首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An inverse relation exists between intake of flavonoid-rich foods, such as cocoa, and cardiovascular-related mortality. Favorable effects of flavonoids on the endothelium may underlie these associations. We performed a randomized, double-blind, placebo-controlled study to test the hypothesis that acute cocoa ingestion dose dependently increases endothelium-dependent vasodilation, as measured by an increase in brachial artery flow-mediated dilation (FMD), in healthy older adults. Measurements were obtained before (preingestion) and after (1- and 2-h postingestion) ingestion of 0 (placebo), 2, 5, 13, and 26 g of cocoa in 23 adults (63 ± 2 yr old, mean ± SE). Changes in brachial artery FMD 1- and 2-h postingestion compared with preingestion were used to determine the effects of cocoa. FMD was unchanged 1 (Δ-0.3 ± 0.2%)- and 2-h (Δ0.1 ± 0.1%) after placebo (0 g cocoa). In contrast, FMD increased both 1-h postingestion (2 g cocoa Δ0.0 ± 0.2%, 5 g cocoa Δ0.8 ± 0.3%, 13 g cocoa Δ1.0 ± 0.3%, and 26 g cocoa Δ1.6 ± 0.3%: P < 0.05 compared with placebo for 5, 13, and 26 g cocoa) and 2-h postingestion (2 g cocoa Δ0.5 ± 0.3%, 5 g cocoa Δ1.0 ± 0.3%, 13 g cocoa Δ1.4 ± 0.2%, and 26 g cocoa Δ2.5 ± 0.4%: P < 0.05 compared with placebo for 5, 13, and 26 g cocoa) on the other study days. A serum marker of cocoa ingestion (total epicatechin) correlated with increased FMD 1- and 2-h postingestion (r = 0.44-0.48; both P < 0.05). Collectively, these results indicate that acute cocoa ingestion dose dependently increases brachial artery FMD in healthy older humans. These responses may help to explain associations between flavonoid intake and cardiovascular-related mortality in humans.  相似文献   

2.
Fruits and vegetables have historically been considered rich sources of essential dietary micronutrients, soluble fiber, and antioxidants. More recently they are have been recognized as important sources for a wide array of phytochemicals that individually, or in combination, may benefit vascular health. Flavonoids are the largest, and most widely distributed class of phytochemicals, and can be further subdivided into several different sub-classes. Several epidemiology studies have observed an inverse association between flavonoid intake and risk of cardiovascular mortality. One sub-class of flavonoids, the flavanols, is found in foods such as grapes, red wine, tea, cocoa and chocolate; however, it is important to note that common food processing practices can significantly reduce the levels of these compounds found in finished food products. Recent studies have examined the potential of flavanol-rich cocoa and chocolates to influence vascular health. In this review, we discuss evidence for the hypothesis that the consumption of flavanol-rich cocoa can reduce the risk for cardiovascular disease through a multiplicity of mechanisms, including changes in oxidant defense mechanisms, vascular reactivity, cytokine production, and platelet function. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Epidemiologic studies suggest an inverse association of tea consumption with cardiovascular disease. The antioxidant effects of flavonoids in tea (including preventing oxidative damage to LDL) are among the potential mechanisms that could underlie the protective effects. Other possible mechanisms include attenuating the inflammatory process in atherosclerosis, reducing thrombosis, promoting normal endothelial function, and blocking expression of cellular adhesion molecules. Cocoa and chocolate can also be rich sources of flavonoids. Flavanols and procyanidins isolated from cocoa exhibit strong antioxidant properties in-vitro. In acute feeding studies, flavanol-rich cocoa and chocolate increased plasma antioxidant capacity and reduced platelet reactivity. Based on limited data, approximately 150 mg of flavonoids is needed to trigger a rapid antioxidant effect and changes in prostacyclin. Some dose-response evidence demonstrates an antioxidant effect with approximately 500 mg flavonoids. Brewed tea typically contains approximately 172 mg total flavonoids per 235 ml (brewed for 2 min); hence, consumption of 1 and 3.5 cups of tea would be expected to elicit acute and chronic physiologic effects, respectively. Chocolate is more variable with some products containing essentially no flavonoids (0.09 mg procyanidin/g), whereas others are high in flavonoids (4 mg procyanidin/g). Thus, approximate estimates of flavonoid rich chocolate needed to exert acute and chronic effects are 38 and 125 g, respectively. Collectively, the antioxidant effects of flavonoid-rich foods may reduce cardiovascular disease risk.  相似文献   

4.
Dietary intervention studies have shown that flavanols and inorganic nitrate can improve vascular function, suggesting that these two bioactives may be responsible for beneficial health effects of diets rich in fruits and vegetables. We aimed to study interactions between cocoa flavanols (CF) and nitrate, focusing on absorption, bioavailability, excretion, and efficacy to increase endothelial function. In a double-blind randomized, dose–response crossover study, flow-mediated dilation (FMD) was measured in 15 healthy subjects before and at 1, 2, 3, and 4 h after consumption of CF (1.4–10.9 mg/kg bw) or nitrate (0.1–10 mg/kg bw). To study flavanol–nitrate interactions, an additional intervention trial was performed with nitrate and CF taken in sequence at low and high amounts. FMD was measured before (0 h) and at 1 h after ingestion of nitrate (3 or 8.5 mg/kg bw) or water. Then subjects received a CF drink (2.7 or 10.9 mg/kg bw) or a micro- and macronutrient-matched CF-free drink. FMD was measured at 1, 2, and 4 h thereafter. Blood and urine samples were collected and assessed for CF and nitric oxide (NO) metabolites with HPLC and gas-phase reductive chemiluminescence. Finally, intragastric formation of NO after CF and nitrate consumption was investigated. Both CF and nitrate induced similar intake-dependent increases in FMD. Maximal values were achieved at 1 h postingestion and gradually decreased to reach baseline values at 4 h. These effects were additive at low intake levels, whereas CF did not further increase FMD after high nitrate intake. Nitrate did not affect flavanol absorption, bioavailability, or excretion, but CF enhanced nitrate-related gastric NO formation and attenuated the increase in plasma nitrite after nitrate intake. Both flavanols and inorganic nitrate can improve endothelial function in healthy subjects at intake amounts that are achievable with a normal diet. Even low dietary intake of these bioactives may exert relevant effects on endothelial function when ingested together.  相似文献   

5.
Flavanols, or flavan-3-ols, are a family of bioactive compounds present in cocoa, red wine, green tea, red grapes, berries and apples. With a basic monomer unit of (−)-epicatechin or (+)-catechin, flavanols can be present in foods and beverages as monomers or oligomers (procyanidins). Most, but not all, procyanidins are degraded into monomer or dimer units prior to absorption. The bioavailability of flavanols can be influenced by multiple factors, including food processing, cooking, digestion, and biotransformation. Flavanols are potent antioxidants, scavenging free radicals in vitro and in vivo. While some of the actions of flavanols can be linked to antioxidant activities, other modes of action may also occur, including modulation of intracellular signaling, effects on membrane fluidity and regulation of cytokine release or action. Physiologically, flavanol-rich foods and beverages can affect platelet aggregation, vascular inflammation, endothelial nitric oxide metabolism, and may confer protective effects against neurodegeneration. Epidemiological data suggests that intake of cocoa, a rich source of flavanols, is inversely associated with 15-year cardiovascular and all-cause mortality in older males. (−)-Epicatechin and its metabolite, epicatechin-7-O-glucuronide, have been identified as independent predictors of some of the vascular effects associated with the consumption of a flavanol-rich beverage. Targeted dietary components and nutrition supplements that can influence the vascular system will be of great value in the prevention and treatment of chronic disease.  相似文献   

6.
There is recent epidemiological evidence that chocolate consumption may improve vascular health. Furthermore, several small-scale human intervention studies indicate that habitual chocolate intake enhances the production of vasodilative nitric oxide and may lower blood pressure. It is hypothesized that potential beneficial effects of chocolate on vascular health are at least partly mediated by cocoa polyphenols including procyanidins. Based on cell culture studies, molecular targets of chocolate polyphenols are endothelial nitric oxide synthetase as well as arginase. However, human bioavailability studies suggest that the plasma concentrations of cocoa polyphenols are manifold lower than those concentrations used in cultured cells in vitro. The experimental evidence for beneficial vascular effects of chocolate in human interventions studies is yet not fully convincing. Some human intervention studies on chocolate and its polyphenols lack a stringent study design. They are sometimes underpowered and not always placebo controlled. Dietary chocolate intake in many of these human studies was up to 100 g per day. Since chocolate is a rich source of sugar and saturated fat, it is questionable whether chocolate could be recommended as part of a nutrition strategy to promote vascular health.  相似文献   

7.
Cocoa powder, derived Theobroma cacao, is a popular food ingredient that is commonly consumed in chocolate. Epidemiological and human intervention studies have reported that chocolate consumption is associated with reduced risk of cardiometabolic diseases. Laboratory studies have reported the dietary supplementation with cocoa or cocoa polyphenols can improve obesity and obesity-related comorbidities in preclinical models. Non-alcoholic fatty liver disease (NAFLD), one such comorbidity, is a risk factor for cirrhosis and hepatocellular carcinoma. Limited studies have examined the effect of cocoa/chocolate on NAFLD and underlying hepatoprotective mechanisms. Here, we examined the hepatoprotective effects of dietary supplementation with 80 mg/g cocoa powder for 10 wks in high fat (HF)-fed obese male C57BL/6J mice. We found that cocoa-supplemented mice had lower rate of body weight gain (22%), hepatic triacylglycerols (28%), lipid peroxides (57%), and mitochondrial DNA damage (75%) than HF-fed controls. These changes were associated with higher hepatic superoxide dismutase and glutathione peroxidase enzyme activity and increased expression of markers of hepatic mitochondrial biogenesis. We also found that the hepatic protein expression of sirtuin 3 (SIRT3), and mRNA expression of peroxisome proliferator activated receptor g coactivator (PGC) 1a, nuclear respiratory factor 1, and forkhead box O3 were higher in cocoa-treated mice compared to HF-fed controls. These factors play a role in coordinating mitochondrial biogenesis and expression of mitochondrial antioxidant response factors. Our results indicate that cocoa supplementation can mitigate the severity of NAFLD in obese mice and that these effects are related to SIRT3/PGC1a-mediated increases in antioxidant response and mitochondrial biogenesis.  相似文献   

8.
Cardiovascular disease (CVD) is a leading determinant of mortality and morbidity in the world. Epidemiologic studies suggest that flavonoid intake plays a role in the prevention of CVD. Consumption of cocoa products rich in flavonoids lowers blood pressure and improves endothelial function in healthy subjects as well as in subjects with vascular dysfunction such as smokers and diabetics. The vascular actions of cocoa follow the stimulation of nitric oxide (NO). These actions can be reproduced by the administration of the cocoa flavanol (-)-epicatechin (EPI). Previously, using human endothelial cells cultured in calcium-free media, we documented EPI effects on eNOS independently of its translocation from the plasmalemma. To further define the mechanisms behind EPI-eNOS activation in Ca2+ -deprived endothelial cells, we evaluated the effects of EPI on the eNOS/AKT/HSP90 signaling pathway. Results document an EPI-induced phosphorylation/activation of eNOS, AKT, and HSP90. We also demonstrate that EPI induces a partial AKT/HSP90 migration from the cytoplasm to the caveolar membrane fraction. Immunoprecipitation assays of caveolar fractions demonstrate a physical association between HSP90, AKT, and eNOS. Thus, under Ca2+-free conditions, EPI stimulates NO synthesis via the formation of an active complex between eNOS, AKT, and HSP90.  相似文献   

9.
Fish oil is recommended for the management of hypertriglyceridemia and to prevent secondary cardiovascular disorders. Fish oil is a major source of ω-3-polyunsaturated fatty acids (PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Clinical studies suggest that fish oil not only prevents the incidence of detrimental cardiovascular events, but also lowers the cardiovascular mortality rate. In addition to a classic lipid-lowering action, ω-3-PUFAs in fish oil could regulate blood pressure and enhance vascular integrity and compliance. Additionally, ω-3-PUFAs have the ability to protect vascular endothelial cells by decreasing oxidative stress, halting atherosclerotic events, and preventing vascular inflammatory and adhesion cascades. Intriguingly, recent studies have demonstrated that ω-3-PUFAs improve the function of vascular endothelium by enhancing the generation and bioavailability of endothelium-derived relaxing factor (nitric oxide) through upregulation and activation of endothelial nitric oxide synthase (eNOS). This certainly opens up a new area of research identifying potential mechanisms influencing fish oil-mediated functional regulatory action on vascular endothelium. We address in this review the potential of fish oil to prevent vascular endothelial dysfunction and associated cardiovascular disorders. Moreover, the mechanisms pertaining to fish oil-mediated eNOS activation and nitric oxide generation in improving endothelial function are delineated. We finally suggest the importance of further studies to determine the dose adjustment of fish oil with an optimal ratio of EPA and DHA for achieving consistent cardiovascular protection.  相似文献   

10.
The consumption of cacao-derived (i.e., cocoa) products provides beneficial cardiovascular effects in healthy subjects as well as individuals with endothelial dysfunction such as smokers, diabetics, and postmenopausal women. The vascular actions of cocoa are related to enhanced nitric oxide (NO) production. These actions can be reproduced by the administration of the cacao flavanol (-)-epicatechin (EPI). To further understand the mechanisms behind the vascular action of EPI, we investigated the effects of Ca(2+) depletion on endothelial nitric oxide (NO) synthase (eNOS) activation/phosphorylation and translocation. Human coronary artery endothelial cells were treated with EPI or with bradykinin (BK), a well-known Ca(2+)-dependent eNOS activator. Results demonstrate that both EPI and BK induce increases in intracellular calcium and NO levels. However, under Ca(2+)-free conditions, EPI (but not BK) is still capable of inducing NO production through eNOS phosphorylation at serine 615, 633, and 1177. Interestingly, EPI-induced translocation of eNOS from the plasmalemma was abolished upon Ca(2+) depletion. Thus, under Ca(2+)-free conditions, EPI can stimulate NO synthesis independent of calmodulin binding to eNOS and of its translocation into the cytoplasm. We also examined the effect of EPI on the NO/cGMP/vasodilator-stimulated phosphoprotein (VASP) pathway activation in isolated Ca(2+)-deprived canine mesenteric arteries. Results demonstrate that under these conditions, EPI induces the activation of this vasorelaxation-related pathway and that this effect is inhibited by pretreatment with nitro-L-arginine methyl ester, suggesting a functional relevance for this phenomenon.  相似文献   

11.
The quest to develop a performant starter culture mixture to be applied in cocoa fermentation processes started in the 20th century, aiming at achieving high-quality, reproducible chocolates with improved organoleptic properties. Since then, different yeasts have been proposed as candidate starter cultures, as this microbial group plays a key role during fermentation of the cocoa pulp-bean mass. Yeast starter culture-initiated fermentation trials have been performed worldwide through the equatorial zone and the effects of yeast inoculation have been analysed as a function of the cocoa variety (Forastero, Trinitario and hybrids) and fermentation method (farm-, small- and micro-scale) through the application of physicochemical, microbiological and chemical techniques. A thorough screening of candidate yeast starter culture strains is sometimes done to obtain the best performing strains to steer the cocoa fermentation process and/or to enhance specific features, such as pectinolysis, ethanol production, citrate assimilation and flavour production. Besides their effects during cocoa fermentation, a significant influence of the starter culture mixture applied is often found on the cocoa liquors and/or chocolates produced thereof. Thus, starter culture-initiated cocoa fermentation processes constitute a suitable strategy to elaborate improved flavourful chocolate products.  相似文献   

12.
Resistance arteries are the site of the earliest manifestations of many cardiovascular and metabolic diseases. Flow (shear stress) is the main physiological stimulus for the endothelium through the activation of vasodilatory pathways generating flow-mediated dilation (FMD). The role of FMD in local blood flow control and angiogenesis is well established, and alterations in FMD are early markers of cardiovascular disorders. alpha(1)-Integrin, which has a role in angiogenesis, could be involved in FMD. FMD was studied in mesenteric resistance arteries (MRA) isolated in arteriographs. The role of alpha(1)-integrins in FMD was tested with selective antibodies and mice lacking the gene encoding for alpha(1)-integrins. Both anti-alpha(1) blocking antibodies and genetic deficiency in alpha(1)-integrin in mice (alpha(1)(-/-)) inhibited FMD without affecting receptor-mediated (acetylcholine) endothelium-dependent dilation or endothelium-independent dilation (sodium nitroprusside). Similarly, vasoconstrictor tone (myogenic tone and phenylephrine-induced contraction) was not affected. In MRA phosphorylated Akt and phosphatidylinositol 3-kinase (PI3-kinase) were significantly lower in alpha(1)(-/-) mice than in alpha(1)(+/+) mice, although total Akt and endothelial nitric oxide synthase (eNOS) were not affected. Pharmacological blockade of PI3-kinase-Akt pathway with LY-294002 inhibited FMD. This inhibitory effect of LY-294002 was significantly lower in alpha(1)(-/-) mice than in alpha(1)(+/+) mice. Thus alpha(1)-integrin has a key role in flow (shear stress)-dependent vasodilation in resistance arteries by transmitting the signal to eNOS through activation of PI3-kinase and Akt. Because of the central role of flow (shear stress) activation of the endothelium in vascular disorders, this finding opens new perspectives in the pathophysiology of the microcirculation and provides new therapeutic targets.  相似文献   

13.
Epigallocatechin gallate (EGCG), the major polyphenol in green tea, acutely stimulates production of nitric oxide (NO) from vascular endothelium to reduce hypertension and improve endothelial dysfunction in spontaneously hypertensive rats. Herein, we explored additional mechanisms whereby EGCG may mediate beneficial cardiovascular actions. When compared with vehicle-treated controls, EGCG treatment (2.5 μM, 8 h) of human aortic endothelial cells (HAEC) caused a ~three-fold increase in heme oxygenase-1 (HO-1) mRNA and protein with comparable increases in HO-1 activity. This was unaffected by pretreatment of cells with wortmannin, LY294002, PD98059 or L-NAME (PI 3-kinase, MEK and NO synthase inhibitors, respectively). Pretreatment of HAEC with SB203580 (p38 MAPK inhibitor) or siRNA knockdown of p38 MAPK completely blocked EGCG-stimulated induction of HO-1. EGCG treatment also inhibited tumor-necrosis-factor-α-stimulated expression of vascular cell adhesion molecule (VCAM)-1 and decreased adhesion of monocytes to HAEC. siRNA knockdown of HO-1, p38 MAPK or Nrf-2 blocked these inhibitory actions of EGCG. In HAEC transiently transfected with a human HO-1 promoter luciferase reporter (or an isolated Nrf-2 responsive region), luciferase activity increased in response to EGCG. This was inhibitable by SB203580 pretreatment. EGCG-stimulated expression of HO-1 and Nrf-2 was blocked by siRNA knockdown of Nrf-2 or p38 MAPK. Finally, liver from mice chronically treated with EGCG had increased HO-1 and decreased VCAM-1 expression. Thus, in vascular endothelium, EGCG requires p38 MAPK to increase expression of Nrf-2 that drives expression of HO-1, resulting in increased HO-1 activity. Increased HO-1 expression may underlie anti-inflammatory actions of EGCG in vascular endothelium that may help mediate beneficial cardiovascular actions of green tea.  相似文献   

14.
15.
The vascular endothelium plays a key role in arterial wall homeostasis by preventing atherosclerotic plaque formation. A primary causal factor of endothelial dysfunction is the reactive oxygen species. Aerobic exercise is ascribed as an important adjuvant therapy in endothelium‐dependent cardiovascular disease. However, little is known about the effects of concurrent (aerobic + strength) training on that. For a comparison of the effects of aerobic and concurrent physical training on endothelial function, oxidative stress parameters and the immunoinflammatory activity of monocytes/macrophages, 20 adult male volunteers of middle age were divided into a concurrent training (CT) programme group and an aerobic training group. The glutathione disulphide to glutathione ratio (GSSG/GSH) and plasma lipoperoxide (LPO) levels, as well as flow‐mediated dilation (FMD), monocyte/macrophage functional activity (zymosan phagocytosis), body lipid profiles, aerobic capacity (maximal oxygen uptake) and strength parameters (one‐repetition maximum test), were measured before and after the exercise training programmes. The CT exhibited reduced acute effects of exercise on the GSSG/GSH ratio, plasma LPO levels and zymosan phagocytosis. The CT also displayed improved lipid profiles, glycaemic control, maximal oxygen uptake and one‐repetition maximum test values. In both the aerobic training and the CT, training improved the acute responses to exercise, as inferred from a decrease in the GSSG/GSH ratios. The aerobic sessions did not alter basal levels of plasma LPO or macrophage phagocytic activity but improved FMD values as well as lipid profiles and glycaemic control. In summary, both training programmes improve systemic redox status and antioxidant defences. However, the aerobic training was more efficient in improving FMD in the individuals studied. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
We evaluated the levels of (-)-epicatechin (EC) and its metabolites in plasma and urine after intake of chocolate or cocoa by male volunteers. EC metabolites were analyzed by HPLC and LC/MS after glucuronidase and/or sulfatase treatment. The maximum levels of total EC metabolites in plasma were reached 2 hours after either chocolate or cocoa intake. Sulfate, glucuronide, and sulfoglucuronide (mixture of sulfate and glucuronide) conjugates of nonmethylated EC were the main metabolites present in plasma rather than methylated forms. Urinary excretion of total EC metabolites within 24 hours after chocolate or cocoa intake was 29.8 ± 5.3% and 25.3 ± 8.1% of total EC intake. EC in chocolate and cocoa was partly absorbed and was found to be present as a component of various conjugates in plasma, and these were rapidly excreted in urine.  相似文献   

17.
Vascular endothelium plays a key role in the local regulation of vascular tone and vascular architecture by release of vasodilator and vasoconstrictor substances, as well as factors with pro-coagulant, anticoagulant, fibrinolytic, antibacterial properties, growth factors, chemokines, free radicals, etc. Release of endothelium-derived relaxing factors such as nitric oxide (NO), prostaglandins and endothelium-derived hyperpolarizing factor, as well as vasoconstricting factors such as endothelin, superoxide and thromboxanes play an influential role in the maintenance and regulation of vascular tone and the corresponding peripheral vascular resistance. Under physiological conditions, the release of anticoagulant and smooth muscle relaxing factors exceeds the release of other substances. The first part of this review presents the functions of the endothelium itself, the nature of the endothelium-derived relaxing factor, its production by NO synthases, mechanisms of its action via activation of soluble guanylyl cyclase and production of cyclic 3'-5'-guanosine monophosphate. The resulting biological effects include vasodilatation, regulation of vessel wall structure, increased regional blood perfusion, lowering of systemic blood pressure, antithrombosis and antiatherosclerosis effects, which counteract the vascular actions of endogenous vasoconstrictor substances. Impaired endothelial function, either as a consequence of reduced production/release or increased inactivation of endothelium-derived vasodilators, as well as interactions of NO with angiotensin, reactive oxygen species and oxidized lipoproteins, has detrimental functional consequences and is one of the most important cardiovascular risk factors. Therefore the second part of this review assesses the pathophysiologic impact of the endothelium in examples of cardiovascular pathologies, e.g. endotheliopathies caused by increased angiotensin production, lipid peroxidation, ischemia/reperfusion or diabetes.  相似文献   

18.
We evaluated the levels of (-)-epicatechin (EC) and its metabolites in plasma and urine after intake of chocolate or cocoa by male volunteers. EC metabolites were analyzed by HPLC and LC/MS after glucuronidase and/or sulfatase treatment. The maximum levels of total EC metabolites in plasma were reached 2 hours after either chocolate or cocoa intake. Sulfate, glucuronide, and sulfoglucuronide (mixture of sulfate and glucuronide) conjugates of nonmethylated EC were the main metabolites present in plasma rather than methylated forms. Urinary excretion of total EC metabolites within 24 hours after chocolate or cocoa intake was 29.8 ± 5.3% and 25.3 ± 8.1% of total EC intake. EC in chocolate and cocoa was partly absorbed and was found to be present as a component of various conjugates in plasma, and these were rapidly excreted in urine.  相似文献   

19.
Eighty-five samples of cocoa products sampled in Canada were analysed for ochratoxin A (OTA) and aflatoxins in 2011–2012. Inclusion of the aflatoxins in this survey required additional method development. Chocolate was extracted with methanol–water plus NaCl, while for cocoa two successive extractions with methanol and methanol–water were made. Extracts were cleaned on an AflaOchra immunoaffinity column (IAC). Determination was by reversed phase high performance liquid chromatography (HPLC). Detection of the aflatoxins was with a post-column photochemical reactor and of OTA by fluorescence detection. Mean limits of quantification (LOQ) of chocolate and cocoa powders were 0.16 ng/g (OTA) and 0.07 ng/g (aflatoxin B1), respectively. Survey results showed that the incidences of OTA above the LOQ in natural cocoa were 15/15 (mean 1.17 ng/g), 20/21 for alkalized cocoa (mean 1.06 ng/g), 9/9 for baking chocolate (mean 0.49 ng/g), 20/20 for dark chocolate (mean 0.39 ng/g), 7/10 for milk chocolate (mean 0.19 ng/g), 5/5 for cocoa liquor (mean 0.43 ng/g), and 0/5 for cocoa butter. These results confirm our previous work with OTA. In the same samples, incidences of aflatoxin B1 above the LOQ were 14/15 for natural cocoa (mean 0.86 ng/g), 20/21 for alkalized cocoa (mean 0.37 ng/g), 7/9 for baking chocolate (mean 0.22 ng/g), 16/20 for dark chocolate (mean 0.19 ng/g), 7/10 for milk chocolate (mean 0.09 ng/g), 4/5 for cocoa liquor (mean 0.43 ng/g), and 0/5 for cocoa butter. Both aflatoxins and OTA were confirmed by HPLC-MS/MS when OTA or aflatoxin levels found were above 2 ng/g in cocoa.  相似文献   

20.
Studies over the last decade have provided exciting new insights into potential mechanisms underlying the pathogenesis of preeclampsia. The initiating event in preeclampsia is generally regarded to be placental ischemia/hypoxia, which in turn results in the elaboration of a variety of factors from the placenta that generates profound effects on the cardiovascular system. This host of molecules includes factors such as soluble fms-like tyrosine kinase-1, the angiotensin II type 1 receptor autoantibody, and cytokines such as tumor necrosis factor-alpha, which generate widespread dysfunction of the maternal vascular endothelium. This dysfunction manifests as enhanced formation of factors such as endothelin, reactive oxygen species, and augmented vascular sensitivity to angiotensin II. Alternatively, the preeclampsia syndrome may also be evidenced as decreased formation of vasodilators such as nitric oxide and prostacyclin. Taken together, these alterations cause hypertension by impairing renal pressure natriuresis and increasing total peripheral resistance. Moreover, the quantitative importance of the various endothelial and humoral factors that mediate vasoconstriction and elevation of arterial pressure during preeclampsia remains to be elucidated. Thus identifying the connection between placental ischemia/hypoxia and maternal cardiovascular abnormalities in hopes of revealing potential therapeutic regimens remains an important area of investigation and will be the focus of this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号