. These sites may represent the R subunit of cyclic AMP-dependent protein kinase. The data suggest that half-maximal binding in vivo occurs at an intracellular free cyclic AMP concentration of about 1 muM.  相似文献   

18.
Yeast NAD(+)-specific isocitrate dehydrogenase (IDH) is an allosterically regulated octameric enzyme composed of two types of homologous subunits designated IDH1 and IDH2. Based on sequence comparisons and structural models, both subunits are predicted to have adenine nucleotide binding sites. This was tested by alanine replacement of residues in putative sites in each subunit. Targets included adjacent aspartate/isoleucine residues implicated as important for determining cofactor specificity in related dehydrogenases and a residue in each IDH subunit in a position occupied by histidine in other cofactor binding sites. The primary kinetic effects of D286A/I287A and of H281A replacements in IDH2 were found to be a dramatic reduction in apparent affinity of the holoenzyme for NAD(+) and a concomitant reduction in V(max). Ligand binding assays also showed that the H281A mutant enzyme fails to bind NAD(+) under conditions that are saturating for the wild-type enzyme. In contrast, the primary effect of corresponding D279A/D280A and of R274A replacements in IDH1 is a reduction in holoenzyme binding of AMP, with concomitant alterations in kinetic and isocitrate binding properties normally associated with activation by this allosteric effector. These results suggest that the nucleotide cofactor binding site is primarily contributed by the IDH2 subunit, whereas the homologous nucleotide binding site in IDH1 has evolved for regulatory binding of AMP. These results are consistent with previous studies demonstrating that the catalytic isocitrate binding sites are comprised of residues primarily contributed by IDH2, whereas sites for regulatory binding of isocitrate are contributed by analogous residues of IDH1. In this study, we also demonstrate that a prerequisite for holoenzyme binding of NAD(+) is binding of isocitrate/Mg(2+) at the IDH2 catalytic site. This is comparable to the dependence of AMP binding upon binding of isocitrate at the IDH1 regulatory site.  相似文献   

19.
The method for determination of dissociation constants for cyclic AMP and its analogs bound to cyclic AMP-dependent protein kinase from pig brain is described. The technique for measuring the binding parameters of the ligands is based on the changes in the fluorescent spectrum of etheno cyclic AMP once it is bound to protein kinase. The dissociation constants for a number of nonfluorescent cyclic AMP analogs were determined in the competitive displacement of etheno cyclic AMP by these analogs. The number of cyclic AMP-binding sites in the pig brain protein kinase was found to be 2.2; no cooperativity was observed upon binding. The holoenzyme complex (Mr = 180,000) of the protein kinase under study was established to have the stoichiometry of R2C2 type under native conditions.  相似文献   

20.
Biospecific affinity chromatography has been used to purify specific cyclic AMP and cyclic GMP receptor proteins. Several variables are important for successful purification of the cyclic AMP receptor protein, the most critical being the length of the aliphatic spacer side arm. 8-(2-Aminoethyl)-amino-cyclic AMP coupled to the aliphatic spacer side arm. 8-(2-Aminoethyl)-amino-cyclic AMP coupled to agarose specifically retains the cyclic AMP receptor protein by interaction with the immobilized nucleotide. Binding of the cyclic AMP receptor subunit of cyclic AMP-dependent protein kinase to the immobilized nucleotide results in dissociation of the catalytic protein phosphokinase subunit which is not retained. The retained cyclic AMP receptor protein is subsequently eluted by cyclic AMP. Homogeneous cyclic AMP receptor protein prepared from rabbit skeletal muscle by affinity chromatography has been characterized. The molecular weight of the native protein as determined by analytical ultracentrifugation and polyacrylamide gel electrophoresis at varying acrylamide concentrations is 76 800 and 82 000, respectively. The protein is asymmetric with frictional and axial ratios of 1.64 and 12. SDS and urea polyacrylamide gel electrophoresis indicate that the native cyclic AMP receptor is composed of two identical subunits of 42 700 molecular weight. The native protein dimer binds 2 moles of cyclic AMP per mole of protein and is active in suppressing activity of isolated catalytic subunits of cyclic AMP-dependent protein kinase. Cyclic GMP receptor protein from bovine lung has been purified using the same affinity chromatography media. Since cyclic nucleotide binding to cyclic GMP-dependent protein kinase does not result in dissociation of regulatory receptor and catalytic phosphotransferase subunits, the cyclic GMP-dependent protein kinase holoenzyme is retained on the column and can be subsequently specifically eluted with cyclic GMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号