首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Nefiracetam is a pyrrolidine-related nootropic drug exhibiting various pharmacological actions such as cognitive-enhancing effect. We previously showed that nefiracetam potentiates NMDA-induced currents in cultured rat cortical neurons. To address questions whether nefiracetam affects NMDA receptor-dependent synaptic plasticity in the hippocampus, we assessed effects of nefiracetam on NMDA receptor-dependent long-term potentiation (LTP) by electrophysiology and LTP-induced phosphorylation of synaptic proteins by immunoblotting analysis. Nefiracetam treatment at 1-1000 nM increased the slope of fEPSPs in a dose-dependent manner. The enhancement was associated with increased phosphorylation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor through activation of calcium/calmodulin-dependent protein kinase II (CaMKII) without affecting synapsin I phosphorylation. In addition, nefiracetam treatment increased PKCalpha activity in a bell-shaped dose-response curve which peaked at 10 nM, thereby increasing phosphorylation of myristoylated alanine-rich protein kinase C substrate and NMDA receptor. Nefiracetam treatment did not affect protein kinase A activity. Consistent with the bell-shaped PKCalpha activation, nefiracetam treatment enhanced LTP in the rat hippocampal CA1 region with the same bell-shaped dose-response curve. Furthermore, nefiracetam-induced LTP enhancement was closely associated with CaMKII and PKCalpha activation with concomitant increases in phosphorylation of their endogenous substrates except for synapsin I. These results suggest that nefiracetam potentiates AMPA receptor-mediated fEPSPs through CaMKII activation and enhances NMDA receptor-dependent LTP through potentiation of the post-synaptic CaMKII and protein kinase C activities. Together with potentiation of nicotinic acetylcholine receptor function, nefiracetam-enhanced AMPA and NMDA receptor functions likely contribute to improvement of cognitive function.  相似文献   

2.
Aberrant behaviors related to learning and memory in olfactory bulbectomized (OBX) mice have been documented in the previous studies. We reported that the impairment of long-term potentiation (LTP) of hippocampal CA1 regions from OBX mice was associated with down-regulation of CaM kinase II (CaMKII) and protein kinase C (PKC) activities. We now demonstrated that the nootropic drug, nefiracetam, significantly improved spatial reference memory-related behaviors as assessed by Y-maze and novel object recognition task in OBX mice. Nefiracetam also restored hippocampal LTP injured in OBX mice. Nefiracetam treatment restored LTP-induced PKCα (Ser657) and NR1 (Ser896) phosphorylation as well as increase in their basal phosphorylation in the hippocampal CA1 region of OBX mice. Likewise, nefiracetam improved LTP-induced CaMKIIα (Thr286) autophosphorylation and GluR1 (Ser831) phosphorylation and increased their basal phosphorylation. The enhancement of PKCα (Ser657) and CaMKIIα (Thr286) autophosphorylation by nefiracetam was inhibited by treatment with (±)-α-Methyl-(4-carboxyphenyl)glycine and DL-2-Amino-5-phosphonovaleric acid, respectively. The enhancement of LTP induced by nefiracetam is inhibited by treatment with 2-methyl-6-(phenylethynyl)-pyridine, but not by treatment with LY367385, suggesting that metabotropic glutamate receptor 5 (mGluR5) but not mGluR1 is involved in the nefiracetam-induced LTP enhancement. Taken together, nefiracetam ameliorates OBX-induced deficits in memory-related behaviors and impairment of LTP in the hippocampal CA1 region through activation of NMDAR and mGluR5, thereby leading to an increase in activities of CaMKIIα (Thr286) and PKCα (Ser657), respectively.  相似文献   

3.
Dehydroepiandrosterone (DHEA) is one of the most abundant neurosteroids synthesized de novo in the CNS. We here found that sigma-1 receptor stimulation by DHEA improves cognitive function through phosphorylation of synaptic proteins in olfactory bulbectomized (OBX) mouse hippocampus. We have previously reported that calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) were impaired in OBX mouse hippocampus. OBX mice were administered once a day for 7-8 days with DHEA (30 or 60 mg/kg p.o.) 10 days after operation. The spatial, cognitive and conditioned fear memories in OBX mice were significantly improved as assessed by Y-maze, novel object recognition and passive avoidance task, respectively. DHEA also improved impaired hippocampal long-term potentiation in OBX mice. Notably, DHEA treatment restored PKCα (Ser-657) autophosphorylation and NR1 (Ser-896) and myristoylated alanine-rich protein kinase C substrate (Ser-152/156) phosphorylation to the control levels in the hippocampal CA1 region. Likewise, DHEA treatment improved CaMKIIα (Thr-286) autophosphorylation and GluR1 (Ser-831) phosphorylation to the control levels in the CA1 region. Furthermore, DHEA treatment improved ERK and cAMP-responsive element-binding protein (Ser-133) phosphorylation to the control levels. Finally, NE-100, sigma-1 receptor antagonist, significantly inhibited the DHEA-induced improvement of memory-related behaviors and CaMKII, PKC and ERK phosphorylation in CA1 region. Taken together, sigma-1 receptor stimulation by DHEA ameliorates OBX-induced impairment in memory-related behaviors and long-term potentiation in the hippocampal CA1 region through activation of CaMKII, PKC and ERK.  相似文献   

4.
Using autophosphorylated Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) as substrate, we now find that long-term potentian (LTP) induction and maintenance are also associated with a significant decrease in calyculin A-sensitive protein phosphatase (protein phosphatase 2A) activity, without changes in Mg2+-dependent protein phosphatase (protein phosphatase 2C) activity. This decrease in protein phosphatase 2A activity was prevented when LTP induction was inhibited by treatment with calmidazolium or D-2-amino-5-phosphonopentanoic acid. In addition, the application of high-frequency stimulation to 32P-labeled hippocampal slices resulted in increases in the phosphorylation of a 55-kDa protein immunoprecipitated with anti-phosphatase 2A antibodies. Use of a specific antibody revealed that the 55-kDa protein is the B'alpha subunit of protein phosphatase 2A. Following purification of brain protein phosphatase 2A, the B'alpha subunit was phosphorylated by CaM kinase II, an event that led to the reduction of protein phosphatase 2A activity. These results suggest that the decreased activity in protein phosphatase 2A following LTP induction contributes to the maintenance of constitutively active CaM kinase II and to the long-lasting increase in phosphorylation of synaptic components implicated in LTP.  相似文献   

5.
Neurofilament-L (NF-L), one subunit of the neuronal intermediate filaments, is a major element of neuronal cytoskeletons. The dynamics of NF-L are regulated by phosphorylation of its head domain. The phosphorylation sites of the NF-L head domain by protein kinase A, protein kinase C, and Rho-associated kinase have been previously identified, and those by calcium/calmodulin-dependent protein kinase II (CaMKII) were identified in this study. A series of site- and phosphorylation state-specific antibodies against NF-L was prepared to investigate NF-L phosphorylation in neuronal systems. Long-term potentiation (LTP) is a cellular model of neuronal plasticity that is thought to involve the phosphorylation of various proteins. NF-L is considered a possible substrate for phosphorylation. During LTP stimulation of mouse hippocampal slices, the series of antibodies demonstrated the increase in the phosphorylation level of Ser(57) in NF-L and the visualization of the localized distribution of Ser(57) phosphorylation in a subpopulation of apical dendrites of the pyramidal neurons. Furthermore, Ser(57) phosphorylation during LTP is suggested to be mediated by CaMKII. Here we show that NF-L is phosphorylated by CaMKII in a subpopulation of apical dendrites during LTP, indicating that Ser(57) is a novel phosphorylation site of NF-L in vivo related to the neuronal signal transduction.  相似文献   

6.
Calmodulin (CaM)-kinase II holoenzymes composed of either alpha or beta subunits were analyzed using light scattering to determine a mechanism for self-association. Under identical reaction conditions, only alphaCaM-kinase II holoenzymes self-associated. Self-association was detected at a remarkably low enzyme concentration (0.14 microM or 7 microg/mL). Light scattering revealed two phases of self-association: a rapid rise that peaked, followed by a slower decrease that stabilized after 2-3 min. Electron microscopy identified that the rapid rise in scattering was due to the formation of loosely packed clusters of holoenzymes that undergo further association into large complexes of several microns in diameter over time. Self-association required activation by Ca(2+)/CaM and was strongly dependent on pH. Self-association was not detected at pH 7.5, however, the extent of this process increased as reaction pH decreased below 7.0. A peptide substrate (autocamtide-2) and inhibitor (AIP) designed from the autoregulatory domain of CaM-kinase II potently prevented self-association, whereas the peptide substrate syntide-2 did not. Thus, CaM-kinase II self-association is isoform specific, regulated by the conditions of activation, and is inhibited by peptides that bind to the catalytic domain likely via their autoregulatory-like sequence. A model for CaM-kinase II self-association is presented whereby catalytic domains in one holoenzyme interact with the regulatory domains in neighboring holoenzymes. These intersubunit-interholoenzyme autoinhibitory interactions could contribute to both the translocation and inactivation of CaM-kinase II previously reported in models of ischemia.  相似文献   

7.
Using nystatin-perforated whole-cell recording configuration, the modulatory effect of N-methyl-D-aspartate (NMDA) on -aminobutyric acid (GABA)-activated whole-cell currents was investigated in neurons freshly dissociated from the rat sacral dorsal commissural nucleus (SDCN). The results showed that: (I) NMDA suppressed GABA- and muscimol (Mus)-activated currents (IGABA and Imus), respectively in the Mg2+-free external solution containing 1 mol/L glycine at a holding potential (VH) of 40 mV in SDCN neurons. The selective NMDA receptor antagonist, D-2-amino-5-phosphonovaleric acid (APV, 100 mol/L), inhibited the NMDA-evoked currents and blocked the NMDA-induced suppression of IGABA; (ii) when the neurons were incubated in a Ca2+-free bath or pre-loaded with a membrane-permeable Ca2+ chelator, BAPTA AM (10 mol/L), the inhibitory effect of NMDA on IGABA disappeared. Cd2+ (10 mol/L) or La3+ (30 mol/L), the non-selective blockers of voltage-dependent calcium channels, did not affect the suppression of IGABA by NMDA application; (iii) the suppression of IGABA by NMDA was inhibited by KN-62, a calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitor. These results indicated that the inhibition of GABA response by NMDA is Ca2+-dependent and CaMKII is involved in the process of the Ca2+-dependent inhibition.  相似文献   

8.
Ca2+ influx through NMDA-type glutamate receptor at excitatory synapses causes activation of post-synaptic Ca2+/calmodulin-dependent protein kinase type II (CaMKII) and its translocation to the NR2B subunit of NMDA receptor. The major binding site for CaMKII on NR2B undergoes phosphorylation at Ser1303, in vivo . Even though some regulatory effects of this phosphorylation are known, the mode of dephosphorylation of NR2B-Ser1303 is still unclear. We show that phosphorylation status at Ser1303 enables NR2B to distinguish between the Ca2+/calmodulin activated form and the autonomously active Thr286-autophosphorylated form of CaMKII. Green fluorescent protein–α-CaMKII co-expressed with NR2B sequence in human embryonic kidney 293 cells was used to study intracellular binding between the two proteins. Binding in vitro was studied by glutathione- S -transferase pull-down assay. Thr286-autophosphorylated α-CaMKII or the autophosphorylation mimicking mutant, T286D-α-CaMKII, binds NR2B sequence independent of Ca2+/calmodulin unlike native wild-type α-CaMKII. We show enhancement of this binding by Ca2+/calmodulin. Phosphorylation or a phosphorylation mimicking mutation on NR2B (NR2B-S1303D) abolishes the Ca2+/calmodulin-independent binding whereas it allows the Ca2+/calmodulin-dependent binding of α-CaMKII in vitro . Similarly, the autonomously active mutants, T286D-α-CaMKII and F293E/N294D-α-CaMKII, exhibited Ca2+-independent binding to non-phosphorylatable mutant of NR2B under intracellular conditions. We also show for the first time that phosphatases in the brain such as protein phosphatase 1 and protein phosphatase 2A dephosphorylate phospho-Ser1303 on NR2B.  相似文献   

9.
Parkinson's disease (PD) patients frequently reveal deficit in cognitive functions during the early stage in PD. The dopaminergic neurotoxin, MPTP-induced neurodegeneration causes an injury of the basal ganglia and is associated with PD-like behaviors. In this study, we demonstrated that deficits in cognitive functions in MPTP-treated mice were associated with reduced calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation and impaired long-term potentiation (LTP) induction in the hippocampal CA1 region. Mice were injected once a day for 5days with MPTP (25mg/kg i.p.). The impaired motor coordination was observed 1 or 2week after MPTP treatment as assessed by rota-rod and beam-walking tasks. In immunoblotting analyses, the levels of tyrosine hydroxylase protein and CaMKII autophosphorylation in the striatum were significantly decreased 1week after MPTP treatment. By contrast, deficits of cognitive functions were observed 3-4weeks after MPTP treatment as assessed by novel object recognition and passive avoidance tasks but not Y-maze task. Impaired LTP in the hippocampal CA1 region was also observed in MPTP-treated mice. Concomitant with impaired LTP induction, CaMKII autophosphorylation was significantly decreased 3weeks after MPTP treatment in the hippocampal CA1 region. Finally, the reduced CaMKII autophosphorylation was closely associated with reduced AMPA-type glutamate receptor subunit 1 (GluR1; Ser-831) phosphorylation in the hippocampal CA1 region of MPTP-treated mice. Taken together, decreased CaMKII activity with concomitant impaired LTP induction in the hippocampus likely account for the learning disability observed in MPTP-treated mice.  相似文献   

10.
c-Jun N-terminal kinases (JNKs) are thought to be involved in regulating synaptic plasticity. We therefore investigated the specific role of JNK2 in modulating long-term potentiation (LTP) in hippocampus during development, using JNK2-deficient mice. The morphological structure and the numbers of both NeuN, a specific neuronal marker, and GABA-positive neurons in the hippocampal areas were similar in wild-type and Jnk2(-/-) mice. Western blot analysis revealed that JNK2 expression was higher and stable at 1 and 3 months of age, but JNK1 levels were lower at 1 month of age and almost undetectable in 3-month-old wild-type mice. In contrast to wild-type mice, there was a significant increase in JNK1 expression in JNK2 mutant mice, especially at 1 month of age. Electrophysiological studies demonstrated that LTP was impaired in both the CA1 and CA3 regions in 1-month-old, but not in adult, Jnk2(-/-) mice, probably owing to decreased presynaptic neurotransmitter release. Moreover, late-phase LTP, but not early-phase LTP, was impaired in the Jnk2(-/-) adult mice, suggesting that JNK2 plays a role in transforming early LTP to late LTP. Together, the data highlight the specific role of JNK2 in hippocampal synaptic plasticity during development.  相似文献   

11.
Calcium (Ca(2+))/calmodulin-dependent protein kinase kinase (CaMKK) is a novel member of Ca(2+)/calmodulin-dependent protein kinase (CaMK) family, whose physiological roles in regulating meiotic cell cycle needs to be determined. We showed by Western blot that CaMKK was expressed in pig oocytes at various maturation stages. Confocal microscopy was employed to observe CaMKK distribution. In oocytes at the germinal vesicle (GV) or prometaphase I (pro-MI) stage, CaMKK was distributed in the nucleus, around the condensed chromatin and the cortex of the cell. At metaphase I (MI) stage, CaMKK was concentrated in the cortex of the cell. After transition to anaphase I or telophase I stage, CaMKK was detected around the separating chromosomes and in the cortex of the cell. At metaphase II (MII) stage, CaMKK was localized to the cortex of the cell, with a thicker area near the first polar body (PB1). Treatment of pig cumulus-enclosed oocytes with STO-609, a membrane-permeable CaMKK inhibitor, resulted in the delay/inhibition of the meiotic resumption and the inhibition of first polar body emission. The correlation between CaMKK and microfilaments during meiotic maturation of pig oocytes was then studied. CaMKK and microfilaments were colocalized from MI to MII during porcine oocyte maturation. After oocytes were treated with STO-609, microfilaments were depolymerized, while in oocytes exposed to cytochalasin B (CB), a microfilament polymerization inhibitor, CaMKK became diffused evenly throughout the cell. These data suggest that CaMKK is involved in regulating the meiotic cell cycle probably by interacting with microfilaments in pig oocytes.  相似文献   

12.
Ca2+/calmodulin-dependent protein kinase II (CaMKII), the most abundant kinase at the postsynaptic density (PSD), is expected to be involved in activity-induced regulation of synaptic properties. CaMKII is activated when it binds calmodulin in the presence of Ca2+ and, once autophosphorylated on T-286/7, remains active in the absence of Ca2+ (autonomous form). In the present study we used a quantitative mass spectrometric strategy (iTRAQ) to identify sites on PSD components phosphorylated upon CaMKII activation. Phosphorylation in isolated PSDs was monitored under conditions where CaMKII is: (1) mostly inactive (basal state), (2) active in the presence of Ca2+, and (3) active in the absence of Ca2+. The quantification strategy was validated through confirmation of previously described autophosphorylation characteristics of CaMKII. The effectiveness of phosphorylation of major PSD components by the activated CaMKII in the presence and absence of Ca2+ varied. Most notably, autonomous activity in the absence of Ca2+ was more effective in the phosphorylation of three residues on SynGAP. Several PSD scaffold proteins were phosphorylated upon activation of CaMKII. The strategy adopted allowed the identification, for the first time, of CaMKII-regulated sites on SAPAPs and Shanks, including three conserved serine residues near the C-termini of SAPAP1, SAPAP2, and SAPAP3. Involvement of CaMKII in the phosphorylation of PSD scaffold proteins suggests a role in activity-induced structural re-organization of the PSD.  相似文献   

13.
本文在大鼠杏仁核脑片上刺激外囊(external capsule,EC),在基底外侧杏仁核(basolateral amygdala,BLA)记录场电位,观察能否在杏仁核诱导长时程增强(long—term potentiation,LTP),并探讨杏仁核LTP形成的可能机制。应用两串间隔10min的0频率波刺激EC,可见BLA的场电位明显增强,持续时间在30min以上。EC—BLA的LTP表现为通路特异性,可被N-甲基-D-天冬氨酸受体(N-methyl—D—aspartate receptor,NMDAR)阻断剂D,L-2-氨基-5磷酸基戊酸(APV)阻断。在灌流液中加入蛋白激酶C(protein kinaseC,PKC)抑制剂chelerythrine chloride,对BLA的基础场电位和配对脉冲比率(pairedpulse ratio,PPR)没有影响;但在chelerythrine chloride存在的情况下,两串θ频率波刺激不能诱导出LTP;若于两串高频刺激10min后,在灌流液中加入chelerythrine chloride不能阻断BLA的LTP。上述结果表明,EC—BLA的LTP为NMDAR依赖性,PKC参与BLA的LTP诱导和早期维持。  相似文献   

14.
Tryptophan hydroxylase (TPH) is the initial and rate-limiting enzyme in the biosynthesis of serotonin. TPH was once thought to be a single-gene product but it is now known to exist in two isoforms. TPH1 is found in the periphery and pineal gland whereas TPH2 is expressed specifically in the CNS. Both TPH isoforms are known to be regulated by protein kinase-dependent phosphorylation and the sites of modification of TPH1 by protein kinase A have been identified. While TPH2 is activated by calcium, calmodulin-dependent protein kinase II (CaMKII), the sites at which this isoform is modified are not known. Treatment of wild-type TPH2 with CaMKII followed by mass spectrometry analysis revealed that the enzyme was activated and phosphorylated at a single site, serine-19. Mutagenesis of serine-19 to alanine did not alter the catalytic function of TPH2 but this mutant enzyme was neither activated nor phosphorylated by CaMKII. A phosphopeptide bracketing phosphoserine-19 in TPH2 was used as an antigen to generate polyclonal antibodies against phosphoserine-19. The antibodies are highly specific for phosphoserine-19 in TPH2. The antibodies do not react with wild-type TPH2 or TPH1 and they do not recognize phophoserine-58 or phosphoserine-260 in TPH1. These results establish that activation of TPH2 by CaMKII is mediated by phosphorylation of serine-19 within the regulatory domain of the enzyme. Production of a specific antibody against the CaMKII phosphorylation site in TPH2 represents a valuable tool to advance the study of the mechanisms regulating the function of this important enzyme.  相似文献   

15.
All six isoforms of the microtubule-associated protein tau are present in hyperphosphorylated states in the brains of patients with Alzheimer's disease (AD). It is presently unclear how such hyperphosphorylation of tau is controlled. In a previous study (Singh et al. Arch Biochem Biophys 328: 43-50, 1996) we have shown that three-repeat taus containing two N-terminal inserts were phosphorylated to higher levels and at different sites compared to those either lacking or containing only one such insert. We have extended these observations in this study by comparing the phosphorylation of tau isoforms containing three-repeats (t3, t3L) and four-repeats (t4, t4L). In the absence of N-terminal inserts in tau structure (t3, t4) both CaM kinase II and C-kinase phosphorylated four-repeat tau (t4) to a higher extent than three-repeat tau (t3). When two N-terminal inserts are present in tau structure (t3L, t4L), then three-repeat tau (t3L) is phosphorylated to a higher extent than four-repeat tau (t4L) by these kinases. CK-1 and GSK-3 phosphorylated each of the above pairs of three-repeat and four-repeat taus to the same extents. However, after an initial prephosphorylation of the taus by CaM kinase II, GSK-3 differentially phosphorylated three-repeat and four-repeat taus. Under these conditions thr 231, ser 235, ser 396, and ser 404 were phosphorylated to greater extents in four-repeat tau (t4) compared to three-repeat tau (t3) in the absence of N-terminal inserts. In the presence of such inserts these sites were phosphorylated to greater extents in three-repeat (t3L) compared to four-repeat (t4L) tau. Our results indicate that the extents to which tau isoforms are phosphorylated in normal and AD brain depends on (a) the number of repeats (3 or 4), (b) the number of N-terminal inserts (0, 1, or 2), and (c) the initial phosphorylation state of tau.  相似文献   

16.
Using nystatin-perforated whole-cell recording configuration, the modulatory effect of N-methyl-D-aspartate (NMDA) on γ-aminobutyric acid (GABA)-activated whole-cell currents was investigated in neurons freshly dissociated from the rat sacral dorsal commissural nucleus (SDCN). The results showed that: (i) NMDA suppressed GABA-and muscimol (Mus)-activated currents (Igaba and IMus), respectively in the Mg2+-free external solution containing 1 μmol/L glycine at a holding potential (V H ) of −40 mV in SDCN neurons. The selective NMDA receptor antagonist, D-2-amino-5-phosphonovaleric acid (APV, 100 γmol/L), inhibited the NMDA-evoked currents and blocked the NMDA-induced suppression of Igaba; (ii) when the neurons were incubated in a Ca2+-free bath or pre-loaded with a membrane-permeable Ca2+ chelator, BAPTA AM (10 μmol/L), the inhibitory effect of NMDA on IGAba disappeared. Cd2+ (10 μmol/L) or La3+ (30 μmol/L), the non-selective blockers of voltage-dependent calcium channels, did not affect the suppression of Igaba by NMDA application; (iii) the suppression of IGAba by NMDA was inhibited by KN-62, a calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitor. These results indicated that the inhibition of GABA response by NMDA is Ca2+-dependent and CaMKII is involved in the process of the Ca2+-dependent inhibition.  相似文献   

17.
18.
19.
Calcium/calmodulin-dependent protein kinase II (CaMKII) interprets information conveyed by the amplitude and frequency of calcium transients by a controlled transition from an autoinhibited basal intermediate to an autonomously active phosphorylated intermediate (De Koninck and Schulman, 1998). We used spin labelling and electron paramagnetic resonance spectroscopy to elucidate the structural and dynamic bases of autoinhibition and activation of the kinase domain of CaMKII. In contrast to existing models, we find that autoinhibition involves a conformeric equilibrium of the regulatory domain, modulating substrate and nucleotide access. Binding of calmodulin to the regulatory domain induces conformational changes that release the catalytic cleft, activating the kinase and exposing an otherwise inaccessible phosphorylation site, threonine 286. Autophosphorylation at Thr286 further disrupts the interactions between the catalytic and regulatory domains, enhancing the interaction with calmodulin, but maintains the regulatory domain in a dynamic unstructured conformation following dissociation of calmodulin, sustaining activation. These findings support a mechanistic model of the CaMKII holoenzyme grounded in a dynamic understanding of autoregulation that is consistent with a wealth of biochemical and functional data.  相似文献   

20.
Mitogen-activated protein kinase (MAPK) cascade classically is thought to be involved in cellular transformation, including proliferation and differentiation. Recent behavioral studies suggest that MAPK may also have a role in learning and memory. Long-term potentiation (LTP), a candidate mechanism for learning and memory, has at least two distinct temporal phases: an early phase (E-LTP) which lasts for 1–2 h and a late phase (L-LTP) which can persist 3 h. Here, we report that PD 098059, a selective inhibitor of MAPK cascade, attenuates L-LTP induced by bath application of forskolin without affecting basal synaptic transmission. This effect was mimicked by direct injection of animals with MAPK antisense oligonucleotide into the hippocampal CA1 region. MAPK activity measured by using a synthetic peptide corresponding to the sequence surrounding the major site of phosphorylation of the myelin-basic protein by MAPK was enhanced by forskolin. The same antisense treatment also completely inhibited the increased MAPK activity. These results demonstrate an involvement of MAPK in the induction of L-LTP in the hippocampal CA1 neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号